Evolution of the Marine Biological Carbon Pump and geological events in the Ross Sea during Modern and the Last Glacial Maximum Period — Stratigraphic Records of Molecular Biomarkers
-
摘要: 海洋生物碳泵(BCP)与古气候的关系是碳循环研究的一个核心科学问题。 本文利用罗斯海沉积物总有机碳(TOC)和一些重要的类脂化合物所隐含的生态学特性,即那些可引起海底沉积碳库组成和海洋BCP(包括生物泵BP和微型生物碳泵MCP)效率改变的分子生物标志物,从罗斯海现代海洋出发,追溯到末次冰期以来(27 ka BP~0.6 ka BP)古海洋生物碳泵演化(重点讨论BP和MCP)及其与一些重大地质事件的联系。研究结果表明;(1)罗斯海表层沉积物中相对高的TOC和较低C/N比值、以及正构烷烃色谱峰型、主峰碳、分子组合特征低碳数和高碳数比值(L/H)和(nC21+nC22)/(nC28+nC29)比值、低碳烃(nC15+nC17+nC19)、中碳烃(nC21+nC23+nC25)和高碳烃(nC27+nC29+nC31)、细菌(BrGDGT)和较低的陆源土壤指标(BIT)一致性表征海源有机质贡献占主导地位,通过海洋BP和MCP效应将内源有机碳输送到海底进行长期储存;Pr/Ph比值结合Ph/nC18和Pr/C17比值均表明表层沉积物为还原—强还原性的缺氧环境,有利于海底储存有机碳,同时还与海冰消融关系密切。(2)利用低温校正公式
$ {\mathrm{T}\mathrm{E}\mathrm{X}}_{86}^{\mathrm{L}} $ -SST(2式)反演现代的海洋表层温度(SST),并与WOA-SST(3月)表层水体温度较接近(R2=0.78、P<0.01,n=15);同时利用$ {\mathrm{T}\mathrm{E}\mathrm{X}}_{86}^{\mathrm{L}} $ -SST-2重建罗斯海JB03岩芯末次冰期以来的古海洋温度在−0.74~2.86℃范围(平均为1.03℃),接近现代南极罗斯海夏季温度。(3)JB03岩芯记录年代为27.27~0.6 ka BP,分为末次冰盛期(27.3~21 ka BP)、末次冰消期(21~11.7 ka BP)和全新世(11.7~0.6 ka BP)三个地质历史时期。末次冰期古海洋受冰盖和海冰限制作用的影响,初级生产力低下、沉积速率仅为0.45 cm/ka、Pr/Ph比值、Ph/nC18和Pr/nC17反映沉积环境氧化性较强、不利于MCP和BP储碳,在寒冷气候时段碳储量潜力降低;进入全新世暖期,冰架退缩解体,温暖的气候条件有利于浮游植物生产力和硅藻增加、浮游动物增加及影响粪便物质组成和提高沉降速率,促进有机碳向深海的输送加快,海底沉积为弱还原—弱氧化环境,有利于碳保存;硅藻生物量提高就意味着硅质泵加强,进而微生物活性增强、促进古菌和细菌生长,因而微生物总量-GDGTs、产甲烷古菌或广古菌-GDGT-0、奇古菌-Crenarchaeol生物量大大提高,显示罗斯海全新世以来古海洋BP和MCP作用大大加强,且古海洋BP与现代海洋均以硅藻/硅质泵为绝对主导。研究还发现,罗斯海末次冰期和全新世以来的古海洋BP和MCP储碳效率变化均与古海洋地质事件,即全球性大尺度的气候变化有关,这个碳库的大小与气候冷暖之间存在对应关系,罗斯海古海洋调节大气CO2的能力——尤其在全新世暖期最强,这对于认识全球气候变化的海洋调控机制具有重要的科学意义。Abstract: The relationship between the marine biological carbon pump(BCP) and paleoclimate is a central scientific issue in carbon cycle research. This study utilizes the ecological characteristics implied by total organic carbon (TOC) and key lipid compounds in Ross Sea sediments, specifically molecular biomarkers that can influence the composition of the seabed carbon reservoir and the efficiency of the marine BCP (including the biological pump BP and the microbial carbon pump MCP), tracing the evolution of the ancient marine biological carbon pump (with a focus on BP and MCP) since the Last Glacial Maximum (27ka BP~0.6ka BP) and its connection to significant geological events. The research findings indicate: (1) the relatively high TOC and low C/N ratios in surface sediments of the Ross Sea, along with characteristics such as normal alkane chromatographic peak shapes, dominant carbon, molecular composition features with low to high carbon number ratios (L/H) and(nC21+nC22)/(nC28+nC29)ratios, low n-alkanes(nC15+nC17+nC19), mid-chain alkanes(nC21+nC23+nC25), high-chain alkanes (nC27+nC29+nC31), bacterial (BrGDGT), and lower terrigenous input index (BIT), collectively indicate a predominance of marine-derived organic matter contributing to the seabed through the effects of the marine BP and MCP, facilitating long-term carbon storage. The Pr/Ph ratio combined with Ph/nC18 and Ph/nC17 ratios suggest that surface sediments represent a reducing to strongly reducing anoxic environment conducive to organic carbon sequestration on the seafloor, closely linked to sea ice melt. (2) By employing a low-temperature correction formula$ {\mathrm{T}\mathrm{E}\mathrm{X}}_{86}^{\mathrm{L}} $ -SST (Equation 2) to infer modern sea surface temperatures (SST) in the ocean and comparing them to WOA-SST (March) surface water temperatures, a close match is observed (R2=0.78, P<0.01, n=15). Additionally, using$ {\mathrm{T}\mathrm{E}\mathrm{X}}_{86}^{\mathrm{L}} $ -SST-2 to reconstruct paleoceanic temperatures in the Ross Sea JB03 core since the Last Glacial Maximum yields a range of −0.74 to 2.86°C (average 1.03°C), approximating modern summer temperatures in the Antarctic Ross Sea. (3) The JB03 core record spans 27.27 to 0.6 ka BP, divided into three geological periods: the Last Glacial Maximum (27.3~21 ka BP), the deglaciation period (21~11.7 ka BP), and the Holocene (11.7~0.6 ka BP). During the Last Glacial Maximum, the ancient ocean was influenced by ice cover and sea ice constraints, resulting in reduced primary productivity, sedimentation rates of only 0.45 cm/ka, and indicators such as Pr/Ph ratios, Ph/nC18, and Ph/nC17 reflecting a strongly oxidative sedimentary environment unfavorable for MCP and BP carbon sequestration, leading to diminished carbon storage potential during cold climate periods. As the Holocene warm period commenced, ice shelves retreated and disintegrated, creating favorable warm climate conditions for increased phytoplankton productivity, diatom abundance, zooplankton proliferation, alterations in fecal matter composition, and enhanced sedimentation rates, accelerating the transfer of organic carbon to the deep sea. Seabed sediments transitioned to weakly reducing to weakly oxidizing conditions, conducive to carbon preservation. Elevated diatom biomass signifies strengthened siliceous pump activity, subsequently enhancing microbial activity, promoting the growth of archaea and bacteria, leading to significant increases in total microbial-GDGTs, methane-producing archaea or widespread archaea-GDGT-0, and crenarchaeol archaeal biomass, indicating a substantial enhancement in ancient marine BP and MCP activity in the Ross Sea since the Holocene, with diatoms/siliceous pumps dominating both ancient and modern marine environments. The study further reveals that changes in carbon sequestration efficiency of the ancient marine BP and MCP in the Ross Sea during the Last Glacial Maximum and the Holocene are linked to geological events, specifically large-scale global climate variations, where the size of this carbon reservoir corresponds to climatic fluctuations. The Ross Sea’s ability to regulate atmospheric CO2 through ancient marine processes, particularly during the Holocene warm period, holds significant scientific implications for understanding the oceanic regulatory mechanisms of global climate change.-
Key words:
- Marine primary productivity /
- Biological pump /
- Microbial carbon pump /
- Molecular biomarkers /
- TEXL86.
