Projected Changes of the Potential Distribution of Azadinium dexteroporum in Chinese Coastal Waters under Climate Change
-
摘要: 产毒藻类对生态环境安全和人类健康具有重大威胁,右侧环胺藻(Azadinium dexteroporum)是氮杂螺环酸毒素的主要产毒种之一,但我国对该物种的研究十分稀缺,其在中国近海的分布仍然不明。本研究通过环境DNA方法获取右侧环胺藻在中国近海的分布记录,以2050年代和2100年代为未来预测节点,采用最大熵模型模拟了该物种在当前及未来三种气候情景(SSP126、SSP245和SSP585情景)下的潜在适生区变化。结果显示,硝酸盐浓度、硅酸盐浓度、海表温度为右侧环胺藻分布的主要限制因子。现状情景下,该物种适生区面积为63.71×104 km2,集中分布于南海北部。随着气候变化右侧环胺藻潜在适生区可能呈现缩减的趋势,2100年代潜在适生区面积将减少至5.58×104 km2~32.21×104 km2。右侧环胺藻的适生区空间格局整体呈现“南缩北扩”趋势,南海的大面积适生区将消失,但在黄渤海区域将出现新的适生区。其适生区质心迁移距离最远可达
1439 km,从南海北部迁移至长江口以北。研究结果为有害甲藻的生态风险监控、预测和管理提供了重要科学依据。Abstract: Toxic algal species pose significant threats to ecological environmental safety and human health. Azadinium dexteroporum, one of the main producers of azaspiracid toxins, remains poorly studied in China, and its distribution in Chinese coastal waters is still unclear. In this study, environmental DNA (eDNA) methods were used to obtain occurrence records of A. dexteroporum in Chinese coastal areas. Using the 2050s and 2100s as future projection periods, the Maximum Entropy (MaxEnt)model was applied to simulate the potential suitable habitats of this species under current and three future climate scenarios (SSP126, SSP245, and SSP585). The results indicated that nitrate concentration, silicate concentration, and sea surface temperature were the primary environmental factors influencing the distribution of A. dexteroporum. Under current conditions, the suitable habitat area was estimated to be 63.71 × 104 km2, mainly concentrated in the northern South China Sea. With climate change, the potential suitable area of A. dexteroporum is projected to shrink, decreasing to 5.58×104 km2~32.21×104 km2 by the 2100s. The spatial distribution pattern of suitable habitats shows an overall “southward contraction and northward expansion” trend: the extensive suitable areas in the South China Sea are expected to disappear, while new suitable areas may emerge in the Yellow and Bohai Seas. The centroid of suitable habitats is projected to shift up to 1,439 km, migrating from the northern South China Sea to north of the Yangtze River estuary. These findings provide important scientific insights for the ecological risk monitoring, forecasting, and management of harmful dinoflagellates.-
Key words:
- Azadinium dexteroporum /
- MaxEnt model /
- climate scenario /
- potential suitable habitat /
- eDNA
-
表 1 环境变量列表
Tab. 1 List of environment variables
环境变量 数据来源 变量单位 海水温度 Ocean temperature www.bio-oracle.org ℃ 盐度 Salinity www.bio-oracle.org psu 初级生产力 Primary productivity www.bio-oracle.org mmol/m3 硝酸盐 Nitrate www.bio-oracle.org mmol/m3 磷酸盐 Phosphate www.bio-oracle.org mmol/m3 溶解氧
Dissolved molecular oxygenwww.bio-oracle.org mmol/m3 叶绿素 Chlorophyll www.bio-oracle org mg/m3 硅酸盐 Silicate www.bio-oracle.org mmol/m3 离岸距离 Distance from land www.globalfishingwatch.com km 表 2 右侧环胺藻适生区面积收缩变化及质心迁移表
Tab. 2 Changes in the suitable habitat area and centroid migration of Azadinium dexteroporum.
