留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高精度氧气三氧同位素测定方法与海洋总生产力研究应用

周君 唐策 晏茂军 胡焕婷

周君,唐策,晏茂军,等. 高精度氧气三氧同位素测定方法与海洋总生产力研究应用[J]. 海洋学报,2025,48(x):1–12
引用本文: 周君,唐策,晏茂军,等. 高精度氧气三氧同位素测定方法与海洋总生产力研究应用[J]. 海洋学报,2025,48(x):1–12
Zhou Jun,Tang Ce,Yan Maojun, et al. High-precision analytical method for triple oxygen isotopes of O2 and application to marine gross primary productivity study[J]. Haiyang Xuebao,2025, 48(x):1–12
Citation: Zhou Jun,Tang Ce,Yan Maojun, et al. High-precision analytical method for triple oxygen isotopes of O2 and application to marine gross primary productivity study[J]. Haiyang Xuebao,2025, 48(x):1–12

高精度氧气三氧同位素测定方法与海洋总生产力研究应用

基金项目: 基金项目:国家自然科学基金(42576284);上海交通大学“深蓝计划”项目(SL2021PT105)。
详细信息
    作者简介:

    周君(1995—),女,XX省XX市人,博士研究生,研究方向:海洋溶解氧同位素及氧循环 E-mail:junz923@sjtu.edu.cn

    通讯作者:

    胡焕婷,副研究员,研究方向:海洋溶解氧气及冰芯包裹气体的同位素及其气候信息。 E-mail:huanting.hu@sjtu.edu.cn

High-precision analytical method for triple oxygen isotopes of O2 and application to marine gross primary productivity study

  • 摘要: 海洋总初级生产力是衡量海洋表层浮游植物光合作用强度及生物碳汇效率的关键指标。然而,生物产氧的光合作用及耗氧的呼吸作用同时进行且难以区分,导致海洋原位总生产力的测量极度困难。溶解氧的三氧同位素异常值(17Δ)不受呼吸作用影响,为评估海洋总生产力提供新指标。自然界中17O的丰度极低且易受到N2的质量干扰,本研究突破三氧同位素(δ18O,17Δ)测量的技术瓶颈,利用气相色谱成功分离了溶解气体中的O2、Ar与N2,并确保O2的100%收集。本方法对空气标准17Δ值的长期观测精度达 ± 2.6 per meg,优于国际同类实验室。本研究测定2021年1月南大洋普里兹湾混合层内溶解氧同位素的平均17Δ值为66 per meg,计算得该海域平均总初级生产力为181 mmol O2 m−2 day−1,符合夏季高纬度南大洋总初级生产力较低的特征。本研究建立的氧气三氧同位素高精度分析方法在海洋总生产力研究方面具有极大的应用前景,同时也为大气及冰芯包裹气体等地球科学前沿研究提供技术支撑。
  • 图  1  海洋混合层的氧循环机制及其同位素分馏效应

    a.影响混合层内溶解氧17Δ值的主要过程。b. 海洋氧循环过程中17Δ的分馏示意图

    Fig.  1  Ocean mixed layer oxygen cycling and its related oxygen isotopic fractionations

    a. Oxygen production and consumption processes in ocean mixed layer; and their typical 17Δ values. b. Schematic diagram of 17Δ – [O2] fractionation during marine oxygen cycling

    图  2  气相色谱纯化管线技术路线示意图

    Fig.  2  Schematic diagram of the GC purification system

    图  3  N2,O2,Ar气相色谱分离示意图

    Fig.  3  A typical gas chromatogram of N2 and O2, Ar separation

    图  4  经过GC后N2未有效去除(a)和有效去除后(b)的质量扫描结果

    质量数28对应N2最主要的分子;32,33,34对应O2不同质量数的分子

    Fig.  4  Mass scan of gases with N2 and gases after GC purification

    Mass 28 represents the most abundant N2 molecule; mass 32, 33, 34 represent O2 isotopologues

    图  5  不同氩气含量对δ17O和δ18O的质量干扰

    a.δ17O和δO2/Ar的关系,b.δ18O和δO2/Ar的关系。图中阴影区域表示线性拟合回归线的95%置信区间。

    Fig.  5  Mass interference effect of different δO2/Ar ratios on δ17O and δ18O compositions

    (a. Relationship between δ17O and δO2/Ar, and b. relationship between δ18O and δO2/Ar. The shaded areas represent the 95% confidence interval of the linear regression line