-
图 5 现代表层沉积物中TOC和正构烷烃总量及其分子组合特征与海洋生物泵联系
(a)正构烷烃总量(∑n-ALK)ng/g,(b)菌藻类(nC15+nC17+nC19)ng/g,(c)大型浮游植物(nC21+nC23+nC25)ng/g,(d)陆源高等植物(nC27+nC29+nC31)ng/g,(e)姥鲛烷/植烷(Pr/Ph),(f)Ph/nC17值,(g)Pr/nC18值,(h)L/H值,(i)(nC21+nC22)/(nC28+nC29)值,(j)CPI值 ,(k)OEP值
Fig. 5 Comparison of TOC and total normal alkane and its molecular composition characteristics in modern sediments with marine biological pump
(a) normal alkane (∑n-ALK) ng/g, (b) Fungi algae (nC15+ nC17 +nC19)ng/g, (c) Large phytoplankton (nC21+nC23+nC25) ng/g, (d)Terrestrial higher plants (nC27+nC29+nC31) ng/g, (e) Cetane/phytane (Pr/Ph, (f) Ph/nC17, (g) Pr/nC18, (h) L/H, (i) (nC21+nC22)/(nC28+nC29) , (j) CPI, (k) OEP
图 6 现代表层沉积物微生物细胞膜脂GDGTs、不同类群的古菌及其与MCP储碳联系
(a)微生物细胞膜脂-GDGTs、(b)古菌-IsoGDGTs、(c)细菌- BrGDGTs、(d)产甲烷古菌- GDGT-0、(e)奇古菌-Crenarchaeol、(f)R0/5值和(g)BIT值
Fig. 6 Modern surface sedimentary microbial cell membrane GDGTs, archaeal groups and their link to MCP carbon storage
(a) Microbial cell membrane lipids-GDGTs, (b) Archaea-IsoGDGTs, (c) Bacteria-BrGDGTs, (d) Methanogenic archaea-GDGT-0, (e) Thaumarchaeota-Crenarchaeol, (f) R0/5 values and (g) BIT values
图 8 现代表层沉积物的浮游动植物分子生物标志物含量平面分布图
A-(a)菜籽甾醇-brassicasterol(硅藻)、(b)甲藻甾醇—dinostero(甲藻)、(c)长链烯酮-Long-chain alkenones(颗石藻)、(d)胆甾醇-Chlesterol(浮游动物总量)、(e)SUM-初级生产力,(f)菜籽甾醇-硅藻占比(bra/sum)、(g)硅藻/甲藻比值(bra/dino)
Fig. 8 Molecular biomarker contents of planktonic algae in modern surface sediments
A- (a) brassasterol (diatoms), (b) dinosterol (dinoflagellates), (c) long-chain alkenones (ccolithophores), (d) cholestanol (total zooplankton), (e) SUM-primary productivity, (f brassicasterol-silica ratio (bra/sum), (g) diatom/dinoflagellate ratio (bra/dino)
图 9 硅藻和甲藻占比与重建表层海温SST的线性关性
B-(h)菜籽甾醇/总量(bra/sum)和B-(i)菜籽甾醇/甲藻甾醇(bra/dino)与SST/℃的相关性
Fig. 9 The linear correlation between the proportions of diatoms and dinoflagellates and the reconstructed SST
B- (h) The correlation of brassicasterol/sum (bra/sum) and B- (i) brassicasterol/dinosterol (bradino) with SST/℃
图 11 JB03岩芯TOC/TN值和正构烷烃分子组合特征记录的末次冰期来古海洋陆源/海源碳库变化
(a)总有机碳TOC和TOC/TN、(b)低碳烃/高碳烃L/H、(c)TARHC、(d)(nC21+nC22)/(nC28+nC29)、(e)菌藻类(nC15+nC17+nC19)、(f)大型浮游植物(nC21+nC23+nC25)、(g)陆源高等植物(nC27+nC29+nC31)、(h)Pr/Ph、(i)CPI和(J)OEP值
Fig. 11 Last Glacial Marine/Terrestrial Carbon Isotopic Signature Recorded by TOC/TN Ratio and Molecular Composition n-Alkanes from JB03 Core
(a) TOC and TOC/TN, (b) L/H, (c)TARHC, (d) (nC21+nC22)/(nC28+nC29) (e) Fungi algae (nC15+ nC17 +nC19), (f) Large planktonic plants (nC21+nC23+nC25), (g) Terrestrial higher plants (nC27+nC29+nC31) , (h) Pr/Ph, (i)CPI and (j) OEP values
图 12 JB03岩芯微生物细胞膜脂GDGTs记录的古海洋微型生物/MCP地质演化
(a)WDC δ18O、(b)含水率和TOC、(c)微生物细胞膜脂-GDGTs、(d)古菌-IsoGDGTs、(e)细菌- BrGDGTs、(f)产甲烷古菌- GDGT-0、(g)奇古菌-Crenarchaeol、(h)R0/5比值、(i)菜籽甾醇- Brassicasterol(硅藻)、(j)甲藻甾醇- Dinosterol(甲藻)、(k)C37长链烯酮- C37-ketene(颗石藻)、(l)总量SUM-初级生产力、(m)胆甾醇-浮游动物总量
Fig. 12 Geological evolution of the microbial/MCP paleocean recorded by microbial cell membrane lipids GDGTs of JB03 core
(a) WDC δ18O, (b) water content and TOC, (c) microbial cell membrane lipids-GDGTs, (d) archaeal-IsoGDGTs, (e) bacterial- BrGDGTs, (f) Methanogen GDGT-0, (g) Thaumarchaeota-Crenarchaeol, (h) R0/5 ratio, (i) brassicol (diatoms), (j) dinosterol (dinoflagellates), (k) C37 long-chain alken-C37-ketene (coccolithophores), (l) Total SUM-primary production, (m) Cholesterol-Total zoplankton
图 14 分子生物标志重建的浮游植物相对生物量与SST-2和的相关性
(a)菜籽甾醇-硅藻(ng/g)与SST-2/℃、(b)brassicasterol/Sum(%)与SST-2/℃、(c)dinosterol/Sum(%)与SST-2/℃、(d)alkenone/Sum(%)与SST-2/℃的相关性
Fig. 14 Correlation between the relative biomass of phytoplankton with molecular biomarker reconstruction and SST-2
(a) brassicasterol-siliceous (ng/g) with SST-2/℃, (b) brassicasterol/ (%) with SST-2/℃, (c) dinosterol/Sum (%) with SST-2/℃, (d) alken/Sum (%) with SST-2/℃
表 1 南极罗斯海JB03柱样的AMS14C年龄及校正年龄与沉积速率
Tab. 1 AMS14C ages and calibrated ages with sedimentation rates of JB03 core from Ross sea of Southern Ocean
深度 14C年龄 化石碳年龄 海洋储层年龄 日历年龄 沉积速率
地质年代cm a BP a a a BP cm/ka 0-2 4470 ±303045 825 600
全新世2-4 4774 ±303045 825 904 6.58 18-20 6950 ±303045 825 3080 7.35 54-56 12655 ±303045 825 8785 6.31 68-70 14730 ±303045 825 10860 6.75 72-74 15720 ±303045 825 11850 4.04 末次冰消期 78-80 28950 ±303045 825 25080 0.45
末次盛冰期102-104 31010 ±303045 825 27140 11.7 110-112 31090 ±303045 825 27220 100 112-114 31095 ±303045 825 27225 400 128-130 31140 ±303045 825 27270 356 -
[1] 谢树成, 焦念志, 罗根明, 等. 海洋生物碳泵的地质演化: 微生物的碳汇作用[J]. 科学通报, 2022, 67(15): 1715−1726. doi: 10.1360/TB-2021-0672Xie Shucheng, Jiao Nianzhi, Luo Genming, et al. Evolution of biotic carbon pumps in Earth history: microbial roles as a carbon sink in oceans[J]. Chinese Science Bulletin, 2022, 67(15): 1715−1726. doi: 10.1360/TB-2021-0672 [2] 焦念志. 从戈登科学前沿论坛看海洋碳汇研究动向[C]//第四届地球系统科学大会摘要. 上海, 2016.Jiao Nianzhi. On the the tendency of the tendency of ocean carbon sequestration from Gordon research conferences[C]//Abstract of the 4th Confeference on Earth System Science. Shanghai, 2016. (查阅网上资料, 未找到本条文献信息, 请确认) [3] 孙军. 海洋碳中和途径知多少?[J]地球科学, 2022, 47(10): 3927−3928.Sun Jun. How many pathways we have for the marine carbon neutrality?[J]. Earth Science, 2022, 47(10): 3927−3928. [4] 孙军, 李晓倩, 陈建芳, 等. 海洋生物泵研究进展[J]. 海洋学报, 2016, 38(4): 1−21. doi: 10.3969/j.issn.0253-4193.2016.04.001Sun Jun, Li Xiaoqian, Chen Jianfang, et al. Progress in oceanic biological pump[J]. Haiyang Xuebao, 2016, 38(4): 1−21. doi: 10.3969/j.issn.0253-4193.2016.04.001 [5] Jiao Nianzhi, Herndl G J, Hansell D A, et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean[J]. Nature Reviews Microbiology, 2010, 8(8): 593−599. doi: 10.1038/nrmicro2386 [6] Jiao Nianzhi, Cai Ruanhong, Zheng Qiang, et al. Unveiling the enigma of refractory carbon in the ocean[J]. National Science Review, 2018, 5(4): 459−463. doi: 10.1093/nsr/nwy020 [7] 焦念志, 戴民汉, 翦知湣, 等. 