情景 当前适生区面积
(×104 km2)未来适生区面积
(×104 km2)稳定区面积
(×104 km2)收缩区面积
(×104 km2)扩张区面积
(×104 km2)不适宜区面积
(×104 km2)质心迁移距离
(km)2050年代SSP126 63.71 24.15 16.56 47.16 7.59 528.57 500.64 2050年代SSP245 63.71 21.12 13.78 49.93 7.33 528.83 525.32 2050年代SSP585 63.71 10.74 7.10 56.61 3.63 532.53 587.04 2100年代SSP126 63.71 32.21 15.03 48.69 17.18 518.98 259.90 2100年代SSP245 63.71 5.58 2.23 61.49 3.35 532.81 852.35 2100年代SSP585 63.71 14.17 1.39 62.33 12.79 523.38 1439.17 -
[1] Bindoff N L, Cheung W W L, Kairo J G, et al. Changing ocean, marine ecosystems, and dependent communities[M]//Pörtner H O, Roberts D C, Masson-Delmotte V, et al. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Cambridge: Cambridge University Press, 2019: 447−587. [2] Wells M L, Trainer V L, Smayda T J, et al. Harmful algal blooms and climate change: learning from the past and present to forecast the future[J]. Harmful Algae, 2015, 49: 68−93. doi: 10.1016/j.hal.2015.07.009 [3] Díaz P A, Figueroa R I. Toxic algal bloom recurrence in the era of global change: lessons from the Chilean Patagonian fjords[J]. Microorganisms, 2023, 11(8): 1874. doi: 10.3390/microorganisms11081874 [4] Alvarez S, Brown C E, Diaz M G, et al. Non-linear impacts of harmful algae blooms on the coastal tourism economy[J]. Journal of Environmental Management, 2024, 351: 119811. doi: 10.1016/j.jenvman.2023.119811 [5] Hou Wanli, Chen Xi, Ba Menglin, et al. Characteristics of harmful algal species in the coastal waters of China from 1990 to 2017[J]. Toxins, 2022, 14(3): 160. doi: 10.3390/toxins14030160 [6] Yu Zhiming, Tang Yingzhong, Gobler C J. Harmful algal blooms in China: history, recent expansion, current status, and future prospects[J]. Harmful Algae, 2023, 129: 102499. doi: 10.1016/j.hal.2023.102499 [7] Yan Tian, Li Xiaodong, Tan Zhijun, et al. Toxic effects, mechanisms, and ecological impacts of harmful algal blooms in China[J]. Harmful Algae, 2022, 111: 102148. doi: 10.1016/j.hal.2021.102148 [8] Yang Jiaping, Sun Weiqin, Sun Mingjuan, et al. Current research status of azaspiracids[J]. Marine Drugs, 2024, 22(2): 79. doi: 10.3390/md22020079 [9] Furey A, O'Doherty S, O'Callaghan K, et al. Azaspiracid poisoning (AZP) toxins in shellfish: toxicological and health considerations[J]. Toxicon, 2010, 56(2): 173−190. doi: 10.1016/j.toxicon.2009.09.009 [10] Tebben J, Zurhelle C, Tubaro A, et al. Structure and toxicity of AZA-59, an azaspiracid shellfish poisoning toxin produced by Azadinium poporum (Dinophyceae)[J]. Harmful Algae, 2023, 124: 102388. doi: 10.1016/j.hal.2023.102388 [11] Twiner M J, Rehmann N, Hess P, et al. Azaspiracid shellfish poisoning: a review on the chemistry, ecology, and toxicology with an emphasis on human health impacts[J]. Marine Drugs, 2008, 6(2): 39−72. doi: 10.3390/md6020039 [12] Otero P, Silva M. Emerging marine biotoxins in European waters: potential risks and analytical challenges[J]. Marine Drugs, 2022, 20(3): 199. doi: 10.3390/md20030199 [13] Percopo I, Siano R, Rossi R, et al. A new potentially toxic Azadinium species (Dinophyceae) from the Mediterranean Sea, A. dexteroporum sp. nov[J]. Journal of Phycology, 2013, 49(5): 950−966. [14] Tillmann U. Harmful algal species fact sheet: amphidomataceae[M]//Shumway S E, Burkholder J M, Morton S L. Harmful Algal Blooms: A Compendium Desk Reference. Hoboken: Wiley, 2018: 575−582. [15] Takahashi K, Lum W M, Benico G, et al. Toxigenic strains of Azadinium poporum (Amphidomataceae, Dinophyceae) from Japan and Vietnam, with first reports of A. poporum (ribotype A) and A. trinitatum in Asian Pacific[J]. Phycological Research, 2021, 69(3): 175−187. doi: 10.1111/pre.12455 [16] Liu Minlu, Tillmann U, Ding Guangmao, et al. Metabarcoding revealed a high diversity of Amphidomataceae (Dinophyceae) and the seasonal distribution of their toxigenic species in the Taiwan Strait[J]. Harmful Algae, 2023, 124: 102404. doi: 10.1016/j.hal.2023.102404 [17] 李卫国. 