    图  6  2021年1月南大洋普里兹湾混合层内初级生产力及相关参数的分布。17Δ(a)、GOP(b)、δO2/Ar(c)、NCP(d)

    Fig.  6  Distributions of primary productivity and related parameters in the Southern Ocean Prydz Bay mixed layer in January 2021. 17Δ(a), GOP(b),δO2/Ar(c), NCP(d)

    表  1  参考气经过GC分离管线后的δ17O、δ18O、17Δ和δO2/Ar组成及测量精度(1σ)

    Tab.  1  Isotopic composition and analytical precision (1σ) of δ17O, δ18O, 17Δ, and δO2/Ar for the reference gases after passing through the GC purification line

    GC温度/℃ 时间 次数 δ17O/‰ δ18O/‰ 17Δ/per meg δO2/Ar/‰
    40 13′00" 2 −0.013 ± 0.021 −0.028 ± 0.005 1.0 ± 18.5 −0.6 ± 0.4
    14′00" 5 0.001 ± 0.013 0.001 ± 0.021 0.7 ± 6.2 0.0 ± 0.3
    35 13′20″ 2 −0.032 ± 0.009 −0.055 ± 0.034 −2.8 ± 7.8 −1.4 ± 1.5
    14′00" 2 −0.014 ± 0.001 −0.025 ± 0.006 −0.8 ± 2.1 −1.2 ± 1.0
    14′30″ 7 −0.005 ± 0.009 0.000 ± 0.015 −4.5 ± 4.1 −1.1 ± 1.2
    下载: 导出CSV

    表  2  长时间观测空气标样的δ17O、δ18O、17Δ和δO2/Ar测量精度(1σ)

    Tab.  2  Long-term observed external precision (1σ) of δ17O, δ18O, 17Δ and δO2/Ar for air standards

    温控 测定时间 数量 δ17O/‰ δ18O/‰ 17Δ/per meg δO2/Ar/‰
    OMEGA® 2023年5月至2024年4月 33 ± 0.018 ± 0.035 ± 7.1 ± 0.6
    宇电® 2024年9月 6 ± 0.014 ± 0.027 ± 2.6 ± 0.4
    2024年11月至2025年1月 22 ± 0.016 ± 0.030 ± 3.8 ± 0.3
    2025年2月至2025年4月 18 ± 0.013 ± 0.025 ± 2.8 ± 0.3
    下载: 导出CSV

    表  3  国际上同类实验室发布的δ18O、17Δ及δO2/Ar的测量精度(1σ)

    Tab.  3  Analytical precision (1σ) of δ18O, 17Δ and δO2/Ar for air or O2 by different laboratories

    标样类型 δ18O/‰ 17Δ/per meg δO2/Ar/‰ 数据来源
    Air ± 0.025~0.032 ± 3~4 \ Yeung等[27, 56]
    Air ± 0.03 ± 6 ± 5 Jurikova等[5758]
    Air ± 0.05~0.6 ± 6~15 ± 6.4 Blunier等[51, 59]
    Pairs of samples ± 0.06~0.1 ± 9.4~11 ± 4.4~7 Bender等[24, 60]
    Equilibrium O2 ± 0.020 ± 5.6 ± 0.7 Manning等[61]
    下载: 导出CSV

    表  4  2021年1月南大洋普里兹湾采样站位的纬度、经度、δ18O、17Δ、δO2/Ar、GOP和NCP数据

    Tab.  4  Sampling information of Latitude, longitude, isotopic compositions of δ18O, 17Δ, δO2/Ar, and calculated GOP and NCP for Prydz Bay, Southern Ocean

    站位 纬度/°S 经度/°E δ18O/‰ 17Δ/per meg δO2/Ar/‰ GOP/mmol O2 m−2 day−1 NCP/mmol O2 m−2 day−1
    P1-01 −64.020 73.042 0.314 59 −134 185 −31
    P1-02 −64.508 73.020 −1.014 81 2 339 67
    P1-07 −66.677 73.130 0.402 54 −129 84 −15
    MF1 −67.582 77.367 −1.263 75 −2 175 38
    M10D −68.301 75.312 −0.626 64 −47 121 15
    下载: 导出CSV
  • [1] Cerra M C, Filice M, Caferro A, et al. Cardiac hypoxia tolerance in fish: from functional responses to cell signals[J]. International Journal of Molecular Sciences, 2023, 24(2): 1460. doi: 10.3390/ijms24021460
    [2] Yorifuji M, Hayashi M, Ono T. Interactive effects of ocean deoxygenation and acidification on a coastal fish Sillago japonica in early life stages[J]. Marine Pollution Bulletin, 2024, 198: 115896. doi: 10.1016/j.marpolbul.2023.115896
    [3] 赵枫燊, 沈延. 低氧对海洋动物影响的研究进展[J]. 水产学杂志, 2024, 37(4): 109−117.

