Validation of Lagrangian Fluid Particle Trajectories Based on Altimeter Data
-
摘要: 卫星高度计数据提供了大范围、长期稳定的海洋流场信息,但其较低的分辨率可能影响基于该数据计算的拉格朗日流体粒子轨迹的准确性。本文采用浮标轨迹及叶绿素结构演变对比的方法,系统评估了基于高度计数据的拉格朗日流体粒子轨迹的可靠性。结果表明,该方法能较好地刻画中尺度海洋运动特征,流体粒子轨迹在整体趋势上与实际浮标轨迹匹配度较高,尤其在旋转运动模式中具有较好的跟踪能力。然而,该轨迹对中小尺度运动的敏感性较低,运动速度偏慢,难以准确捕捉短周期扰动。进一步分析发现,流体粒子轨迹在30天内能较稳定地追踪叶绿素结构的演变,表明其适用于中尺度海洋现象研究。该研究为高度计数据在拉格朗日分析中的应用提供了科学依据,并对海洋环流和生态过程的研究具有重要参考价值。Abstract: Satellite altimetry data provides large-scale, long-term stable ocean flow field information, but its low resolution may affect the accuracy of Lagrangian fluid particle trajectories calculated from it. In this study, a comparative approach using buoy trajectories and chlorophyll structure evolution was employed to systematically assess the reliability of Lagrangian fluid particle trajectories derived from altimetry data.The results indicate that this method effectively characterizes mesoscale oceanic motions, with fluid particle trajectories closely matching the overall trends of actual buoy trajectories, particularly demonstrating strong tracking capability in rotational motion patterns. However, the sensitivity of these trajectories to mesoscale and sub-mesoscale motions is relatively low, with slower movement speeds making it difficult to accurately capture short-period perturbations.Further analysis reveals that fluid particle trajectories can reliably track the evolution of chlorophyll structures over a 30-day period, suggesting their applicability in mesoscale oceanic studies. This research provides a scientific basis for the application of altimetry data in Lagrangian analysis and offers valuable insights for the study of ocean circulation and ecological processes.
-
Key words:
- Lagrangian method /
- chlorophyll structure /
- trajectory validation /
- buoy /
- altimeter data
-
图 1 图a、b、c、d分别为4个不同时间地点具有花瓣震荡过程的浮标轨迹,其中黑线为浮标轨迹,彩色线为流体粒子运动轨迹,红点为浮标数据起点,绿点为浮标数据终点
Fig. 1 Panels a、b、c, and d show the buoy trajectories exhibiting petal-like oscillations at four different times and locations. The black lines represent the buoy trajectories, the colored lines indicate the fluid particle trajectories, the red dots mark the starting points of the data, and the green dots denote the endpoints.
图 2 图a、b、c、d分别为4个不同时间地点具有螺旋状轨迹的浮标,其中黑线为浮标轨迹,彩线每一种颜色代表一个流体粒子运动轨迹,其中红色圆圈为浮标数据起点,绿色方格为浮标数据终点
Fig. 2 Panels a、b、c, and d show buoy trajectories with spiral patterns at four different times and locations. The black lines represent the buoy trajectories, while each color in the colored lines corresponds to a fluid particle trajectory. The red circles indicate the starting points of the data, and the green squares mark the endpoints.
图 3 选取的叶绿素结构及流体粒子放置位置示意图,其中图a为螺旋形,图b为整体环绕形,图c为半环绕形,且图a、b、c分别为选取的叶绿素结构的首日形态,图d、图e、图f中黄色位置为流体粒子的放置位置
Fig. 3 Schematic diagram of the selected chlorophyll structures and the placement of fluid particles. Panel a represents a spiral shape, panel b an overall surrounding shape, and panel c a semi-surrounding shape. Panels a, b, and c show the initial-day morphology of the selected chlorophyll structures, while the yellow areas in panels d, e, and f indicate the placement positions of the fluid particles.
图 6 半环绕形叶绿素结构运动过程,其中蓝色粒子为放置的流体粒子, 图a、b、c、d、e、f分别为同一例子不同时间的发展形态
Fig. 6 The movement process of the semi-surrounding chlorophyll structure. The blue particles represent the placed fluid particles. Panels (a), (b), (c), (d), (e), and (f) show the different temporal stages of the same case as it evolves.