海洋储碳机制及相关生物地球化学过程研究策略[J]. 科学通报, 2022, 67(15): 1600−1606. doi: 10.1360/TB-2022-0057Jiao Nianzhi, Dai Minhan, Jian Zhimin, et al. Research strategies for ocean carbon storage mechanisms and effects[J]. Chinese Science Bulletin, 2022, 67(15): 1600−1606. doi: 10.1360/TB-2022-0057 [8] 张兴亮. 海洋惰性溶解有机碳库与海侵黑色页岩[J]. 科学通报, 2022, 67(15): 1607−1613. doi: 10.1360/TB-2021-0613Zhang Xingliang. Marine refractory dissolved organic carbon and transgressive black shales[J]. Chinese Science Bulletin, 2022, 67(15): 1607−1613. doi: 10.1360/TB-2021-0613 [9] Jiao Nianzhi, Wang Hong, Xu Guanhua, et al. Blue carbon on the rise: challenges and opportunities[J]. Naional Science Review, 2018, 5(4): 464−468. [10] 李三忠, 刘丽军, 索艳慧, 等. 碳构造: 一个地球系统科学新范式[J]. 科学通报, 2023, 68(4): 309−338. doi: 10.1360/TB-2022-0741Li Sanzhong, Liu Lijun, Suo Yanhui, et al. Carbon tectonics: a new paradigm for Earth system science[J]. Chinese Science Bulletin, 2023, 68(4): 309−338. doi: 10.1360/TB-2022-0741 [11] Volkman J K, Barrett S M, Blackburn S I, et al. Microalgal biomarkers: a review of recent research developments[J]. Organic Geochemistry, 1998, 29(5/7): 1163−1179. [12] Higginson M J, Altabet M A. Initial test of the silicic acid leakage hypothesis using sedimentary biomarkers[J]. Geophysical Research Letters, 2004, 31(18): L18303. [13] Xie Shucheng, Pancost R D, Yin Hongfu, et al. Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction[J]. Nature, 2005, 434(7032): 494−497. doi: 10.1038/nature03396 [14] 白有成, 陈建芳, 李宏亮, 等. 楚科奇海附近表层沉积物中类脂生物标志物的分布特征和意义[J]. 海洋学报, 2010, 32(2): 106−117.Bai Youcheng, Chen Jianfang, Li Hongliang, et al. The distribution of lipids biomarkers in the surface sediments of the Chukchi Sea and their implications[J]. Haiyang Xuebao, 2010, 32(2): 106−117. [15] 郭新宇, 张海龙, 李莉, 等. 近30年来东海长江口泥质区浮游植物生产力与群落结构变化的生物标志物记录[J]. 中国海洋大学学报, 2020, 50(2): 85−94Guo Xinyu, Zhang Hailong, Li Li, et al. Biomarker records of phytoplankton productivity and community structure changes in the mud area of the Yangtze River Estuary in the East China Sea during the last 30 years[J]. Periodical of Ocean University of China, 2020, 50(2): 85−94. [16] Zhang Chuanlun, Dang Hongyue, Azam F, et al. Evolving paradigms in biological carbon cycling in the ocean[J]. National Science Review, 2018, 5(4): 481−499. doi: 10.1093/nsr/nwy074 [17] Wang H Y, He Y K, Liu W G, et al. Lake water depth controlling archaeal tetraether distributions in midlatitude Asia: implications for paleo lake‐level reconstruction[J]. Geophysical Research Letters, 2019, 46(10): 5274−5283. doi: 10.1029/2019GL082157 [18] Damsté J S S, Rijpstra W I C, Hopmans E C, et al. Intact polar and core glycerol dibiphytanyl glycerol tetraether lipids of Group I. 1a and I. 1b Thaumarchaeota in soil[J]. Applied and Environmental Microbiology, 2012, 78(19): 6866−6874. doi: 10.1128/AEM.01681-12 [19] Kou Qiangqiang, Zhu Liping, Wang Junbo, et al. Archaeal tetraether-inferred hydrological variations of Serling Co(Central Tibet) during the late Quaternary[J]. Global and Planetary Change, 2023, 224: 104113. doi: 10.1016/j.gloplacha.2023.104113 [20] Schouten S, Hopmans E C, Schefuß E, et al. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures?[J]. Earth and Planetary Science Letters, 2002, 204(1/2): 265−274. [21] Kim J H, Van Der Meer J, Schouten S, et al. New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: implications for past sea surface temperature reconstructions[J]. Geochimica et Cosmochimica Acta, 2010, 74(16): 4639−4654. doi: 10.1016/j.gca.2010.05.027 [22] 陈文深, 于培松, 韩喜彬, 等. 南极罗斯海表层沉积物GDGT含量分布及其环境意义[J]. 海洋学研究, 2019, 37(1): 30−39. doi: 10.3969/j.issn.1001-909X.2019.01.005Chen Wenshen, Yu Peisong, Han Xibin, et al. Contents and distribution of GDGTs in surface sediments of Ross Sea, Antarctic and their environmental significances[J]. Journal of Marine Sciences, 2019, 37(1): 30−39. doi: 10.3969/j.issn.1001-909X.2019.01.005 [23] Rampen S W, Schouten S, Koning E, et al. A 90kyr upwelling record from the northwestern Indian Ocean using a novel long-chain diol index[J]. Earth and Planetary Science Letters, 2008, 276(1/2): 207−213. [24] Rampen S W, Willmott V, Kim J H, et al. Evaluation of long chain 1, 14-alkyl diols in marine sediments as indicators for upwelling and temperature[J]. Organic Geochemistry, 2014, 76: 39−47. doi: 10.1016/j.orggeochem.2014.07.012 [25] Yang Huan, Xiao Wenjie, Słowakiewicz M, et al. Depth-dependent variation of archaeal ether lipids along soil and peat profiles from southern China: implications for the use of isoprenoidal GDGTs as environmental tracers[J]. Organic Geochemistry, 2019, 128: 42−56. doi: 10.1016/j.orggeochem.2018.12.009 [26] Kuypers M M M, Blokker P, Erbacher J, et al. Massive expansion of marine archaea during a Mid-Cretaceous oceanic anoxic event[J]. Science, 2001, 293(5527): 92−95. doi: 10.1126/science.1058424 [27] Schouten S, Hopmans E C, Forster A, et al. Extremely high sea-surface temperatures at low latitudes during the middle Cretaceous as revealed by archaeal membrane lipids[J]. Geology, 2003, 31(12): 1069−1072. doi: 10.1130/G19876.1 [28] Jenkyns H C, Schouten-Huibers L, Schouten S, et al. Warm Middle Jurassic-Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean[J]. Climate of the Past, 2012, 8(1): 215−226. doi: 10.5194/cp-8-215-2012 [29] Roshan S, Devries T. Efficient dissolved organic carbon production and export in the oligotrophic ocean[J]. Nature Communications, 2017, 8(1): 2036. doi: 10.1038/s41467-017-02227-3 [30] 陈立奇. 极区海洋碳池变化性和脆弱性及其探测工程技术[J]. 