    Zhao Fengshen, Shen Yan. A review: research progress on effects of hypoxia on marine animals[J]. Chinese Journal of Fisheries, 2024, 37(4): 109−117.
    [4] 卢勇, 李宏亮, 陈建芳, 等. 长江口及邻近海域表层水体溶解氧饱和度的季节变化和特征[J]. 海洋学研究, 2011, 29(3): 71−77.

    Lu Yong, Li Hongliang, Chen Jianfang, et al. Seasonal variations of the surface dissolved oxygen saturation in Changjiang River Estuary and its adjacent waters[J]. Journal of Marine Sciences, 2011, 29(3): 71−77.
    [5] 韦钦胜, 王保栋, 于志刚, 等. 夏季长江口外缺氧频发的机制及酸化问题初探[J]. 中国科学: 地球科学, 2017, 47(1): 114−134.

    Wei Qinsheng, Wang Baodong, Yu Zhigang, et al. Mechanisms leading to the frequent occurrences of hypoxia and a preliminary analysis of the associated acidification off the Changjiang estuary in summer[J]. Science China Earth Sciences, 2017, 60(2): 360−381.
    [6] 李瑞帆, 钟晨辉, 郑盛华, 等. 大型海藻碳汇: 固碳机理、评估方法与环境因子影响[J/OL]. 渔业研究: 1−15. https://link.cnki.net/urlid/35.1331.S.20250506.1534.004, 2025-05-07.

    Li Ruifan, Zhong Chenhui, Zheng Shenghua, et al. Mechanism, assessment methods and environmental factors influence in carbon sink of macroalgae: a review[J/OL]. Journal of Fisheries Research, 1−15. https://link.cnki.net/urlid/35.1331.S.20250506.1534.004, 2025-05-07.
    [7] Hauck J, Völker C, Wolf-Gladrow D A, et al. On the Southern Ocean CO2 uptake and the role of the biological carbon pump in the 21st century[J]. Global Biogeochemical Cycles, 2015, 29(9): 1451−1470. doi: 10.1002/2015GB005140
    [8] Volk T, Hoffert M I. Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes[M]//Sundquist E T, Broecker W S. The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. Washington: AGU, 1985: 99−110.
    [9] 卢昆, 李汉瑾, Hui Yu, 等. 中国海洋产业蓝碳源汇识别与碳汇发展潜力初探[J]. 中国海洋经济, 2024(2): 188−215.

    Lu Kun, Li Hanjin, Hui Yu, et al. Identification of blue carbon sources and sinks in China’s marine industry and the preliminary study on the development potential of carbon sequestration[J]. Marine Economy in China, 2024(2): 188−215.
    [10] Sigman D M, Hain M P. The biological productivity of the ocean[J]. Nature Education Knowledge, 2012, 3(10): 21.
    [11] Moore J K, Fu Weiwei, Primeau F, et al. Sustained climate warming drives declining marine biological productivity[J]. Science, 2018, 359(6380): 1139−1143. doi: 10.1126/science.aao6379
    [12] 宋金明. 中国近海生态系统碳循环与生物固碳[J]. 中国水产科学, 2011, 18(3): 703−711.

    Song Jinming. Carbon cycling processes and carbon fixed by organisms in China marginal seas[J]. Journal of Fishery Sciences of China, 2011, 18(3): 703−711.
    [13] 焦念志, 戴民汉, 翦知湣, 等. 海洋储碳机制及相关生物地球化学过程研究策略[J]. 科学通报, 2022, 67(15): 1600−1606. doi: 10.1360/TB-2022-0057

    Jiao Nianzhi, Dai Minhan, Jian Zhimin, et al. Research strategies for ocean carbon storage mechanisms and effects[J]. Chinese Science Bulletin, 2022, 67(15): 1600−1606. doi: 10.1360/TB-2022-0057
    [14] 黄邦钦, 刘光兴, 史大林, 等. 海洋生态系统储碳过程的多尺度调控及其对全球变化的响应研究进展[J]. 中国基础科学, 2019, 21(3): 17−23.

    Huang Bangqin, Liu Guangxing, Shi Dalin, et al. Progress of the MARCO—MARine CarbOn sequestration: multiscale regulation and response to global changes[J]. China Basic Science, 2019, 21(3): 17−23.
    [15] 裴绍峰, Laws E A, 叶思源, 等. 利用14C标记技术测定海洋初级生产力的绉议[J]. 海洋科学, 2014, 38(12): 149−156.

    Pei Shaofeng, Laws E A, Ye Siyuan, et al. Study on the discrepancy in applying 14C tracer technique to measure marine primary productivity[J]. Marine Sciences, 2014, 38(12): 149−156.
    [16] 张玉寒, 宋国栋, 张桂玲, 等. 基于18O法利用膜进样质谱仪测定海水初级生产力的方法优化及在长江口的应用[J]. 海洋与湖沼, 2024, 55(5): 1163−1171.

    Zhang Yuhan, Song Guodong, Zhang Guiling, et al. Optimization of the 18O method for determining primary productivity of seawater using membrane inlet mass spectrometry and its application in the Changjiang River estuary[J]. Oceanologia et Limnologia Sinica, 2024, 55(5): 1163−1171.
    [17] Nielsen E S. Measurement of the production of organic matter in the sea by means of carbon-14[J]. Nature, 1951, 167(4252): 684−685.
    [18] Bender M L. The δ18O of dissolved O2 in seawater: a unique tracer of circulation and respiration in the deep sea[J]. Journal of Geophysical Research: Oceans, 1990, 95(C12): 22243−22252. doi: 10.1029/JC095iC12p22243
    [19] Blondeau-Patissier D, Gower J F R, Dekker A G, et al. A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans[J]. Progress in Oceanography, 2014, 123: 123−144. doi: 10.1016/j.pocean.2013.12.008
    [20] Nicholson D, Stanley R H R, Doney S C. The triple oxygen isotope tracer of primary productivity in a dynamic ocean model[J]. Global Biogeochemical Cycles, 2014, 28(5): 538−552. doi: 10.1002/2013GB004704
    [21] Bender M L, Tilbrook B, Cassar N, et al. Ocean productivity south of Australia during spring and summer[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2016, 112: 68−78. doi: 10.1016/j.dsr.2016.02.018
    [22] 叶丰, 贾国东, 韦刚健. 海洋环境中溶解氧稳定氧同位素研究进展[J]. 海洋环境科学, 2014, 33(4): 636−642.