-
[1] Haller G, Hadjighasem A, Farazmand M, et al. Defining coherent vortices objectively from the vorticity[J]. Journal of Fluid Mechanics, 2016, 795: 136−173. doi: 10.1017/jfm.2016.151 [2] Xia Qiong, Li Gaocong, Dong Changming. Global oceanic mass transport by coherent eddies[J]. Journal of Physical Oceanography, 2022, 52(6): 1111−1132. doi: 10.1175/JPO-D-21-0103.1 [3] Yuan Quanmu, Hu Jianyu. Spatiotemporal characteristics and volume transport of lagrangian eddies in the Northwest Pacific[J]. Remote Sensing, 2023, 15(17): 4355. doi: 10.3390/rs15174355 [4] Ghosh A, Suara K, Soomere T, et al. Using Lagrangian coherent structures to investigate upwelling and physical process in the Gladstone coastal region[J]. Journal of Marine Systems, 2022, 230: 103731. doi: 10.1016/j.jmarsys.2022.103731 [5] 王同宇, 张书文, 马永贵, 等. 黑潮延伸区气旋式涡旋浮游植物繁殖个例[J]. 广东海洋大学学报, 2019, 39(2): 94−103.Wang Tongyu, Zhang Shuwen, Ma Yonggui, et al. A case study of cyclonic eddy phytoplankton bloom in the Kuroshio extension[J]. Journal of Guangdong Ocean University, 2019, 39(2): 94−103. [6] 夏琼, 陈泽楷, 李高聪, 等. 基于多源数据的西北印度洋涡旋时空分布及大气响应[J]. 广东海洋大学学报, 2023, 43(1): 60−67.Xia Qiong, Chen Zekai, Li Gaocong, et al. Spatial and temporal distribution of eddies and their atmospheric responses in the Northwest Indian Ocean based on multiple datasets[J]. Journal of Guangdong Ocean University, 43(1): 60−67. [7] 夏琼, 陈泽楷, 李高聪, 等. 气候变暖下全球大洋大、中尺度过程变化[J]. 广东海洋大学学报, 2023, 43(2): 60−66. doi: 10.3969/j.issn.1673-9159.2023.02.008Xia Qiong, Chen Zekai, Li Gaocong, et al. Changes of the global oceanic large-scale and mesoscale processes under global warming[J]. Journal of Guangdong Ocean University, 2023, 43(2): 60−66. doi: 10.3969/j.issn.1673-9159.2023.02.008 [8] Olcay A B, Pottebaum T S, Krueger P S. Sensitivity of Lagrangian coherent structure identification to flow field resolution and random errors[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2010, 20(1): 017506. doi: 10.1063/1.3276062 [9] Harrison C S, Glatzmaier G A. Lagrangian coherent structures in the California Current System – sensitivities and limitations[J]. Geophysical & Astrophysical Fluid Dynamics, 2012, 106(1): 22−44. [10] Shadden S C, Lekien F, Paduan J D, et al. The correlation between surface drifters and coherent structures based on high-frequency radar data in Monterey Bay[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2009, 56(3/5): 161−172. [11] Hood R R, Beckley L E, Wiggert J D. Biogeochemical and ecological impacts of boundary currents in the Indian Ocean[J]. Progress in Oceanography, 2017, 156: 290−325. doi: 10.1016/j.pocean.2017.04.011 [12] Lakshmi R S, Chatterjee A, Prakash S, et al. Biophysical interactions in driving the summer monsoon chlorophyll bloom off the Somalia coast[J]. Journal of Geophysical Research: Oceans, 2020, 125(3): e2019JC015549. doi: 10.1029/2019JC015549 [13] Abraham E R. The generation of plankton patchiness by turbulent stirring[J]. Nature, 1998, 391(6667): 577−580. doi: 10.1038/35361 [14] Pearce A F, Griffiths R W. The mesoscale structure of the Leeuwin Current: a comparison of laboratory models and satellite imagery[J]. Journal of Geophysical Research: Oceans, 1991, 96(C9): 16739−16757. doi: 10.1029/91JC01712 [15] Yang Xiao, Xu Guangjun, Liu Yu, et al. Multi-source data analysis of mesoscale eddies and their effects on surface chlorophyll in the Bay of Bengal[J]. Remote Sensing, 2020, 12(21): 3485. doi: 10.3390/rs12213485 [16] Xu Guangjun, Dong Changming, Liu Yu, et al. Chlorophyll rings around ocean eddies in the North Pacific[J]. Scientific Reports, 2019, 9(1): 2056. doi: 10.1038/s41598-018-38457-8 [17] Nian Rui, Yuan Minghan, Zhang Zhengguang, et al. Different types of surface chlorophyll patterns of oceanic mesoscale eddies identified by AI framework[J]. Journal of Geophysical Research: Oceans, 2024, 129(9): e2024JC021176. doi: 10.1029/2024JC021176 [18] 刘婷甄, 郑少军, 严厉. 南大洋中尺度涡活动的季节变化[J]. 广东海洋大学学报, 2023, 43(2): 67−76. doi: 10.3969/j.issn.1673-9159.2023.02.009Liu Tingzhen, Zheng Shaojun, Yan Li. Seasonal variation of mesoscale eddy activity in the Southern Ocean[J]. Journal of Guangdong Ocean University, 2023, 43(2): 67−76. doi: 10.3969/j.issn.1673-9159.2023.02.009 [19] Zhang Zhengguang, Qiu Bo. Surface chlorophyll enhancement in mesoscale eddies by submesoscale spiral bands[J]. Geophysical Research Letters, 2020, 47(14): e2020GL088820. doi: 10.1029/2020GL088820 [20] Xia Qiong, Dong Changming, He Yijun, et al. Lagrangian study of several long-lived Agulhas rings[J]. Journal of Physical Oceanography, 2022, 52(6): 1049−1072. doi: 10.1175/JPO-D-21-0079.1 [21] Zheng Yuhang, Wu Wei, Wang Minyang, et al. Different trajectory patterns of ocean surface drifters modulated by near-inertial oscillations[J]. Environmental Research Letters, 2024, 19(10): 104060. doi: 10.1088/1748-9326/ad7745 -