中国工程科学, 2009, 11(10): 79−85. doi: 10.3969/j.issn.1009-1742.2009.10.012Chen Liqi. Variability and vulnerability of carbon pools in Southern Ocean and western Arctic Ocean and their exploratory engineering technology[J]. Strategic Study of Chinese Academy of Engineerng, 2009, 11(10): 79−85. doi: 10.3969/j.issn.1009-1742.2009.10.012 [31] Le Quéré C, Orr J C, Monfray P, et al. Interannual variability of the oceanic sink of CO2 from 1979 through 1997[J]. Global Biogeochemical Cycles, 2000, 14(4): 1247−1265. doi: 10.1029/1999GB900049 [32] 张凡, 高众勇, 孙恒. 南极普里兹湾碳循环研究进展[J]. 极地研究, 2013, 25(3): 284−293.Zhang Fan, Gao Zhongyong, Sun Heng. Advances in carbon-cycle research for Prydz Bay, the Antarctica[J]. Chinese Journal of Polar Research, 2013, 25(3): 284−293. [33] Yang Dan, Han Zhengbing, Han Xibin, et al. Biomarker records of D5-6 columns in the eastern Antarctic Peninsula waters: responses of planktonic communities and bio-pump structures to sea ice global warming in the past centenary[J]. Advances in Polar Science, 2021, 32(1): 28−41. [34] Stammerjohn S E, Martinson D G, Smith R C, et al. Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño–Southern Oscillation and Southern Annular Mode variability[J]. Journal of Geophysical Research: Oceans, 2008, 113(C3): C03S90. [35] Stammerjohn S, Massom R, Rind D, et al. Regions of rapid sea ice change: an inter-hemispheric seasonal comparison[J]. Geophysical Research Letters, 2012, 39(6): L06501. [36] Orr J C, Fabry V J, Aumont O, et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms[J]. Nature, 2005, 437(7059): 681−686. doi: 10.1038/nature04095 [37] Matson P G, Martz T R, Hofmann G E. High-frequency observations of pH under Antarctic sea ice in the southern Ross Sea[J]. Antarctic Science, 2011, 23(6): 607−613. doi: 10.1017/S0954102011000551 [38] Smith Jr W O, Shields A R, Dreyer J C, et al. Interannual variability in vertical export in the Ross Sea: magnitude, composition, and environmental correlates[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2011, 58(2): 147−159. doi: 10.1016/j.dsr.2010.11.007 [39] Pusceddu A, Cattaneo-Vietti R, Albertelli G, et al. Origin, biochemical composition and vertical flux of particulate organic matter under the pack ice in Terra Nova Bay(Ross Sea, Antarctica) during late summer 1995[J]. Polar Biology, 1999, 22(2): 124−132. doi: 10.1007/s003000050399 [40] Collier R, Dymond J, Honjo S, et al. The vertical flux of biogenic and lithogenic material in the Ross Sea: moored sediment trap observations 1996-1998[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2000, 47(15/16): 3491−3520. [41] Langone L, Frignani M, Ravaioli M, et al. Particle fluxes and biogeochemical processes in an area influenced by seasonal retreat of the ice margin(northwestern Ross Sea, Antarctica)[J]. Journal of Marine Systems, 2000, 27(1/3): 221−234. [42] Murphy E J, Watkins J L, Trathan P N, et al. Spatial and temporal operation of the Scotia Sea ecosystem: a review of large-scale links in a krill centred food web[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362(1477): 113−148. doi: 10.1098/rstb.2006.1957 [43] Mari X, Passow U, Migon C, et al. Transparent exopolymer particles: effects on carbon cycling in the ocean[J]. Progress in Oceanography, 2017, 151: 13−37. doi: 10.1016/j.pocean.2016.11.002 [44] Wu Shuangye, Hou Shugui. Impact of icebergs on net primary productivity in the Southern Ocean[J]. The Cryosphere, 2017, 11(2): 707−722. doi: 10.5194/tc-11-707-2017 [45] Ducklow H W, Wilson S E, Post A F, et al. Particle flux on the continental shelf in the Amundsen Sea Polynya and Western Antarctic Peninsula[J]. Elementa: Science of the Anthropocene, 2015, 3(1): 000046. [46] Smith Jr W O, Sedwick P N, Arrigo K R, et al. The Ross Sea in a sea of change[J]. Oceanography, 2012, 25(3): 90−103. doi: 10.5670/oceanog.2012.80 [47] 陈建芳. 南海沉降颗粒物的生物地球化学过程及其在古环境研究中的意义[D]. 上海: 同济大学, 2005.Chen Jianfang. Biogeochemistry of settling particles in the South China Sea and its significance for paleo-environment studies[D]. Shanghai: Tongji University, 2005. [48] Cañadas F, Papineau D, Algeo T J, et al. Upwelling-driven high organic production in the late Ediacaran[J]. Communications Earth & Environment, 2024, 5(1): 461. [49] 周郑鹏, 肖文申, 王汝建, 等. 南极罗斯海表层沉积物中生源组分的分布规律及其环境指示意义[J]. 海洋地质与第四纪地质, 2022, 42(4): 12−23.ZHOU Zhengpeng, XIAO Wenshen, WANG Rujian, et al. Distribution patterns of biogenic components in surface sediments of the Ross Sea and their environmental implications[J]. Marine Geology & Quaternary Geology, 2022, 42(4): 12−23. [50] 宋乐慧, 韩喜彬, 李家彪, 等. 罗斯海西部末次冰盛期以来沉积环境重建: 有机碳与生物标志化合物分析[J]. 海洋学报, 2019, 41(9): 52−64. doi: 10.3969/j.issn.0253-4193.2019.09.005Song Lehui, Han Xibin, Li Jiabiao, et al. Western Ross Sea sedimentary environment reconstruction since the Last Glacial Maximum based on organic carbon and biomarker analyses[J]. Haiyang Xuebao, 2019, 41(9): 52−64. doi: 10.3969/j.issn.0253-4193.2019.09.005 [51] 韩喜彬, 赵军, 初凤友, 等. 南极半岛东北海域表层沉积有机质来源及其沉积环境[J]. 海洋学报, 2015, 37(8): 26−38. doi: 10.3969/j.issn.0253-4193.2015.08.003Han Xibin, Zhao Jun, Chu Fengyou, et al. The source of organic matter and its sedimentary environment of the bottom surface sediment in Northeast waters to Antarctic Peninsula based on the biomarker features[J]. Haiyang Xuebao, 2015, 37(8): 26−38. doi: 10.3969/j.issn.0253-4193.2015.08.003 [52] Sampei Y, Matsumoto E. C/N ratios in a sediment core from Nakaumi Lagoon, southwest Japan—usefulness as an organic source indicator[J]. Geochemical Journal, 2001, 35(3): 189−205. doi: 10.2343/geochemj.35.189 [53] 黄邦钦, 柳欣. 边缘海浮游生态系统对生物泵的调控作用[J]. 地球科学进展, 2015, 30(3): 385−395. doi: 10.11867/j.issn.1001-8166.2015.03.0385Huang Bangqin, Liu Xin. Review on planktonic ecosystem and its control on biological pump in the marginal seas[J]. Advances in Earth Science, 2015, 30(3): 385−395. doi: 10.11867/j.issn.1001-8166.2015.03.0385 [54] 康建成, 唐述林, 刘雷保. 南极海冰与气候[J]. 地球科学进展, 2005, 20(7): 786−793. doi: 10.3321/j.issn:1001-8166.2005.07.013Kang Jiancheng, Tang Shulin, Liu Leibao. Antarctic sea ice and climate[J]. Advances in Earth Science, 2005, 20(7): 786−793. doi: 10.3321/j.issn:1001-8166.2005.07.013 [55] 马丽娟, 陆龙骅, 卞林根. 南极海冰的时空变化特征[J]. 极地研究, 2004, 16(1): 29−37.Ma Lijuan, Lu Longhua, Bian Lingen. Spatio-temporal character of Antarctic sea ice variation[J]. Chinese Journal of Polar Research, 2004, 16(1): 29−37. [56] Arrigo K R, Van Dijken G L. Annual changes in sea-ice, chlorophyll a, and primary production in the Ross Sea, Antarctica[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2004, 51(1/3): 117−138. [57] Ficken K J, Li Baocai, Swain D L. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes[J]. Organic Geochemistry, 2000, 31(7/8): 745−749. [58] Smith Jr W O, Ainley D G, Arrigo K R, et al. The oceanography and ecology of the Ross Sea[J]. Annual Review of Marine Science, 2014, 6: 469−487. doi: 10.1146/annurev-marine-010213-135114 [59] Cranwell P A. Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change[J]. Freshwater Biology, 1973, 3(3): 259−265. doi: 10.1111/j.1365-2427.1973.tb00921.x [60] Rielley G, Collier R J, Jones D M, et al. The biogeochemistry of Ellesmere Lake, U. K. —I: source correlation of leaf wax inputs to the sedimentary lipid record[J]. Organic Geochemistry, 1991, 17(6): 901−912. doi: 10.1016/0146-6380(91)90031-E [61] Meyers P A. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes[J]. Organic Geochemistry, 2003, 34(2): 261−289. doi: 10.1016/S0146-6380(02)00168-7 [62] Meyers P A, Ishiwatari R. Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments[J]. Organic Geochemistry, 1993, 20(7): 867−900. doi: 10.1016/0146-6380(93)90100-P [63] 王启栋, 宋金明, 李学刚. 黄河口湿地有机碳来源及其对碳埋藏提升策略的启示[J]. 生态学报, 2015, 35(2): 568−576.Wang Qidong, Song Jinming, Li Xuegang. Sources of organic carbon in the wetlands of the Yellow River estuary and instructions on carbon burial promotion strategies[J]. Acta Ecologica Sinica, 2015, 35(2): 568−576. [64] Meyers P A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes[J]. Organic Geochemistry, 1997, 27(5/6): 213−250. [65] Rosenthal Y, Dahan M, Shemesh A. Southern ocean contributions to glacial-interglacial changes of atmospheric pCO2: an assessment of carbon isotope records in diatoms[J]. Paleoceanography, 2000, 15(1): 65−75. doi: 10.1029/1999PA000369 [66] Philip R P, Gilbert T D. Characterization of petroleum source rocks and shales by pyrolysis-gas chromatography-mass spectrometry-multiple ion detection[J]. Organic Geochemistry, 1984, 6: 489−501. doi: 10.1016/0146-6380(84)90072-X [67] Nichols P D, Palmisano A C, Volkman J K, et al. Occurrence of an isoprenoid C25 diunasaturated alkene and high neutral lipid content in antractic sea-ice diatom communities[J]. Journal of Phycology, 1988, 24(1): 90−96. doi: 10.1111/j.1529-8817.1988.tb04459.x [68] Volkman J K, Barrett S M, Blackburn S I, et al. Microalgal biomarkers: a review of recent research developments[J]. Organic Geochemistry, 1998, 29(5/7): 1163−1179. (查阅网上资料, 本条文献与第11、83条文献重复, 请确认) [69] 吴庆余, 殷实, 盛国英, 等. 发现于浮游硅藻中的长链正烷烃[J]. 科学通报, 1992, 37(24): 2266−2269.Wu Qingyu, Yin Shi, Sheng Guoying, et al. The long chain n-alkanes are found in floating diatoms[J]. Chinese Science Bulletin, 1992, 37(24): 2266−2269. (查阅网上资料, 本条文献的中文翻译未查询到, 请确认) [70] Smith Jr W O, Dinniman M S, Hofmann E E, et al. The effects of changing winds and temperatures on the oceanography of the Ross Sea in the 21st century[J]. Geophysical Research Letters, 2014, 41(5): 1624−1631. doi: 10.1002/2014GL059311 [71] Demaster D J, Ragueneau O, Nittrouer C A. Preservation efficiencies and accumulation rates for biogenic silica and organic C, N, and P in high-latitude sediments: the Ross Sea[J]. Journal of Geophysical Research: Oceans, 1996, 101(C8): 18501−18518. doi: 10.1029/96JC01634 [72] Goffart A, Catalano G, Hecq J H. Factors controlling the distribution of diatoms and Phaeocystis in the Ross Sea[J]. Journal of Marine Systems, 2000, 27(1/3): 161−175. [73] 李三忠, 刘丽军, 索艳慧, 等. 碳构造: 一个地球系统科学新范式[J]. 科学通报, 2023, 68(4): 309−338.Li Sanzhong, Liu Lijun, Suo Yanhui, et al. Carbon tectonics: a new paradigm for earth system science[J]. Chinese Science Bulletin, 2023, 68(4): 309−338. (查阅网上资料, 本条文献与第10条文献重复, 请确认) [74] Zimmerman A R, Cornelissen G. Consider fjord-assisted carbon storage[J]. Environmental Science & Technology, 2018, 52(19): 10911−10913. [75] Dewar W K, Bingham R J, Iverson R L, et al. Does the marine biosphere mix the ocean?[J]. Journal of Marine Research, 2006, 64(4): 541−561. doi: 10.1357/002224006778715720 [76] Volkman J K, Maxwell J R. Acyclic isoprenoids as biological markers[M]//Johns R B. Biological Markers in the Sedimentary Record. New York: Elsevier, 1986: 1−42. [77] Didyk B M, Simoneit B R T, Brassell S C, et al. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation[J]. Nature, 1978, 272(5650): 216−222. doi: 10.1038/272216a0 [78] 傅家谟, 盛国英, 许家友, 等. 应用生物标志化合物参数判识古沉积环境[J]. 地球化学, 1991, 20(1): 1−12. doi: 10.3321/j.issn:0379-1726.1991.01.001Fu Jiamo, Sheng Guoying, Xu Jiayou, et al. Application of biomarker compounds in assessment of paleoenvironments of Chinese terrestrial sediments[J]. Geochimica, 1991, 20(1): 1−12. doi: 10.3321/j.issn:0379-1726.1991.01.001 [79] Mangelsdorf K, Rullkötter J. Natural supply of oil-derived hydrocarbons into marine sediments along the California continental margin during the late Quaternary[J]. Organic Geochemistry, 2003, 34(8): 1145−1159. doi: 10.1016/S0146-6380(03)00059-7 [80] 董宏坤, 万世明, 刘喜停. 海洋沉积物早期成岩作用研究进展[J]. 沉积学报, 2022, 40(5): 1172−1187.Dong Hongkun, Wan Shiming, Liu Xiting. Research progress on geochemical behavior of minerals and elements in early diagenesis of marine sediments[J]. Acta Sedimentologica Sinica, 2022, 40(5): 1172−1187. [81] Frignani M, Giglio F, Accornero A, et al. Sediment characteristics at selected sites of the Ross Sea continental shelf: does the sedimentary record reflect water column fluxes?[J]. Antarctic Science, 2003, 15(1): 133−139. doi: 10.1017/S0954102003001123 [82] Nichols P D, Palmisano A C, Volkman J K, et al. Occurrence of an isoprenoid C25 diunasaturated alkene and high neutral lipid content in antractic sea-ice diatom communities[J]. Journal of Phycology, 1988, 24(1): 90−96. (查阅网上资料, 本条文献与第67条文献重复, 请确认) [83] Volkman J K, Barrett S M, Blackburn S I, et al. Microalgal biomarkers: a review of recent research developments[J]. Organic Geochemistry, 1998, 29(5/7): 1163−1179. (查阅网上资料, 本条文献与第11、68条文献重复, 请确认) [84] Belt S T, Smik L, Brown T A, et al. Source identification and distribution reveals the potential of the geochemical Antarctic sea ice proxy IPSO25[J]. Nature Communications, 2016, 7(1): 12655. doi: 10.1038/ncomms12655 [85] Wakeham S G, Hopmans E C, Schouten S, et al. Archaeal lipids and anaerobic oxidation of methane in euxinic water columns: a comparative study of the Black Sea and Cariaco Basin[J]. Chemical Geology, 2004, 205(3/4): 427−442. [86] Schouten S, Hopmans E C, Baas M, et al. Intact membrane lipids of “Candidatus Nitrosopumilus maritimus, ” a cultivated representative of the cosmopolitan mesophilic group I crenarchaeota[J]. Applied and Environmental Microbiology, 2008, 74(8): 2433−2440. [87] Shen Yuan, Guilderson T P, Chavez F P, et al. Important contribution of bacterial carbon and nitrogen to sinking particle export[J]. Geophysical Research Letters, 2023, 50(11): e2022GL102485. doi: 10.1029/2022GL102485 [88] Arrigo K R, Van Dijken G L. Annual changes in sea-ice, chlorophyll a, and primary production in the Ross Sea, Antarctica[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2004, 51(1/3): 117−138. (查阅网上资料, 本条文献与第56、126条文献重复, 请确认) [89] Zheng Yanhong, Singarayer J S, Cheng Peng, et al. Holocene variations in peatland methane cycling associated with the Asian summer monsoon system[J]. Nature Communications, 2014, 5(1): 4631. doi: 10.1038/ncomms5631 [90] Hu Jianfang, Zhou Haoda, Peng Ping'an, et al. Seasonal variability in concentrations and fluxes of glycerol dialkyl glycerol tetraethers in Huguangyan Maar Lake, SE China: Implications for the applicability of the MBT-CBT paleotemperature proxy in lacustrine settings[J]. Chemical Geology, 2016, 420: 200−212. doi: 10.1016/j.chemgeo.2015.11.008 [91] Woese C R, Kandler O, Wheelis M L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya[J]. Proceedings of the National Academy of Sciences of the United Stated of America, 1990, 87(12): 4576−4579. [92] Koga Y, Nishihara M, Morii H, et al. Ether polar lipids of methanogenic bacteria: structures, comparative aspects, and biosyntheses[J]. Microbiology and Molecular Biology Reviews, 1993, 57(1): 164−182. [93] Schouten S, Forster A, Panoto F E, et al. Towards calibration of the TEX86 palaeothermometer for tropical sea surface temperatures in ancient greenhouse worlds[J]. Organic Geochemistry, 2007, 38(9): 1537−1546. doi: 10.1016/j.orggeochem.2007.05.014 [94] Blaga C I, Reichart G J, Heiri O, et al. Tetraether membrane lipid distributions in water-column particulate matter and sediments: a study of 47 European lakes along a north-south transect[J]. Journal of Paleolimnology, 2009, 41(3): 523−540. doi: 10.1007/s10933-008-9242-2 [95] Schouten S. Hopmans E C, Schefuß E, et al. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient seawater temperatures?[J]. Earth and Planetary Science Letters, 2002, 204(1/2): 265−274. (查阅网上资料, 本条文献与第20条文献重复, 请确认) [96] Xiao Wenjie, Xu Yunping, Lin Jian, et al. Global scale production of brGDGTs by benthic marine bacteria: Implication for developing ocean bottom environmental proxies[J]. Global and Planetary Change, 2022, 211: 103783. doi: 10.1016/j.gloplacha.2022.103783 [97] Schouten S, Hopmans E C, Damsté J S S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review[J]. Organic Geochemistry, 2013, 54: 19−61. doi: 10.1016/j.orggeochem.2012.09.006 [98] Lechtenfeld O J, Hertkorn N, Shen Yuan, et al. Marine sequestration of carbon in bacterial metabolites[J]. Nature Communications, 2015, 6(1): 6711. doi: 10.1038/ncomms7711 [99] Schimel J. Playing scales in the methane cycle: from microbial ecology to the globe[J]. Proceedings of the National Academy of Sciences of United States of America, 2004, 101(34): 12400−12401. doi: 10.1073/pnas.0405075101 [100] 周文广, 阮榕生. 微藻生物固碳技术进展和发展趋势[J]. 中国科学: 化学, 2014, 44(1): 63−78. doi: 10.1360/032013-256Zhou Wenguang, Ruan Rongsheng. Biological mitigation of carbon dioxide via microalgae: recent development and future direction[J]. Scientia Sinica: Chimica, 2014, 44(1): 63−78. doi: 10.1360/032013-256 [101] Schouten S, Forster A, Panoto F E, et al. Towards calibration of the TEX86 palaeothermometer for tropical sea surface temperatures in ancient greenhouse worlds[J]. Organic Geochemistry, 2007, 38(9): 1537−1546. (查阅网上资料, 本条文献与第93条文献重复, 请确认) [102] Kim J H, Schouten S, Hopmans E C, et al. Global sediment core-top calibration of the TEX86 paleothermometer in the ocean[J]. Geochimica et Cosmochimica Acta, 2008, 72(4): 1154−1173. doi: 10.1016/j.gca.2007.12.010 [103] Shevenell A E, Ingalls A E, Domack E W, et al. Holocene Southern Ocean surface temperature variability west of the Antarctic Peninsula[J]. Nature, 2011, 470(7333): 250−254. doi: 10.1038/nature09751 [104] Weijers J W H, Schouten S, Spaargaren O C, et al. Occurrence and distribution of tetraether membrane lipids in soils: Implications for the use of the TEX86 proxy and the BIT index[J]. Organic Geochemistry, 2006, 37(12): 1680−1693. doi: 10.1016/j.orggeochem.2006.07.018 [105] Etourneau J, Collins L G, Willmott V, et al. Holocene climate variations in the western Antarctic Peninsula: evidence for sea ice extent predominantly controlled by changes in insolation and ENSO variability[J]. Climate of the Past, 2013, 9(4): 1431−1446. doi: 10.5194/cp-9-1431-2013 [106] Arrigo K R, Van Dijken G, Long M. Coastal Southern Ocean: a strong anthropogenic CO2 sink[J]. Geophysical Research Letters, 2008, 35(21): L21602. [107] Smith Jr W O, Asper V L. The influence of phytoplankton assemblage composition on biogeochemical characteristics and cycles in the southern Ross Sea, Antarctica[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2001, 48(1): 137−161. doi: 10.1016/S0967-0637(00)00045-5 [108] 于晓果, 边叶萍, 阮小燕, 等. 北冰洋沉积物中四醚脂类来源与TEX86指数初步研究[J]. 海洋地质与第四纪地质, 2015, 35(3): 11−22.Yu Xiaoguo, Bian Yeping, Ruan Xiaoyan, et al. Glycerol dialkyl glyceroltetraethers and TEX86 index in surface sediments of the Arctic ocean and the Bering sea[J], Marine Geology & Quaternary Geology, 2015, 35(3): 11−22. [109] Zhao Meixun, Mercer J L, Eglinton G, et al. Comparative molecular biomarker assessment of phytoplankton paleoproductivity for the last 160 kyr off Cap Blanc, NW Africa[J]. Organic Geochemistry, 2006, 37(1): 72−97. doi: 10.1016/j.orggeochem.2005.08.022 [110] Schubert C J, Villanueva J, Calvert S E, et al. Stable phytoplankton community structure in the Arabian Sea over the past 200, 000 years[J]. Nature, 1998, 394(6693): 563−566. doi: 10.1038/29047 [111] Hopmans E C, Weijers J W H, Schefuß E, et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids[J]. Earth and Planetary Science Letters, 2004, 224(1/2): 107−116. [112] Weijers J W H, Schouten S, Van Den Donker J C, et al. Environmental controls on bacterial tetraether membrane lipid distribution in soils[J]. Geochimica et Cosmochimica Acta, 2007, 71(3): 703−713. doi: 10.1016/j.gca.2006.10.003 [113] Kim J H, Schouten S, Hopmans E C, et al. Global sediment core-top calibration of the TEX86 paleothermometer in the ocean[J]. Geochimica et Cosmochimica Acta, 2008, 72(4): 1154−1173. (查阅网上资料, 本条文献与第102条文献重复, 请确认) [114] Shevenell A E, Ingalls A E, Domack E W, et al. Holocene Southern Ocean surface temperature variability west of the Antarctic Peninsula[J]. Nature, 2011, 470(7333): 250−254. (查阅网上资料, 本条文献与第103条文献重复, 请确认) [115] Etourneau J, Collins L G, Willmott V, et al. Holocene climate variations in the western Antarctic Peninsula: evidence for sea ice extent predominantly controlled by changes in insolation and ENSO variability[J]. Climate of the Past, 2013, 9(4): 1431−1446. (查阅网上资料, 本条文献与第105条文献重复, 请确认) [116] 傅明珠, 王宗灵, 李艳, 等. 胶州湾浮游植物初级生产力粒级结构及固碳能力研究[J]. 海洋科学进展, 2009, 27(3): 357−366. doi: 10.3969/j.issn.1671-6647.2009.03.009Fu Mingzhu, Wang Zongling, Li Yan, et al. Study on size-fraction and carbon fixation of phytoplankton primary productivity in Jiaozhou bay[J]. Advances in Marine Science, 2009, 27(3): 357−366. doi: 10.3969/j.issn.1671-6647.2009.03.009 [117] Zhao Meixun, Mercer J L, Eglinton G, et al. Comparative molecular biomarker assessment of phytoplankton paleoproductivity for the last 160 kyr off Cap Blanc, NW Africa[J]. Organic Geochemistry, 2006, 37(1): 72−97. (查阅网上资料, 本条文献与第109条文献重复, 请确认) [118] Schubert C J, Villanueva J, Calvert S E, et al. Stable phytoplankton community structure in the Arabian Sea over the past 200, 000 years[J]. Nature, 1998, 394(6693): 563−566. (查阅网上资料, 本条文献与第110条文献重复, 请确认) [119] Seki O, Ikehara M, Kawamura K, et al. Reconstruction of paleoproductivity in the Sea of Okhotsk over the last 30 kyr[J]. Paleoceanography, 2004, 19(1): PA1016. [120] Siegenthaler U, Sarmiento J L. Atmospheric carbon dioxide and the ocean[J]. Nature, 1993, 365(6442): 119−125. doi: 10.1038/365119a0 [121] Anderson R, Archer D, Bathmann U, et al. A new vision of ocean biogeochemistry after a decade of the Joint Global Ocean Flux Study(JGOFS)[R]. Berlin: Ambio(Special Report), 2001(10): 4−30. [122] Wilson J D, Barker S, Ridgwell A. Assessment of the spatial variability in particulate organic matter and mineral sinking fluxes in the ocean interior: implications for the ballast hypothesis[J]. Global Biogeochemical Cycles, 2012, 26(4): GB4011. [123] Higginson M J, Altabet M A. Initial test of the silicic acid leakage hypothesis using sedimentary biomarkers[J]. Geophyical. Reseach Letters, 2004, 31(18): L18303. (查阅网上资料, 本条文献与第12条文献重复, 请确认) [124] 黄邦钦, 胡俊, 柳欣, 等. 全球气候变化背景下浮游植物群落结构的变动及其对生物泵效率的影响[J]. 厦门大学学报(自然科学版), 2011, 50(2): 402−410.Huang Bangqin, Hu Jun, Liu Xin, et al. Review on phytoplankton community structure and its coupling with Biological carbon pump under global climate changes[J]. Journal of Xiamen University(Natural Science), 2011, 50(2): 402−410. [125] Arrigo K R, Robinson D H, Worthen D L, et al. Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean[J]. Science, 1999, 283(5400): 365−367. doi: 10.1126/science.283.5400.365 [126] Arrigo K R, Van Dijken G L. Annual changes in sea-ice, chlorophyll a, and primary production in the Ross Sea, Antarctica[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2004, 51(1/3): 117−138. (查阅网上资料, 本条文献与第56、88条文献重复, 请确认) [127] Volkman J K, Farrington J W, Gagosian R B. Marine and terrigenous lipids in coastal sediments from the Peru upwelling region at 15°S: sterols and triterpene alcohols[J]. Organic Geochemistry, 1987, 11(6): 463−477. doi: 10.1016/0146-6380(87)90003-9 [128] Barrett S M, Volkman J K, Dunstan G A, et al. Sterols of 14 species of marine diatoms(Bacillariophyta)[J]. Journal of Phycology, 1995, 31(3): 360−369. doi: 10.1111/j.0022-3646.1995.00360.x [129] Kawaguchi S, Atkinson A, Bahlburg D, et al. Climate change impacts on Antarctic krill behaviour and population dynamics[J]. Nature Reviews Earth & Environment, 2024, 5(1): 43−58. [130] Cavan E L, Belcher A, Atkinson A, et al. The importance of Antarctic krill in biogeochemical cycles[J]. Nature Communications, 2019, 10(1): 4742. doi: 10.1038/s41467-019-12668-7 [131] 黄梦雪, 王汝建, 肖文申, 等. 