    Ye Feng, Jia Guodong, Wei Gangjian. Progress in oxygen isotopic composition of dissolved oxygen in marine systems[J]. Marine Environmental Science, 2014, 33(4): 636−642.
    [23] Juranek L W, Quay P D, Feely R A, et al. Biological production in the NE Pacific and its influence on air-sea CO2 flux: evidence from dissolved oxygen isotopes and O2/Ar[J]. Journal of Geophysical Research: Oceans, 2012, 117(C5): C05022.
    [24] Hendricks M B, Bender M L, Barnett B A. Net and gross O2 production in the Southern Ocean from measurements of biological O2 saturation and its triple isotope composition[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2004, 51(11): 1541−1561. doi: 10.1016/j.dsr.2004.06.006
    [25] Savarino J, Thiemens M H. Mass-independent oxygen isotope (16O, 17O, 18O) fractionation found in Hx, Ox reactions[J]. The Journal of Physical Chemistry A, 1999, 103(46): 9221−9229. doi: 10.1021/jp991221y
    [26] Angert A, Rachmilevitch S, Barkan E, et al. Effects of photorespiration, the cytochrome pathway, and the alternative pathway on the triple isotopic composition of atmospheric O2[J]. Global Biogeochemical Cycles, 2003, 17(1): 30.
    [27] Ash J L, Hu Huanting, Yeung L Y. What fractionates oxygen isotopes during respiration? Insights from multiple isotopologue measurements and theory[J]. ACS Earth and Space Chemistry, 2020, 4(1): 50−66. doi: 10.1021/acsearthspacechem.9b00230
    [28] Luz B, Barkan E. The isotopic ratios 17O/16O and 18O/16O in molecular oxygen and their significance in biogeochemistry[J]. Geochimica et Cosmochimica Acta, 2005, 69(5): 1099−1110. doi: 10.1016/j.gca.2004.09.001
    [29] Dole M, Kenks G. Isotopic composition of photosynthetic oxygen[J]. Science, 1944, 100(2601): 409. doi: 10.1126/science.100.2601.409
    [30] Kroopnick P, Craig H. Atmospheric oxygen: isotopic composition and solubility fractionation[J]. Science, 1972, 175(4017): 54−55. doi: 10.1126/science.175.4017.54
    [31] Benson B B, Krause Jr D. The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere1[J]. Limnology and Oceanography, 1984, 29(3): 620−632. doi: 10.4319/lo.1984.29.3.0620
    [32] Luz B, Barkan E. Proper estimation of marine gross O2 production with 17O/16O and 18O/16O ratios of dissolved O2[J]. Geophysical Research Letters, 2011, 38(19): L19606.
    [33] Urey H C. The thermodynamic properties of isotopic substances[J]. Journal of the Chemical Society, 1947: 562−581.
    [34] Quiñones-Rivera Z J, Wissel B, Justić D, et al. Partitioning oxygen sources and sinks in a stratified, eutrophic coastal ecosystem using stable oxygen isotopes[J]. Marine Ecology Progress Series, 2007, 342: 69−83. doi: 10.3354/meps342069
    [35] Barkan E, Luz B. High precision measurements of 17O/16O and 18O/16O ratios in H2O[J]. Rapid Communications in Mass Spectrometry, 2005, 19(24): 3737−3742. doi: 10.1002/rcm.2250
    [36] Prokopenko M G, Pauluis O M, Granger J, et al. Exact evaluation of gross photosynthetic production from the oxygen triple-isotope composition of O2: implications for the net-to-gross primary production ratios[J]. Geophysical Research Letters, 2011, 38(14): L14603.
    [37] Benson B B, Krause Jr D. The concentration and isotopic fractionation of gases dissolved in freshwater in equilibrium with the atmosphere. 1. Oxygen[J]. Limnology and Oceanography, 1980, 25(4): 662−671. doi: 10.4319/lo.1980.25.4.0662
    [38] Reuer M K, Barnett B A, Bender M L, et al. New estimates of Southern Ocean biological production rates from O2/Ar ratios and the triple isotope composition of O2[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2007, 54(6): 951−974. doi: 10.1016/j.dsr.2007.02.007
    [39] Quay P D, Emerson S, Wilbur D O, et al. The δ18O of dissolved O2 in the surface waters of the subarctic Pacific: a tracer of biological productivity[J]. Journal of Geophysical Research: Oceans, 1993, 98(C5): 8447−8458. doi: 10.1029/92JC03017
    [40] Craig H, Weiss R F. Dissolved gas saturation anomalies and excess helium in the ocean[J]. Earth and Planetary Science Letters, 1971, 10(3): 289−296. doi: 10.1016/0012-821X(71)90033-1
    [41] Craig H, Hayward T. Oxygen supersaturation in the ocean: biological versus physical contributions[J]. Science, 1987, 235(4785): 199−202. doi: 10.1126/science.235.4785.199
    [42] Spitzer W S, Jenkins W J. Rates of vertical mixing, gas exchange and new production: estimates from seasonal gas cycles in the upper ocean near Bermuda[J]. Journal of Marine Research, 1989, 47(1): 169−196. doi: 10.1357/002224089785076370
    [43] Luz B, Barkan E, Sagi Y, et al. Evaluation of community respiratory mechanisms with oxygen isotopes: a case study in Lake Kinneret[J]. Limnology and Oceanography, 2002, 47(1): 33−42. doi: 10.4319/lo.2002.47.1.0033
    [44] Luz B, Barkan E. Net and gross oxygen production from O2/Ar, 17O/16O and 18O/16O ratios[J]. Aquatic Microbial Ecology, 2009, 56: 133−145. doi: 10.3354/ame01296
    [45] Laws E A. Photosynthetic quotients, new production and net community production in the open ocean[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1991, 38(1): 143−167. doi: 10.1016/0198-0149(91)90059-O
    [46] Huang Kuan, Ducklow H, Vernet M, et al. Export production and its regulating factors in the West Antarctica Peninsula region of the Southern Ocean[J]. Global Biogeochemical Cycles, 2012, 26(2): GB2005.
    [47] Castro-Morales K, Cassar N, Shoosmith D R, et al. Biological production in the Bellingshausen Sea from oxygen-to-argon ratios and oxygen triple isotopes[J]. Biogeosciences, 2013, 10(4): 2273−2291. doi: 10.5194/bg-10-2273-2013
    [48] 王芊芊, 胡焕婷. 海洋溶解氧同位素的测量方法及其在长江口缺氧研究中的应用[J]. 环境化学, 2023, 42(3): 996−1006.