北部湾海域浮游植物群落结构及其分子多样性研究[D]. 广州: 暨南大学, 2022.Li Weiguo. Phytoplankton community structure and molecular diversity in Beibu Gulf[D]. Guangzhou: Jinan University, 2022. [18] Luo Zhaohe, Krock B, Mertens K N, et al. Adding new pieces to the Azadinium (Dinophyceae) diversity and biogeography puzzle: non-toxigenic Azadinium zhuanum sp. nov. from China, toxigenic A. poporum from the Mediterranean, and a non-toxigenic A. dalianense from the French Atlantic[J]. Harmful Algae, 2017, 66: 65−78. doi: 10.1016/j.hal.2017.05.001 [19] 赵丽叶, 邱江兵, 王桂祥, 等. 温度、盐度和光照强度对腹孔环胺藻生长与产毒的影响[J]. 中国海洋大学学报, 2025, 55(7): 38−47. doi: 10.16441/j.cnki.hdxb.20240129Zhao Liye, Qiu Jiangbing, Wang Guixiang, et al. Effect of temperature, salinity and light intensity on the growth and toxin production of Azadinium poporum[J]. Periodical of Ocean University of China, 2025, 55(7): 38−47. doi: 10.16441/j.cnki.hdxb.20240129 [20] Ardura A, Zaiko A, Martinez J L, et al. eDNA and specific primers for early detection of invasive species–A case study on the bivalve Rangia cuneata, currently spreading in Europe[J]. Marine Environmental Research, 2015, 112: 48−55. doi: 10.1016/j.marenvres.2015.09.013 [21] Liu Qi, Zhang Yun, Wu Han, et al. A review and perspective of eDNA application to eutrophication and HAB control in freshwater and marine ecosystems[J]. Microorganisms, 2020, 8(3): 417. doi: 10.3390/microorganisms8030417 [22] Hänfling B, Lawson Handley L, Read D S, et al. Environmental DNA metabarcoding of lake fish communities reflects long‐term data from established survey methods[J]. Molecular Ecology, 2016, 25(13): 3101−3119. doi: 10.1111/mec.13660 [23] Banerji A, Bagley M, Elk M, et al. Spatial and temporal dynamics of a freshwater eukaryotic plankton community revealed via 18S rRNA gene metabarcoding[J]. Hydrobiologia, 2018, 818(1): 71−86. doi: 10.1007/s10750-018-3593-0 [24] Hu Yuxin, Zhang Jing, Huang Jie, et al. The biogeography of colonial volvocine algae in the Yangtze River basin[J]. Frontiers in Microbiology, 2023, 14: 1078081. doi: 10.3389/fmicb.2023.1078081 [25] Riccardi N. Selectivity of plankton nets over mesozooplankton taxa: implications for abundance, biomass and diversity estimation[J]. Journal of Limnology, 2010, 69(2): 287. doi: 10.4081/jlimnol.2010.287 [26] Barve N, Barve V, Jiménez-Valverde A, et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling[J]. Ecological Modelling, 2011, 222(11): 1810−1819. doi: 10.1016/j.ecolmodel.2011.02.011 [27] Brun P, Kiørboe T, Licandro P, et al. The predictive skill of species distribution models for plankton in a changing climate[J]. Global Change Biology, 2016, 22(9): 3170−3181. doi: 10.1111/gcb.13274 [28] Elith J, Leathwick J R. Species distribution models: ecological explanation and prediction across space and time[J]. Annual Review of Ecology, Evolution, and Systematics, 2009, 40: 677−697. doi: 10.1146/annurev.ecolsys.110308.120159 [29] Zhao Ziyi, Xiao Nengwen, Shen Mei, et al. Comparison between optimized MaxEnt and random forest modeling in predicting potential distribution: a case study with Quasipaa boulengeri in China[J]. Science of the Total Environment, 2022, 842: 156867. doi: 10.1016/j.scitotenv.2022.156867 [30] Kumar S, Stohlgren T J. Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia[J]. Journal of Ecology and Natural Environment, 2009, 1(4): 94−98. [31] Phillips S J, Anderson R P, Schapire R E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190(3/4): 231−259. doi: 10.1016/j.ecolmodel.2005.03.026 [32] Klaassen M, Marques T A, Alves F, et al. Trends in marine species distribution models: a review of methodological advances and future challenges[J]. Ecography, 2025: e07702. (查阅网上资料, 未找到对应的卷期号信息, 请确认) [33] Assis J, Serrão E A, Claro B, et al. Climate‐driven range shifts explain the distribution of extant gene pools and predict future loss of unique lineages in a marine brown alga[J]. Molecular Ecology, 2014, 23(11): 2797−2810. doi: 10.1111/mec.12772 [34] Hu Wenjia, Su Shangke, Mohamed H F, et al. Assessing the global distribution and risk of harmful microalgae: a focus on three toxic Alexandrium dinoflagellates[J]. Science of the Total Environment, 2024, 948: 174767. doi: 10.1016/j.scitotenv.2024.174767 [35] Su Shangke, Luo Zhaohe, Kang Jianhua, et al. How does climate change influence the regional ecological-social risks of harmful dinoflagellates? A predictive study of China's coastal waters[J]. Global Change Biology, 2025, 31(7): e70323. doi: 10.1111/gcb.70323 [36] 李宝贤, 李国梁, 姚海芹, 等. 基于MaxEnt模型和ArcGIS对巨藻在我国适生情况的分析[J]. 渔业科学进展, 2023, 44(2): 118−126. doi: 10.19663/j.issn2095-9869.20211214002Li Baoxian, Li Guoliang, Yao Haiqin, et al. Potential geographic distribution of Macrocystis pyrifera in China based on MaxEnt model and ArcGIS[J]. Progress in Fishery Sciences, 2023, 44(2): 118−126. doi: 10.19663/j.issn2095-9869.20211214002 [37] Lin Xiangyuan, Hu Wenjia, Hii K S, et al. Climate change drives long-term spatiotemporal shifts in red Noctiluca scintillans blooms along China's coast[J]. Molecular Ecology, 2025, 34(7): e17709. doi: 10.1111/mec.17709 [38] Aiello‐Lammens M E, Boria R A, Radosavljevic A, et al. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models[J]. Ecography, 2015, 38(5): 541−545. doi: 10.1111/ecog.01132 [39] Liu Jingdi, Zuo Leyi, Zhang Guicheng, et al. Environmental factors influence on phytoplankton community distribution in the eastern Indian Ocean[J]. Marine Environmental Research, 2025, 211: 107377. doi: 10.1016/j.marenvres.2025.107377 [40] Yu Zhida, Ouyang Zhiyuan, Zheng Chuanyang, et al. Multivariate environmental factors and seasonal spatial dynamics affecting the phytoplankton community in Yazhou Bay, South China Sea[J]. Water, 2024, 16(22): 3181. doi: 10.3390/w16223181 [41] Kholssi R, Lougraimzi H, Moreno-Garrido I. Influence of salinity and temperature on the growth, productivity, photosynthetic activity and intracellular ROS of two marine microalgae and cyanobacteria[J]. Marine Environmental Research, 2023, 186: 105932. doi: 10.1016/j.marenvres.2023.105932 [42] Liu Fangchen, Gaul L, Giometto A, et al. Colimitation of light and nitrogen on algal growth revealed by an array microhabitat platform[J]. arXiv: 2307.02646, 2023. (查阅网上资料, 请核对文献类型及格式) [43] Gonzalez‐Aragon D, Rivadeneira M M, Lara C, et al. A species distribution model of the giant kelp Macrocystis pyrifera: worldwide changes and a focus on the Southeast Pacific[J]. Ecology and Evolution, 2024, 14(3): e10901. doi: 10.1002/ece3.10901 [44] Forsblom L, Engström-Öst J, Lehtinen S, et al. Environmental variables driving species and genus level changes in annual plankton biomass[J]. Journal of Plankton Research, 2019, 41(6): 925−938. doi: 10.1093/plankt/fbz063 [45] Eyring V, Bony S, Meehl G A, et al. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization[J]. Geoscientific Model Development, 2016, 9(5): 1937−1958. doi: 10.5194/gmd-9-1937-2016 [46] O’Neill B C, Kriegler E, Ebi K L, et al. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century[J]. Global Environmental Change, 2017, 42: 169−180. doi: 10.1016/j.gloenvcha.2015.01.004 [47] 孟雅丽, 段克勤, 尚溦, 等. 基于CMIP6模式数据的1961—2100年青藏高原地表气温时空变化分析[J]. 冰川冻土, 2022, 44(1): 24−33. doi: 10.7522/j.issn.1000-0240.2022.0017Meng Yali, Duan Keqin, Shang Wei, et al. Analysis on spatiotemporal variations of near-surface air temperature over the Tibetan Plateau from 1961 to 2100 based on CMIP6 models’data[J]. Journal of Glaciology and Geocryology, 2022, 44(1): 24−33. doi: 10.7522/j.issn.1000-0240.2022.0017 [48] Muscarella R, Galante P J, Soley‐Guardia M, et al. ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for MAXENT ecological niche models[J]. Methods in Ecology and Evolution, 2014, 5(11): 1198−1205. doi: 10.1111/2041-210X.12261 [49] Kass J M, Muscarella R, Galante P J, et al. ENMeval 2.0: redesigned for customizable and reproducible modeling of species’ niches and distributions[J]. Methods in Ecology and Evolution, 2021, 12(9): 1602−1608. doi: 10.1111/2041-210X.13628 [50] Akaike H. Information theory and an extension of the maximum likelihood principle[M]//Parzen E, Tanabe K, Kitagawa G. Selected Papers of Hirotugu Akaike. New York: Springer, 1998: 199-213. [51] Sutherland C, Hare D, Johnson P J, et al. Practical advice on variable selection and reporting using Akaike information criterion[J]. Proceedings of the Royal Society B: Biological Sciences, 2023, 290(2007): 20231261. doi: 10.1098/rspb.2023.1261 [52] Luckett D J, Laber E B, El-Kamary S S, et al. Receiver operating characteristic curves and confidence bands for support vector machines[J]. Biometrics, 2021, 77(4): 1422−1430. doi: 10.1111/biom.13365 [53] Phillips S J, Dudík M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation[J]. Ecography, 2008, 31(2): 161−175. doi: 10.1111/j.0906-7590.2008.5203.x [54] Merow C, Smith M J, Silander Jr J A. A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter[J]. Ecography, 2013, 36(10): 1058−1069. doi: 10.1111/j.1600-0587.2013.07872.x [55] 王运生, 谢丙炎, 万方浩, 等. ROC曲线分析在评价入侵物种分布模型中的应用[J]. 生物多样性, 2007, 15(4): 365−372.Wang Yunsheng, Xie Bingyan, Wan Fanghao, et al. Application of ROC curve analysis in evaluating the performance of alien species' potential distribution models[J]. Biodiversity Science, 2007, 15(4): 365−372. [56] Wang Changyou, Zheng Ping, Gu Haifeng, et al. Predicting ecological distribution of the toxic dinoflagellate Alexandrium minutum in China Sea using ecological niche modeling[J]. Journal of Ocean University of China, 2023, 22(4): 1119−1128. doi: 10.1007/s11802-023-5422-y [57] 张丹华, 胡远满, 刘淼. 基于Maxent生态位模型的互花米草在我国沿海的潜在分布[J]. 应用生态学报, 2019, 30(7): 2329−2337. doi: 10.13287/j.1001-9332.201907.014Zhang Danhua, Hu Yuanman, Liu Miao. Potential distribution of Spartinal alterniflora in China coastal areas based on Maxent niche model[J]. Chinese Journal of Applied Ecology, 2019, 30(7): 2329−2337. doi: 10.13287/j.1001-9332.201907.014 [58] Hijmans R J, Barbosa M, Bivand R, et al. Terra: spatial data analysis[CP/OL]. R Package Version 1.8-86. https://CRAN.R-project.org/package=terra, 2025-11-28. (查阅网上资料,未找到引用日期信息,请确认) [59] Hijmans R J, Karney C, Williams E, et al. Geosphere: spherical trigonometry[CP/OL]. R Package Version 1.5-20. https://CRAN.R-project.org/package=geosphere, 2024-10-04. (查阅网上资料,未找到引用日期信息,请确认) [60] Jauffrais T, Séchet V, Herrenknecht C, et al. Effect of environmental and nutritional factors on growth and azaspiracid production of the