罗斯海西北陆架(JOIDES海槽)末次冰期以来冰架消融过程及水动力变化[J]. 海洋地质与第四纪地质, 2016, 36(5): 97−108.Huang Mengxue, Wang Rujian, Xiao Wenshen, et al. Retreat process of Ross Ice Shelf and hydrodynamic changes on northwestern Ross continental shelf since the Last Glacial[J]. Marine Geology & Quaternary Geology, 2016, 36(5): 97−108. [132] Anderson J B, Conway H, Bart P J, et al. Ross Sea paleo-ice sheet drainage and deglacial history during and since the LGM[J]. Quaternary Science Reviews, 2014, 100: 31−54. doi: 10.1016/j.quascirev.2013.08.020 [133] Domack E W, Jacobson E A, Shipp S, et al. Late Pleistocene–holocene retreat of the West Antarctic Ice-Sheet system in the Ross Sea: part 2—sedimentologic and stratigraphic signature[J]. Geological Society of America Bulletin, 1999, 111(10): 1517−1536. doi: 10.1130/0016-7606(1999)111<1517:LPHROT>2.3.CO;2 [134] Domack E W, Jacobson E A, Shipp S, et al. Late Pleistocene–holocene retreat of the West Antarctic Ice-Sheet system in the Ross Sea: part 2—sedimentologic and stratigraphic signature[J]. Geological Society of America Bulletin, 1999, 111(10): 1517−1536. (查阅网上资料, 本条文献与第133条文献重复, 请确认) [135] Bassett S E, Milne G A, Mitrovica J X, et al. Ice sheet and solid Earth influences on far-field sea-level histories[J]. Science, 2005, 309(5736): 925−928. doi: 10.1126/science.1111575 [136] Herndl G J, Reinthaler T, Teira E, et al. Contribution of Archaea to total Prokaryotic production in the deep Atlantic Ocean[J]. Applied and Environmental Microbiology, 2005, 71(5): 2303−2309. doi: 10.1128/AEM.71.5.2303-2309.2005 [137] Smith Jr W O, Ainley D G, Arrigo K R, et al. The oceanography and ecology of the Ross Sea[J]. Annual review of marine science, 2014, 6: 469−487. (查阅网上资料, 本条文献与第58条文献重复, 请确认) [138] 杨丹, 付全有, 韩正兵, 等. 南极典型海域浮游生物生产力/群落结构对BP/MCP储碳影响及其年代际变率[J]. 海洋学报, 2024, 46(5): 37−56.Yang Dan, Fu Quanyou, Han Zhengbing, et al. Effects of plankton productivity/community structure on BP/MCP carbon storage and their interdecadal variations in a typical Antarctic waters[J]. Haiyang Xuebao, 2024, 46(5): 37−56. [139] 黄邦钦, 邱勇, 陈纪新. 海洋生物泵研究的若干新进展与展望[J]. 应用海洋学学报, 2019, 38(4): 474−483. doi: 10.3969/J.ISSN.2095-4972.2019.04.003Huang Bangqin, Qiu Yong, Chen Jixin. Progress and prospects on the study of marine biological pump[J]. Journal of Applied Oceanography, 2019, 38(4): 474−483. doi: 10.3969/J.ISSN.2095-4972.2019.04.003 [140] Lampitt R S, NoJi T, Von Bodungen B. What happens to zooplankton faecal pellets? Implications for material flux[J]. Marine Biology, 1990, 104(1): 15−23. doi: 10.1007/BF01313152 [141] 李清毅, 张国民, 王新烨, 等. 微藻在蓝碳中的作用机制及影响因素[J]. 安徽农业科学, 2024, 52(3): 71−76. doi: 10.3969/j.issn.0517-6611.2024.03.017Li Qingyi, Zhang Guomin, Wang Xinye, et al. Mechanism of action and influence factor of microalgae in blue carbon[J]. Journal of Anhui Agricultural Sciences, 2024, 52(3): 71−76. doi: 10.3969/j.issn.0517-6611.2024.03.017 [142] Atkinson A, Schmidt K, Fielding S, et al. Variable food absorption by Antarctic krill: relationships between diet, egestion rate and the composition and sinking rates of their fecal pellets[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2012, 59−60: 147−158. doi: 10.1016/j.dsr2.2011.06.008 [143] 王建民, 钟巍. 晚冰期新仙女木事件的研究历史及现状[J]. 冰川冻土, 1994, 16(4): 371−379.Wang Jianmin, Zhong Wei. The research history and present situation of Younger Dryas Event in the Last Deglaciadon[J]. Journal of Glaciology and Geocryology, 1994, 16(4): 371−379. [144] 吴时国, 陆钧. 南极普里兹湾1.5万年来气候演变的沉积记录[J]. 海洋学报, 1998, 20(1): 65−73.Wu Shiguo, Lu Jun. Paleoclimatic evolution recorded in sediments of the Prydz Bay, Antarctica in 15 000 years[J]. Haiyang Xuebao, 1998, 20(1): 65−73. [145] Xiao Wenshen, Esper O, Gersonde R. Last Glacial-Holocene climate variability in the Atlantic sector of the Southern Ocean[J]. Quaternary Science Reviews, 2016, 135: 115−137. doi: 10.1016/j.quascirev.2016.01.023 [146] Jouzel J, Masson V, Cattani O, et al. A new 27 ky high resolution East Antarctic climate record[J]. Geophysical Research Letters, 2001, 28(16): 3199−3202. doi: 10.1029/2000GL012243 [147] Lamy F, De Pol-Holz R. Paleoceanography, records: Postglacial South Pacific[M]//Elisas S. The Encyclopedia of Quaternary Science. Amsterdam: Elsevier, 2013: 73−85. [148] Bond G, Showers W, Cheseby M, et al. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates[J]. Science, 1997, 278(5341): 1257−1266. doi: 10.1126/science.278.5341.1257 [149] 王宁练, 姚檀栋, Thompson L G, 等. 全新世早期强降温事件的古里雅冰芯记录证据[J]. 科学通报, 2002, 47(11): 818−823.Wang Ninglian, Yao Tandong, Thompson L G, et al. Evidence for Early Holocene Cold event from Gurya ice core records[J]. Chinese Science Bulletin, 2002, 47(11): 818−823. (查阅网上资料, 本条文献的英文翻译未查询到, 请确认) [150] 王绍武. 全新世气候变化[M]. 北京: 气象出版社, 2011.Wang Shaowu. Holocene Climate Change[M]. Beijing: China Meteorological Press, 2011. [151] 施雅风, 孔昭宸, 王苏民, 等. 中国全新世大暖期的气候波动与重要事件[J]. 中国科学 B辑, 1992, 22(12): 1300−1308.Shi Yafeng, Kong Zhaochen, Wang Sumin, et al. Climatic fluctuations and important events during the Holocene Great Warm Period in China[J]. Scientia Sinica, 1992, 22(12): 1300−1308. (查阅网上资料, 本条文献的英文翻译未查询到, 请确认) [152] Moros M, Emeis K, Risebrobakken B, et al. Sea surface temperatures and ice rafting in the Holocene North Atlantic: climate influences on northern Europe and Greenland[J]. Quaternary Science Reviews, 2004, 23(20/22): 2113−2126. [153] Magny M, Haas J N. A major widespread climatic change around 5300 cal. yr BP at the time of the alpine Iceman[J]. Journal Quaternary Science, 2004, 19(5): 423−430. doi: 10.1002/jqs.850 [154] 谢树成, 焦念志, 汪品先. 加强海洋生物碳泵地质演化的研究[J]. 科学通报, 2022, 67(15): 1579−1599.Xie Shucheng, Jiao Nianzhi, Wang Pinxian. Promoting studies on the geological evolution of marine biological carbon pumps[J]. Chinese Science Bulletin, 2022, 67(15): 1579−1599. -