    Wang Qianqian, Hu Huanting. Oxygen isotope analysis of marine dissolved oxygen and its application to the Changjiang Estuary hypoxia[J]. Environmental Chemistry, 2023, 42(3): 996−1006.
    [49] Emerson S, Quay P D, Stump C, et al. Chemical tracers of productivity and respiration in the subtropical Pacific Ocean[J]. Journal of Geophysical Research: Oceans, 1995, 100(C8): 15873−15887. doi: 10.1029/95JC01333
    [50] Barkan E, Luz B. High-precision measurements of 17O/16O and 18O/16O of O2 and O2/Ar ratio in air[J]. Rapid Communications in Mass Spectrometry, 2003, 17(24): 2809−2814. doi: 10.1002/rcm.1267
    [51] Blunier T, Barnett B, Bender M L, et al. Biological oxygen productivity during the last 60, 000 years from triple oxygen isotope measurements[J]. Global Biogeochemical Cycles, 2002, 16(3): 3.
    [52] 张桂玲, 韩玉, 郑文静, 等. 基于O2/Ar比值估算海洋混合层群落净生产力的研究进展[J]. 中国海洋大学学报, 2020, 50(3): 1−7.

    Zhang Guiling, Han Yu, Zheng Wenjing, et al. Advances in studies of net community production based on oxygen/argon ratio[J]. Periodical of Ocean University of China, 2020, 50(3): 1−7.
    [53] Sarma V V S S, Abe O, Saino T. Spatial variations in time-integrated plankton metabolic rates in Sagami Bay using triple oxygen isotopes and O2: Ar ratios[J]. Limnology and Oceanography, 2008, 53(5): 1776−1783. doi: 10.4319/lo.2008.53.5.1776
    [54] Yang J W, Brandon M, Landais A, et al. Triple isotopic composition of atmospheric oxygen (Δ17O of O2) over 58.0-150.0, 233.2-238.1, and 445.6-796.3 ka from EPICA Dome C ice core[EB/OL]. https://scholar.archive.org/fatcat/release/rev/b34ca5a2-f66f-4ad6-a747-4222a229d633, 2022.
    [55] Blunier T, Bender M L, Barnett B, et al. Planetary fertility during the past 400 ka based on the triple isotope composition of O2 in trapped gases from the Vostok ice core[J]. Climate of the Past, 2012, 8(5): 1509−1526. doi: 10.5194/cp-8-1509-2012
    [56] Li Boda, Yeung L Y, Hu Huanting, et al. Kinetic and equilibrium fractionation of O2 isotopologues during air-water gas transfer and implications for tracing oxygen cycling in the ocean[J]. Marine Chemistry, 2019, 210: 61−71. doi: 10.1016/j.marchem.2019.02.006
    [57] Jurikova H, Guha T, Abe O, et al. Variations in triple isotope composition of dissolved oxygen and primary production in a subtropical reservoir[J]. Biogeosciences, 2016, 13(24): 6683−6698. doi: 10.5194/bg-13-6683-2016
    [58] Jurikova H, Abe O, Shiah F K, et al. New constraints on biological production and mixing processes in the South China Sea from triple isotope composition of dissolved oxygen[J]. Biogeosciences, 2022, 19(7): 2043−2058. doi: 10.5194/bg-19-2043-2022
    [59] Brandon M, Landais A, Duchamp-Alphonse S, et al. Exceptionally high biosphere productivity at the beginning of Marine Isotopic Stage 11[J]. Nature Communications, 2020, 11(1): 2112. doi: 10.1038/s41467-020-15739-2
    [60] Hendricks M B, Bender M L, Barnett B A, et al. Triple oxygen isotope composition of dissolved O2 in the equatorial Pacific: a tracer of mixing, production, and respiration[J]. Journal of Geophysical Research: Oceans, 2005, 110(C12): C12021.
    [61] Manning C C, Stanley R H R, Nicholson D P, et al. Changes in gross oxygen production, net oxygen production, and air-water gas exchange during seasonal ice melt in Whycocomagh Bay, a Canadian estuary in the Bras d'Or Lake system[J]. Biogeosciences, 2019, 16(17): 3351−3376. doi: 10.5194/bg-16-3351-2019
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  87
  • HTML全文浏览量:  44
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-08
  • 修回日期:  2025-11-04
  • 网络出版日期:  2025-11-22

目录

    /

    返回文章
    返回