dinoflagellate Azadinium spinosum[J]. Harmful Algae, 2013, 27: 138−148. doi: 10.1016/j.hal.2013.05.009 [61] Dai Xinfeng, Bill B D, Adams N G, et al. The effect of temperature and salinity on growth rate and azaspiracid cell quotas in two strains of Azadinium poporum (Dinophyceae) from Puget Sound, Washington State[J]. Harmful Algae, 2019, 89: 101665. doi: 10.1016/j.hal.2019.101665 [62] Lan Jiaxin, Liu Pengfei, Hu Xi, et al. Harmful algal blooms in eutrophic marine environments: causes, monitoring, and treatment[J]. Water, 2024, 16(17): 2525. doi: 10.3390/w16172525 [63] Lee T C H, Kwok O T, Ho K C, et al. Effects of different nitrate and phosphate concentrations on the growth and toxin production of an Alexandrium tamarense strain collected from Drake Passage[J]. Marine Environmental Research, 2012, 81: 62−69. doi: 10.1016/j.marenvres.2012.08.009 [64] Abassi S, Kim H S, Bui Q T N, et al. Effects of nitrate on the saxitoxins biosynthesis revealed by sxt genes in the toxic dinoflagellate Alexandrium pacificum (group IV)[J]. Harmful Algae, 2023, 127: 102473. doi: 10.1016/j.hal.2023.102473 [65] Zhang Yaqun, Lin Xin, Shi Xinguo, et al. Metatranscriptomic signatures associated with phytoplankton regime shift from diatom dominance to a dinoflagellate bloom[J]. Frontiers in Microbiology, 2019, 10: 590. doi: 10.3389/fmicb.2019.00590 [66] Thomas M K, Kremer C T, Klausmeier C A, et al. A global pattern of thermal adaptation in marine phytoplankton[J]. Science, 2012, 338(6110): 1085−1088. doi: 10.1126/science.1224836 [67] Tillmann U, Gottschling M, Nézan E, et al. First records of Amphidoma languida and Azadinium dexteroporum (Amphidomataceae, Dinophyceae) from the irminger sea off Iceland[J]. Marine Biodiversity Records, 2015, 8: e142. doi: 10.1017/S1755267215001128 [68] Benedetti F, Vogt M, Elizondo U H, et al. Major restructuring of marine plankton assemblages under global warming[J]. Nature Communications, 2021, 12(1): 5226. doi: 10.1038/s41467-021-25385-x [69] 中国气象局气候变化中心. 中国气候变化蓝皮书(2025)[M]. 北京: 科学出版社, 2025.China Meteorological Administration, Climate Change Center. Blue Book on Climate Change in China (2025)[M]. Beijing: Science Press, 2025. (查阅网上资料, 未找到作者对应的英文翻译, 请确认) [70] Barton A D, Irwin A J, Finkel Z V, et al. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(11): 2964−2969. doi: 10.1073/pnas.1519080113 [71] Borges F O, Lopes V M, Santos C F, et al. Impacts of climate change on the biogeography of three amnesic shellfish toxin producing diatom species[J]. Toxins, 2022, 15(1): 9. doi: 10.3390/toxins15010009 [72] Boulangeat I, Gravel D, Thuiller W. Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances[J]. Ecology Letters, 2012, 15(6): 584−593. doi: 10.1111/j.1461-0248.2012.01772.x [73] Harrison J B, Sunday J M, Rogers S M. Predicting the fate of eDNA in the environment and implications for studying biodiversity[J]. Proceedings of the Royal Society B: Biological Sciences, 2019, 286(1915): 20191409. doi: 10.1098/rspb.2019.1409 [74] Da Silva Neto J G, Sutton W B, Spear S F, et al. Integrating species distribution and occupancy modeling to study hellbender (Cryptobranchus alleganiensis) occurrence based on eDNA surveys[J]. Biological Conservation, 2020, 251: 108787. doi: 10.1016/j.biocon.2020.108787 [75] Rossi R, Dell’Aversano C, Krock B, et al. Mediterranean Azadinium dexteroporum (Dinophyceae) produces six novel azaspiracids and azaspiracid-35: a structural study by a multi-platform mass spectrometry approach[J]. Analytical and Bioanalytical Chemistry, 2017, 409(4): 1121−1134. doi: 10.1007/s00216-016-0037-4 -
下载: