留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微异类梭蟹(十足目:短尾下目:梭子蟹科)完整线粒体基因组的测序与系统发育分析

包滢瑄 叶莹莹 马家乐 江新琴

包滢瑄,叶莹莹,马家乐,等. 微异类梭蟹(十足目:短尾下目:梭子蟹科)完整线粒体基因组的测序与系统发育分析[J]. 海洋学报,2025,48(x):1–15
引用本文: 包滢瑄,叶莹莹,马家乐,等. 微异类梭蟹(十足目:短尾下目:梭子蟹科)完整线粒体基因组的测序与系统发育分析[J]. 海洋学报,2025,48(x):1–15
Bao Yingxuan,Ye Yingying,Ma Jiale, et al. The complete mitochondrial genome of Eodemus subtilis (Decapoda: Brachyura: Portunidae) and its phylogenetic analysis[J]. Haiyang Xuebao,2025, 48(x):1–15
Citation: Bao Yingxuan,Ye Yingying,Ma Jiale, et al. The complete mitochondrial genome of Eodemus subtilis (Decapoda: Brachyura: Portunidae) and its phylogenetic analysis[J]. Haiyang Xuebao,2025, 48(x):1–15

微异类梭蟹(十足目:短尾下目:梭子蟹科)完整线粒体基因组的测序与系统发育分析

基金项目: 国家重点研发计划(2024YDF2400403)。
详细信息
    作者简介:

    包滢瑄(2002—),女,安徽省池州市人,硕士研究生,主要研究方向为海洋生物学。E-mail:baoyingxuan1103@zjou.edu.cn

    通讯作者:

    江新琴(1981—),女,浙江省湖州市人,高级实验师,主要研究方向为海洋生物学。E-mail:jiangxq@zjou.edu.cn

The complete mitochondrial genome of Eodemus subtilis (Decapoda: Brachyura: Portunidae) and its phylogenetic analysis

  • 摘要: 微异类梭蟹(Eodemus subtilis)是一类栖息于潮间带至浅海区的十足目梭子蟹科物种,在中国主要分布于东南沿海。本研究利用高通量测序技术,结合生物信息学分析,对其线粒体基因组进行了全面解析。线粒体基因组大小为15 878 bp,包含13个蛋白质编码基因、22个tRNA基因、2个rRNA基因以及一个非编码控制区,其中24个基因均编码在重链(H链)上。线粒体全基因组具有A+T偏向性(69.81%),呈现负的AT偏斜(−0.021)和GC偏斜(−0.233)。在微异类梭蟹的相对同义密码子使用频率(RSCU)中,Ser2的UCU和Leu2的UUA密码子使用频率高,且高使用频率的密码子通常是以A/T结尾的。微异类梭蟹的基因排列具有一定的保守性,基因排列顺序与短尾下目祖先保持一致,没有基因重排发生。对它所在的梭子蟹科进行13个蛋白质编码的选择压力分析可以得出除COIIIND1之外的其他11个基因的非同义替换率/同义替换率(Ka/Ks)。在系统发育树和时间分歧树中,微异类梭蟹与拥剑单梭蟹(Monomia gladiator)聚成一支,二者分化时间大约在44.34 Mya,这对研究短尾下目中梭子蟹科内的进化具有重要意义。
  • 图  7  基于时间校准的贝叶斯系统发育树构建的梭子蟹科的时间分歧树

    红色字体为本研究物种及其所在的属

    Fig.  7  The time-calibrated Bayesian phylogenetic tree construction of the divergence timeline in the Portunidae family

    The red font indicates the species studied in this research and its genus

    图  1  微异类梭蟹线粒体基因圈图,最内圈显示GC含量与GC偏斜度。大部分基因位于重链(H链),包括10个PCGs和14个tRNAs;非编码控制区位于12S rRNAtrnI之间。其余基因(含12S rRNA16S rRNA)位于轻链(L链),部分基因间存在重叠。

    Fig.  1  Circular map of the mitochondrial genome of Eodemus subtilis, with the innermost circle showing GC content and skew. Genes are predominantly encoded on the H-strand (10 PCGs, 14 tRNAs), with the control region between 12S rRNA and trnI; the remaining, including 12S rRNA and 16S rRNA, reside on the L-strand with minor overlaps.

    图  2  微异类梭蟹线粒体基因组中的氨基酸组成(A)和相对同义密码子使用情况(B)

    Fig.  2  Amino acid composition (A) and relative synonymous codon usage (B) in the mitochondrial genome of the E. subtilis

    图  3  微异类梭蟹线粒体基因组的tRNA的二级结构

    Fig.  3  The secondary structure of tRNA in the mitochondrial genome of E. subtilis

    图  4  泛甲壳动物和短尾下目线粒体基因排序比较

    Fig.  4  Comparison of mitochondrial gene orders between Pancrustacea and Brachyura

    图  5  18个梭子蟹科物种中13个线粒体蛋白质编码基因的选择压力分析

    Fig.  5  Analysis of selection pressure on 13 mitochondrial protein-coding genes in 18 Portunidae species

    图  6  基于13个蛋白质编码基因(PCGs)构建的短尾下目部分物种贝叶斯系统发育树

    红色字体为本研究物种

    Fig.  6  Bayesian phylogenetic tree of selected species of Brachyura based on 13 protein-coding genes (PCGs)

    The red font indicates the species studied.

    表  4  本研究中所分析的短尾下目物种列表及其基因库登录号

    Tab.  4  List of Brachyura species analyzed in this study and their GenBank accession numbers

    Order Family Species Size (bp) Accession no.
    Brachyura Dromiidae Lauridromia dehaani (Rathbun, 1923) 15755 NC_066660
    Calappidae Calappa bilineata (Ng, Lai & Aungtonya, 2002) 15606 NC_047195
    Matutidae Ashtoret lunaris (Forskål, 1775) 15807 NC_024435
    Matuta planipes (Fabricius, 1798) 15760 NC_039351
    Matuta victor (Fabricius, 1781) 15782 NC_053638
    Menippidae Myomenippe fornasinii (Bianconi, 1851) 15658 NC_024437
    Pseudocarcinus gigas (Lamarck, 1818) 15515 NC_006891
    Oziidae Epixanthus frontalis (H.Milne Edwards, 1834) 15993 NC_039110
    Leucosiidae Myra affinis (Bell, 1855) 15349 NC_061949
    Pyrhila pisum (De Haan, 1841) 15516 NC_030047
    Parthenopidae Enoplolambrus validus (De Haan, 1837) 15431 NC_072538
    Daldorfia horrida (Linnaeus, 1758) 15737 NC_049029
    Pilumnidae Pilumnopeus makianus (Rathbun, 1931) 15863 NC_068601
    Echinoecus nipponicus (Miyake, 1939) 16173 NC_039618
    Pilumnus vespertilio (Fabricius, 1793) 16222 NC_039108
    Portunidae Thalamita crenata (Rüppell, 1830) 15787 NC_024438
    Lupocycloporus gracilimanus (Stimpson, 1858) 15990 NC_040124
    Thalamita sima (H.Milne Edwards, 1834) 15831 NC_039640
    Charybdis bimaculata (Miers, 1886) 15714 NC_037695
    Monomia gladiator (Fabricius, 1798) 15878 NC_037173
    Charybdis natator (Herbst, 1794) 15664 NC_036132
    Charybdis japonica (A.Milne-Edwards, 1861) 15738 NC_013246
    Scylla paramamosain (Estampador, 1950) 15816 MG197997
    Charybdis hellerii (A.Milne-Edwards, 1867) 15913 NC_060621
    Charybdis annulata (Fabricius, 1798) 15747 NC_069011
    Portunus sanguinolentus (Herbst, 1783) 16024 NC_028225
    Portunus pelagicus (Linnaeus, 1758) 16157 NC_026209
    Charybdis feriata (Linnaeus, 1758) 15660 NC_024632
    Scylla tranquebarica (Fabricius, 1798) 15833 NC_012567
    Scylla olivacea (Herbst, 1796) 15723 NC_012569
    Scylla serrata (Forskål, 1775) 15775 NC_012565
    Portunus trituberculatus (Miers, 1876) 16026 NC_005037
    Eodemus subtilis (Nguyen & Ng, 2021) 15878 PV353959
    Xanthidae Etisus laevimanus (Randall, 1840) 15714 NC_086869
    Macromedaeus distinguendus (De Haan, 1835) 15710 NC_057473
    Etisus dentatus (Herbst, 1785) 15884 NC_054248
    Etisus anaglyptus (H.Milne Edwards, 1834) 16435 NC_042208
    Atergatis floridus (Linnaeus, 1767) 16180 NC_037201
    Atergatis integerrimus (Lamarck, 1818) 15924 NC_037172
    Leptodius exaratus (H.Milne Edwards, 1834) 15716 MF198250
    Gecarcinidae Tuerkayana celeste (Ng & Davie, 2012) 15556 NC_088507
    Tuerkayana hirtipes (Dana, 1851) 15559 NC_088506
    Tuerkayana rotundum (Quoy & Gaimard, 1824) 15562 NC_088505
    Tuerkayana magnum (Ng & Shih, 2014) 15556 NC_088504
    Cardisoma armatum (Herklots, 1851) 15586 NC_057477
    Gecarcoidea lalandii (H.Milne Edwards, 1837) 15575 NC_057475
    Cardisoma carnifex (Herbst, 1796) 15597 NC_039105
    Grapsidae Metopograpsus frontalis (Miers, 1880) 15587 NC_042152
    Grapsus albolineatus (Latreille, 1812) 15583 MZ262276
    Pachygrapsus marmoratus (Fabricius, 1787) 15406 NC_039109
    Camptandriidae Deiratonotus japonicus (Sakai, 1983) 15444 LC715473
    Cleistostoma dilatatum (De Haan, 1833) 15444 NC_060620
    Dotillidae Tmethypocoelis choreutes (Davie & Kosuge, 1995) 16283 LC715478
    Ilyoplax pusilla (De Haan, 1835) 15465 LC715475
    Ilyoplax integra (Tesch, 1918) 16163 LC715474
    Scopimera intermedia (Balss, 1934) 16252 NC_057476
    Ilyoplax deschampsi (Rathbun, 1913) 15460 NC_020040
    Outgroups Munidopsis verrilli (Benedict, 1902) 17636 MH717896
    Munidopsis lauensis (Baba & de Saint Laurent, 1992) 17483 MH717895
    下载: 导出CSV

    表  1  微异类梭蟹线粒体基因组结构

    Tab.  1  Organization of the E. subtilis mitochondrial genome

    Gene Position(bp) Length (bp) Start/stop codon Intergenic Nucleotide (bp) Anticodon Strand
    From To
    COI 1 1534 1534 ATG/ACT 0 H
    trnL 1535 1600 66 25 TAA H
    COII 1626 2310 685 ATG/ACT 0 H
    trnK 2311 2378 68 0 TTT H
    trnD 2379 2445 67 0 GTC H
    ATP8 2446 2607 162 ATG/TAG −7 H
    ATP6 2601 3278 678 ATT/TAA −1 H
    COIII 3278 4069 792 ATG/TAA 0 H
    trnG 4070 4131 62 0 TCC H
    ND3 4132 4485 354 ATT/TAA 3 H
    trnA 4489 4554 66 1 TGC H
    trnR 4556 4621 66 0 TCG H
    trnN 4622 4686 65 2 GTT H
    trnS 4689 4755 67 0 TCT H
    trnE 4756 4823 68 27 TTC H
    trnH 4851 4914 64 0 GTG L
    trnF 4915 4978 64 −1 GAA L
    ND5 4978 6705 1728 TTA/CAT 20 L
    ND4 6726 8060 1335 TTA/CAT −7 L
    ND4L 8054 8356 303 TTA/CAT 2 L
    trnT 8359 8424 66 0 TGT H
    trnP 8425 8491 67 2 TGG L
    ND6 8494 9000 507 ATG/TAA −1 H
    CYTB 9000 10157 1158 ATG/AAT −23 H
    trnS 10135 10203 69 28 TGA H
    ND1 10232 11188 957 CTA/AAT 5 L
    trnL 11194 11262 69 −46 TAG L
    16S rRNA 11217 12618 1402 ATT/TGA −14 L
    trnV 12605 12678 74 2 TAC L
    12S rRNA 12681 13537 857 TCC/TCC 930 L
    trnI 14468 14534 67 −3 GAT H
    trnQ 14532 14601 70 3 TTG L
    trnM 14605 14673 69 0 CAT H
    ND2 14674 15684 1011 ATG/TAG −2 H
    trnW 15683 15749 67 −1 TCA H
    trnC 15749 15812 64 0 GCA L
    trnY 15813 15878 66 0 GTA L
    下载: 导出CSV

    表  2  微异类梭蟹线粒体基因组的核苷酸组成与偏斜度

    Tab.  2  Nucleotide composition and skewness of the E. subtilis mitochondrial genome

    geneA (%)T (%)G (%)C (%)A+T (%)AT-skewGC-skew
    Mito34.1835.6318.6211.5869.81-0.021-0.233
    COI28.1036.1819.5616.1764.28-0.126-0.095
    COII30.5133.7221.0214.7464.23-0.050-0.176
    ATP831.4843.8319.145.5675.31-0.164-0.550
    ATP627.4340.8619.3212.3968.29-0.197-0.219
    COIII27.9035.1021.9715.0363.01-0.114-0.188
    ND327.4038.7020.6213.2866.10-0.171-0.217
    ND532.0639.0610.7118.1771.12-0.0980.259
    ND429.8941.729.8118.5871.61-0.1650.309
    ND4L29.7040.599.9019.8070.30-0.1550.333
    ND628.2147.5316.777.5075.74-0.255-0.382
    CYTB28.1136.7421.2313.9264.85-0.133-0.208
    ND125.8143.0510.8720.2768.86-0.2500.302
    ND225.2241.8423.949.0067.06-0.248-0.453
    tRNAs36.5135.6912.5115.3072.200.0110.100
    rRNAs37.3236.619.7416.3373.930.0100.253
    PCGs28.6439.3316.7315.3067.96-0.157-0.045
    下载: 导出CSV

    表  3  微异类梭蟹线粒体基因组密码子数量和相对同义密码子使用率

    Tab.  3  Codon numbers and relative synonymous codon usage in the mitochondrial genome of the E. subtilis

    CodonCountRSCUCodonCountRSCUCodonCountRSCUCodonCountRSCU
    UUU(F)2381.33UCU(S)1372.11UAU(Y)2291.37UGU(C)471.16
    UUC(F)1210.67UCC(S)771.19UAC(Y)1060.63UGC(C)340.84
    UUA(L)2481.98UCA(S)901.39UAA(*)2391.46UGA(W)611.39
    UUG(L)630.5UCG(S)240.37UAG(*)890.54UGG(W)270.61
    CUU(L)1591.27CCU(P)941.63CAU(H)861.26CGU(R)170.92
    CUC(L)800.64CCC(P)581CAC(H)500.74CGC(R)110.59
    CUA(L)1571.26CCA(P)591.02CAA(Q)981.4CGA(R)321.73
    CUG(L)430.34CCG(P)200.35CAG(Q)420.6CGG(R)140.76
    AUU(I)2591.48ACU(T)1291.8AAU(N)2141.42AGU(S)480.74
    AUC(I)900.52ACC(T)680.95AAC(N)870.58AGC(S)520.8
    AUA(M)2491.64ACA(T)761.06AAA(K)2411.45AGA(S)681.05
    AUG(M)550.36ACG(T)130.18AAG(K)910.55AGG(S)230.35
    GUU(V)601.38GCU(A)641.88GAU(D)671.24GGU(G)411.3
    GUC(V)340.78GCC(A)320.94GAC(D)410.76GGC(G)140.44
    GUA(V)601.38GCA(A)341GAA(E)841.24GGA(G)531.68
    GUG(V)200.46GCG(A)60.18GAG(E)510.76GGG(G)180.57
    下载: 导出CSV
  • [1] 张小蜂, 徐一扬. 中国潮间带螃蟹生态图鉴[M]. 重庆: 重庆大学出版社, 2023: 650.

    Zhang Xiaofeng, Xu Yiyang. Chinese Intertidal Brachyuran Crabs Illustrated[M]. Chongqing: Chongqing University Press, 2023: 650.
    [2] Wong K J H, Leung K M Y, Chan B K K. On the identities of three common shallow-water swimming crabs Portunus hastatoides fabricius, 1798, P. dayawanensis Chen, 1986, and P. pseudohastatoides Yang and Tang, 2006 (Crustacea: Decapoda: Portunidae): essentials for benthic ecological monitoring and biodiversity studies[J]. Zoological Studies, 2010, 49(5): 669−680.
    [3] Koch M, Spiridonov V A, Ďuriš Z. Revision of the generic system for the swimming crab subfamily Portuninae (Decapoda: Brachyura: Portunidae) based on molecular and morphological analyses[J]. Zoological Journal of the Linnean Society, 2023, 197(1): 127−175. doi: 10.1093/zoolinnean/zlac017
    [4] Nguyen T S, Ng P K L. A revision of the swimming crabs of the Indo-West Pacific Xiphonectes hastatoides (Fabricius, 1798) species complex (Crustacea: Brachyura: Portunidae)[J]. Arthropoda Selecta, 2021, 30(3): 386−404. doi: 10.15298/arthsel.30.3.11
    [5] Hickerson M J, Cunningham C W. Dramatic mitochondrial gene rearrangements in the hermit crab Pagurus longicarpus (Crustacea, Anomura)[J]. Molecular Biology and Evolution, 2000, 17(4): 639−644. doi: 10.1093/oxfordjournals.molbev.a026342
    [6] 师国慧, 崔朝霞. 蛙蟹线粒体全基因组序列分析及其分类地位[C]//“全球变化下的海洋与湖沼生态安全”学术交流会论文摘要集. 南京: 中国海洋湖沼学会, 2014: 1.

    Shi Guohui, Cui Zhaoxia. Analysis of the complete mitochondrial genome sequence of frog crabs and their taxonomic status[C]//“Marine and Limnological Ecological Security under Global Change”Collection of Academic Conference Paper Abstracts. Nanjing: Chinese Society of Oceanography and Limnology, 2014: 1.
    [7] 王兴强, 曹梅, 阎斌伦, 等. 三疣梭子蟹综合养殖技术[J]. 水产科学, 2009, 28(2): 105−108.

    Wang Xingqiang, Cao Mei, Yan Binlun, et al. Integrated culture of swimming crab Portunus trituberculatus[J]. Fisheries Science, 2009, 28(2): 105−108.
    [8] Chen Fangyi, Wang Kejian. Characterization of the innate immunity in the mud crab Scylla paramamosain[J]. Fish & Shellfish Immunology, 2019, 93: 436−448.
    [9] Lü Jiayin, Xia Liping, Liu Xiaojuan, et al. The mitochondrial genome of Grapsus albolineatus (Decapoda: Brachyura: Grapsidae) and phylogenetic associations in Brachyura[J]. Scientific Reports, 2022, 12(1): 2104. doi: 10.1038/s41598-022-06080-3
    [10] Tan M H, Gan Hanming, Lee Y P, et al. Comparative mitogenomics of the Decapoda reveals evolutionary heterogeneity in architecture and composition[J]. Scientific Reports, 2019, 9(1): 10756. doi: 10.1038/s41598-019-47145-0
    [11] Ballard J W O, Whitlock M C. The incomplete natural history of mitochondria[J]. Molecular Ecology, 2004, 13(4): 729−744. doi: 10.1046/j.1365-294X.2003.02063.x
    [12] Saccone C, Gissi C, Lanave C, et al. Evolution of the mitochondrial genetic system: an overview[J]. Gene, 2000, 261(1): 153−159. doi: 10.1016/S0378-1119(00)00484-4
    [13] 迪丽娜·茹斯坦木, 袁晓倩, 张琪, 等. 基于线粒体基因组数据的裂腹鱼类系统发育研究[J]. 中国水产科学, 2022, 29(6): 781−791.

    Rustam D, Yuan Xiaoqian, Zhang Qi, et al. Study on the phylogeny of Schizothoracids based on complete mitochondrial genome[J]. Journal of Fishery Sciences of China, 2022, 29(6): 781−791.
    [14] Sant’Anna B S, Santos D M, Marchi M R R, et al. Surface-sediment and hermit-crab contamination by butyltins in southeastern Atlantic estuaries after ban of TBT-based antifouling paints[J]. Environmental Science and Pollution Research, 2014, 21(10): 6516−6524. doi: 10.1007/s11356-014-2521-8
    [15] Ma Hongyu, Ma Chunyan, Li Chenhong, et al. First mitochondrial genome for the red crab (Charybdis feriata) with implication of phylogenomics and population genetics[J]. Scientific Reports, 2015, 5(1): 11524. doi: 10.1038/srep11524
    [16] Ma Hongyu, Ma Chunyan, Li Xincang, et al. The complete mitochondrial genome sequence and gene organization of the mud crab (Scylla paramamosain) with phylogenetic consideration[J]. Gene, 2013, 519(1): 120−127. doi: 10.1016/j.gene.2013.01.028
    [17] Yamauchi M M, Miya M U, Nishida M. Complete mitochondrial DNA sequence of the swimming crab, Portunus trituberculatus (Crustacea: Decapoda: Brachyura)[J]. Gene, 2003, 311: 129−135. doi: 10.1016/S0378-1119(03)00582-1
    [18] Wang Guizhong, Kong Xianghui, Wang Kejian, et al. Variation of specific proteins, mitochondria and fatty acid composition in gill of Scylla serrata (Crustacea, Decapoda) under low temperature adaptation[J]. Journal of Experimental Marine Biology and Ecology, 2007, 352(1): 129−138. doi: 10.1016/j.jembe.2007.07.017
    [19] 张茜茜, 朱志煌, 王健鑫, 等. 梭子蟹科线粒体基因组特征与系统发育遗传分析[J]. 渔业研究, 2025, 47(4): 408−420.

    Zhang Xixi, Zhu Zhihuang, Wang Jianxin, et al. Mitochondrial genome characteristics and phylogenetic analysis in Portunidae[J]. Journal of Fisheries Research, 2025, 47(4): 408−420.
    [20] Xie Zhuofang, Lai Tinghe, Waiho K, et al. Complete mitochondrial genome of the spiny rock crab Thalamita crenata (rüppell, 1830) (Crustacea: Decapoda: Portunidae) from China coast and its phylogeny[J]. Mitochondrial DNA Part B, 2018, 3(2): 1019−1020. doi: 10.1080/23802359.2018.1508384
    [21] Chen Shifu, Zhou Yanqing, Chen Yaru, et al. fastp: an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17): i884−i890. doi: 10.1093/bioinformatics/bty560
    [22] Jin Jianjun, Yu Wenbin, Yang Junbo, et al. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes[J]. Genome Biology, 2020, 21(1): 241. doi: 10.1186/s13059-020-02154-5
    [23] Meng Guanliang, Li Yiyuan, Yang Chentao, et al. MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization[J]. Nucleic Acids Research, 2019, 47(11): e63. doi: 10.1093/nar/gkz173
    [24] Bernt M, Donath A, Jühling F, et al. MITOS: improved de novo metazoan mitochondrial genome annotation[J]. Molecular Phylogenetics and Evolution, 2013, 69(2): 313−319. doi: 10.1016/j.ympev.2012.08.023
    [25] Lu J, Salzberg S L. SkewIT: the Skew Index Test for large-scale GC Skew analysis of bacterial genomes[J]. PLoS Computational Biology, 2020, 16(12): e1008439. doi: 10.1371/journal.pcbi.1008439
    [26] Grant J R, Stothard P. The CGView Server: a comparative genomics tool for circular genomes[J]. Nucleic Acids Research, 2008, 36(S2): W181−W184.
    [27] Batut B, van den Beek M, Doyle M A, et al. RNA-Seq data analysis in galaxy[J]. Methods in Molecular Biology, 2021, 2284: 367−392.
    [28] Kerpedjiev P, Hammer S, Hofacker I L. Forna (force-directed RNA): simple and effective online RNA secondary structure diagrams[J]. Bioinformatics, 2015, 31(20): 3377−3379. doi: 10.1093/bioinformatics/btv372
    [29] Kumar S, Stecher G, Suleski M, et al. MEGA12: molecular evolutionary genetic analysis version 12 for adaptive and green computing[J]. Molecular Biology and Evolution, 2024, 41(12): msae263. doi: 10.1093/molbev/msae263
    [30] Rozas J, Ferrer-Mata A, Sánchez-DelBarrio J C, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets[J]. Molecular Biology and Evolution, 2017, 34(12): 3299−3302. doi: 10.1093/molbev/msx248
    [31] Xiang Chuanyu, Gao Fangluan, Jakovlić I, et al. Using PhyloSuite for molecular phylogeny and tree‐based analyses[J]. iMeta, 2023, 2(1): e87. doi: 10.1002/imt2.87
    [32] 刘慧, 张辉贤, 刘馨蔓, 等. 南海小叶海蛞蝓(Phyllidiella nanhaiensis sp. nov. )线粒体基因组特征与系统进化[J]. 热带海洋学报, 2025, 44(1): 1−8.

    Liu Hui, Zhang Huixian, Liu Xinman, et al. Complete mitogenome data of sea slug Phyllidiella nanhaiensis sp. nov. and its phylogenetic implications[J]. Journal of Tropical Oceanography, 2025, 44(1): 1−8.
    [33] Letunic I, Bork P. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool[J]. Nucleic Acids Research, 2024, 52(W1): W78−W82. doi: 10.1093/nar/gkae268
    [34] Kumar S, Stecher G, Suleski M, et al. TimeTree: a resource for timelines, timetrees, and divergence times[J]. Molecular Biology and Evolution, 2017, 34(7): 1812−1819. doi: 10.1093/molbev/msx116
    [35] Drummond A J, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees[J]. BMC Evolutionary Biology, 2007, 7(1): 214. doi: 10.1186/1471-2148-7-214
    [36] Rambaut A, Drummond A J, Xie Dong, et al. Posterior summarization in Bayesian phylogenetics using Tracer 1.7[J]. Systematic Biology, 2018, 67(5): 901−904. doi: 10.1093/sysbio/syy032
    [37] Xin Zhaozhe, Liu Yu, Zhang Daizhen, et al. Complete mitochondrial genome of Clistocoeloma sinensis (Brachyura: Grapsoidea): gene rearrangements and higher-level phylogeny of the Brachyura[J]. Scientific Reports, 2017, 7(1): 4128. doi: 10.1038/s41598-017-04489-9
    [38] Wang Zhengfei, Wang Ziqian, Shi Xuejia, et al. Complete mitochondrial genome of Parasesarma affine (Brachyura: Sesarmidae): gene rearrangements in Sesarmidae and phylogenetic analysis of the Brachyura[J]. International Journal of Biological Macromolecules, 2018, 118: 31−40. doi: 10.1016/j.ijbiomac.2018.06.056
    [39] Ki J S, Dahms H U, Hwang J S, et al. The complete mitogenome of the hydrothermal vent crab Xenograpsus testudinatus (Decapoda, Brachyura) and comparison with brachyuran crabs[J]. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2009, 4(4): 290−299. doi: 10.1016/j.cbd.2009.07.002
    [40] Meng Xianliang, Jia Fulong, Zhang Xiaohui, et al. Complete sequence and characterization of mitochondrial genome in the swimming crab Portunus sanguinolentus (Herbst, 1783) (Decapoda, Brachyura, Portunidae)[J]. Mitochondrial DNA Part A, 2016, 27(4): 3052−3053. doi: 10.3109/19401736.2015.1063130
    [41] Wang Ziqian, Shi Xuejia, Guo Huayun, et al. Characterization of the complete mitochondrial genome of Uca lacteus and comparison with other Brachyuran crabs[J]. Genomics, 2020, 112(1): 10−19. doi: 10.1016/j.ygeno.2019.06.004
    [42] Tang Boping, Liu Yu, Xin Zhaozhe, et al. Characterisation of the complete mitochondrial genome of Helice wuana (Grapsoidea: Varunidae) and comparison with other Brachyuran crabs[J]. Genomics, 2018, 110(4): 221−230. doi: 10.1016/j.ygeno.2017.10.001
    [43] Zhang Yuyang, Ma Yunqi, Yu Huanxi, et al. Deciphering codon usage patterns in the mitochondrial genome of the Oryza species[J]. Agronomy, 2024, 14(11): 2722. doi: 10.3390/agronomy14112722
    [44] Zhang Ying, Gong Li, Lu Xinting, et al. Gene rearrangements in the mitochondrial genome of Chiromantes eulimene (Brachyura: Sesarmidae) and phylogenetic implications for Brachyura[J]. International Journal of Biological Macromolecules, 2020, 162: 704−714. doi: 10.1016/j.ijbiomac.2020.06.196
    [45] 孟磊, 韦丽明, 龚理, 等. 长脚蟹科首个线粒体基因组测定及系统发育分析[J]. 南方农业学报, 2023, 54(1): 250−260.

    Meng Lei, Wei Liming, Gong Li, et al. The first complete mitochondrial genome of Goneplacidae (Decapoda: Brachyura) and its phylogenetic positionamong Brachyura[J]. Journal of Southern Agriculture, 2023, 54(1): 250−260.
    [46] Gong Li, Liu Bingjian, Liu L, et al. The complete mitochondrial genome of Terapon jarbua (Centrarchiformes: Terapontidae) and comparative analysis of the control region among eight centrarchiformes species[J]. Russian Journal of Marine Biology, 2019, 45(2): 137−144. doi: 10.1134/S1063074019020068
    [47] Romanova E V, Aleoshin V V, Kamaltynov R M, et al. Evolution of mitochondrial genomes in Baikalian amphipods[J]. BMC Genomics, 2016, 17(S14): 1016. doi: 10.1186/s12864-016-3357-z
    [48] Ma Hongyu, Ma Chunyan, Li Xincang, et al. The complete mitochondrial genome sequence and gene organization of the mud crab (Scylla paramamosain) with phylogenetic consideration[J]. Gene, 2013, 519(1): 120-127. (查阅网上资料, 本条文献与第16条文献重复, 请确认)
    [49] Bian Dandan, Tang Sheng, Wang Songnan, et al. Comparative analysis of Metopograpsus quadridentatus (Crustacea: Decapoda: Grapsidae) mitochondrial genome reveals gene rearrangement and phylogeny[J]. Animals, 2025, 15(8): 1162. doi: 10.3390/ani15081162
    [50] Segawa R D, Aotsuka T. The mitochondrial genome of the Japanese freshwater crab, Geothelphusa dehaani (Crustacea: Brachyura): evidence for its evolution via gene duplication[J]. Gene, 2005, 355: 28−39. doi: 10.1016/j.gene.2005.05.020
    [51] Ji Yongkun, Wang An, Lu Xiuling, et al. Mitochondrial genomes of two brachyuran crabs (Crustacea: Decapoda) and phylogenetic analysis[J]. Journal of Crustacean Biology, 2014, 34(4): 494−503. doi: 10.1163/1937240X-00002252
    [52] Lavrov D V, Boore J L, Brown W M. The complete mitochondrial DNA sequence of the horseshoe crab Limulus polyphemus[J]. Molecular Biology and Evolution, 2000, 17(5): 813−824. doi: 10.1093/oxfordjournals.molbev.a026360
    [53] Conrad I, Craft A, Thurman C L, et al. The complete mitochondrial genome of the red-jointed brackish-water fiddler crab Minuca minax (LeConte 1855) (Brachyura: Ocypodidae): new family gene order, and purifying selection and phylogenetic informativeness of protein coding genes[J]. Genomics, 2021, 113(1): 565−572. doi: 10.1016/j.ygeno.2020.09.050
    [54] Xie Zhuofang, Fazhan H, Li Xincang, et al. Identification of the complete mitochondrial genome of Monomia gladiator (Decapoda: Brachyura: Portunidae) and its phylogenetic relationship[J]. Mitochondrial DNA Part B, 2018, 3(1): 200−201. doi: 10.1080/23802359.2018.1437827
    [55] Huang Y H, Shih H T. Diversity in the Taiwanese swimming crabs (Crustacea: Brachyura: Portunidae) estimated through DNA barcodes, with descriptions of 14 new records[J]. Zoological Studies, 2021, 60: e60.
    [56] Zhong Shengping, Zhao Yanfei, Zhang Qin. The complete mitochondrial genome of Thalamita sima (Decapoda: Portunidae)[J]. Mitochondrial DNA Part B, 2018, 3(2): 723−724. doi: 10.1080/23802359.2018.1483777
    [57] Lu Xinting, Gong Li, Zhang Ying, et al. The complete mitochondrial genome of Calappa bilineata: the first representative from the family Calappidae and its phylogenetic position within Brachyura[J]. Genomics, 2020, 112(3): 2516−2523. doi: 10.1016/j.ygeno.2020.02.003
    [58] Duan Xinbing, Dong Xiangli, Li Jiji, et al. The complete mitochondrial genome of Pilumnopeus makianus (Brachyura: Pilumnidae), novel gene rearrangements, and phylogenetic relationships of Brachyura[J]. Genes, 2022, 13(11): 1943. doi: 10.3390/genes13111943
    [59] Hall R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations[J]. Journal of Asian Earth Sciences, 2002, 20(4): 353−431. doi: 10.1016/S1367-9120(01)00069-4
    [60] Schubart C D, Reuschel S. A proposal for a new classification of Portunoidea and Cancroidea (Brachyura: Heterotremata) based on two independent molecular phylogenies[M]//Martin J W, Crandall K A, Felder D L. Decapod Crustacean Phylogenetics. Boca Raton: CRC Press, 2009: 533-549.
    [61] Evans N. Molecular phylogenetics of swimming crabs (Portunoidea Rafinesque, 1815) supports a revised family-level classification and suggests a single derived origin of symbiotic taxa[J]. PeerJ, 2018, 6: e4260. doi: 10.7717/peerj.4260
    [62] Spiridonov V A. An update of phylogenetic reconstructions, classification and morphological characters of extant Portunoidea Rafinesque, 1815 (Decapoda, Brachyura, Heterotremata), with a discussion of their relevance to fossil material[J]. Geologija, 2020, 63(1): 133−166. doi: 10.5474/geologija.2020.014
    [63] Yang Jinshu, Lu Bo, Chen Dianfu, et al. When did decapods invade hydrothermal vents? Clues from the Western Pacific and Indian Oceans[J]. Molecular Biology and Evolution, 2012, 30(2): 305−309. doi: 10.1093/molbev/mss224
    [64] Ellison J C, Stoddart D R. Mangrove ecosystem collapse during predicted sea-level rise: Holocene analogues and implications[J]. Journal of Coastal Research, 1991, 7(1): 151−165.
    [65] Niu Jiaojiao, Hu Xuelei, Ip J C H, et al. Multi-omic approach provides insights into osmoregulation and osmoconformation of the crab Scylla paramamosain[J]. Scientific Reports, 2020, 10(1): 21771. doi: 10.1038/s41598-020-78351-w
    [66] Woodruff D S. Biogeography and conservation in Southeast Asia: how 2.7 million years of repeated environmental fluctuations affect today’s patterns and the future of the remaining refugial-phase biodiversity[J]. Biodiversity and Conservation, 2010, 19(4): 919−941. doi: 10.1007/s10531-010-9783-3
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  136
  • HTML全文浏览量:  70
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-14
  • 修回日期:  2025-10-21
  • 网络出版日期:  2025-11-08

目录

    /

    返回文章
    返回