留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

卵形鲳鲹应对流速胁迫的代谢组学分析

张静 戴佳玥 来新昊 刘旭祥 张浩 王学锋 汤保贵

张静,戴佳玥,来新昊,等. 卵形鲳鲹应对流速胁迫的代谢组学分析[J]. 海洋学报,2022,45(x):1–11
引用本文: 张静,戴佳玥,来新昊,等. 卵形鲳鲹应对流速胁迫的代谢组学分析[J]. 海洋学报,2022,45(x):1–11
Zhang Jing,Dai Jiayue,Lai Xinhao, et al. Metabolomic analysis of Trachinotus ovatus under flow velocity stress[J]. Haiyang Xuebao,2022, 45(x):1–11
Citation: Zhang Jing,Dai Jiayue,Lai Xinhao, et al. Metabolomic analysis of Trachinotus ovatus under flow velocity stress[J]. Haiyang Xuebao,2022, 45(x):1–11

卵形鲳鲹应对流速胁迫的代谢组学分析

基金项目: 国家级大学生创新创业训练计划项目(202210566002);南方海洋科学与工程广东省实验室(湛江)项目(ZJW-2019-06)。
详细信息
    作者简介:

    张静,博士,教授,主要研究方向为渔业生态与环境。E-mail:zjouzj@126.com

    戴佳玥,主要研究方向为渔业生态与环境。E-mail:daijiayue1998@163.com

    通讯作者:

    汤保贵,博士,副教授,主要研究方向为鱼类养殖与遗传育种。E-mail:zjtbg@163.com

  • 中图分类号: S917.4

Metabolomic analysis of Trachinotus ovatus under flow velocity stress

  • 摘要: 流速是深远海养殖的关键环境因子之一。为了深入解析卵形鲳鲹在流速胁迫下的分子调控机制,分别以静水环境、中等流速(54 cm/s)和高流速(90 cm/s)水流对卵形鲳鲹进行胁迫,利用LC/MS的代谢组学技术探究肝脏内源性代谢物的变化,寻找差异代谢物以及相关的代谢通路。结果表明,与静水组相比,中流速组有49种代谢产物的含量发生显著变化,富集在40条通路中,主要包括半乳糖代谢(Galactose metabolism)、糖异生(Gluconeogenesis)、不饱和脂肪酸的合成(Biosynthesis of unsaturated fatty acids)、花生四烯酸代谢(Arachidonic acid metabolism)等;高流速组有40种代谢产物的含量发生显著变化,富集在22条通路中,主要包括饱和脂肪酸的合成(Biosynthesis of unsaturated fatty acids)、泛酸和辅酶A的生物合成(Pantothenate and CoA biosynthesis)、赖氨酸降解(Lysine degradation)、花生四烯酸代谢(Arachidonic acid metabolism)、亚油酸代谢(Linoleic acid metabolism)等。与中流速组相比,高流速组有31种代谢产物含量发生显著变化,富集在12条通路中,主要包括花生四烯酸代谢(Arachidonic acid metabolism)、脂肪细胞因子信号通路(Adipocytokine signaling pathway)、半胱氨酸和蛋氨酸代谢(Cysteine and methionine metabolism)等。通路分析表明中、高流速胁迫均促进了不饱和脂肪酸代谢、花生四烯酸代谢和泛酸的合成,鱼体通过加强代谢来提高游泳能力,中流速组主要显著影响了半乳糖代谢、半胱氨酸和蛋氨酸的代谢,卵形鲳鲹此时产生了更多能量用于运动;高流速组则显著影响了L-赖氨酸、维甲酸的代谢,揭示了在面对高流速胁迫时,鱼体的游泳能力在下降,部分免疫机能触发。
  • 图  1  QC样品的PCA模型:(A)正离子模式;(B)负离子模式

    Fig.  1  PCA model of QC samples: (A) positive ion mode; (B) Negative ion mode

    图  2  QC样本PCA分析

    A. 正离子模式下A与D;B. 负离子模式A与D;C. 正离子模式下A与F;D. 负离子模式A与F;E. 正离子模式下D与F;F. 负离子模式D与F

    Fig.  2  Sample PCA analysis

    A. A and D in positive ion mode; B. A and D in negative ion mode; C. A and F in positive ion mode; D. A and F in negative ion mode; .E D and F in positive ion mode; F. D and F in negative ion mode

    图  3  OPLS-DA得分图

    A. 正离子模式下A与D;B. 负离子模式A与D;C. 正离子模式下A与F;D. 负离子模式A与F;E. 正离子模式下D与F;F. 负离子模式D与F

    Fig.  3  OPLS-DA model

    A. A and D in positive ion mode; B. A and D in negative ion mode; C. A and F in positive ion mode; D. A and F in negative ion mode; E. D and F in positive ion mode; F. D and F in negative ion mode

    图  4  差异代谢物数量统计图

    A. 正离子模式;B. 负离子模式

    Fig.  4  Statistical diagram of the number of differential metabolites

    A. Positive ion mode; B. negative ion mode

    图  5  D,F分别与A比较下差异代谢物差异韦恩图

    A. 正离子模式;B. 负离子模式

    Fig.  5  Venn diagram of different metabolites in D and F compared with A respectively

    A. Positive ion mode; B negative ion mode

    图  6  3组流速间差异代谢物聚类热图分析

    Fig.  6  Clustered heatmaps of different metabolites among three groups

    图  7  KEGG部分通路显著性气泡图:(A)A与D;(B)A与F;(C)D与F

    Fig.  7  KEGG partial pathway significance Bubble Diagram: (A) A and D; (B) A and F; (C) D and F

    表  1  代谢物鉴定结果表

    Tab.  1  Metabolite identification results

    类型共得到的peak数目二级图谱匹配到
    物质名称
    一级图谱匹配到的
    物质名称
    利用一级图谱和二级图谱
    鉴定到的物质总数目
    无法鉴定的
    物质数目
    POS正离子模式8377361018370
    NEG负离子模式76637997360
    下载: 导出CSV

    表  2  部分关键代谢物

    Tab.  2  Some key metabolites

    组别代谢物名称变化趋势VIPp
    AvsD花生四烯酸(Arachidonic acid)10.260.024 9
    棕榈酸(Palmitic acid)3.160.045 8
    泛酸(Pantothenic acid)2.280.049 9
    葡萄糖1-磷酸(Glucose 1-phosphate)1.550.035 1
    5'-S-甲基-5'-硫代腺苷(5'-S-Methyl-5'-thioadenosine)2.930.000 2
    麦芽酚(Maltol)2.130.008 5
    N-乙酰-D-半乳糖胺(N-Acetyl-D-galactosamine)1.080.017 3
    AvsF5-氧代-二十碳四烯酸(5-OxoETE)3.310.033 9
    麦芽酚(Maltol)2.410.000 7
    L-赖氨酸(L-Lysine)1.040.005 7
    硬脂酸(Stearic acid)2.170.033 6
    泛酸(Pantothenic acid)2.120.004 6
    二十二碳二烯酸酯(13Z,16Z-Docosadienoic Acid)2.100.008 0
    DvsF5-氧代-二十碳四烯酸(5-OxoETE)3.720.016 9
    5'-S-甲基-5'-硫代腺苷(5'-S-Methyl-5'-thioadenosine)2.660.001 1
    维甲酸(Tretinoin)2.080.006 0
    下载: 导出CSV
  • [1] 关于加快推进水产养殖业绿色发展的若干意见[J]. 中国水产, 2019(3): 7-10. (查阅所有网上资料, 未找到作者信息, 请核对补充)

    Some opinions on accelerating the green development of aquaculture[J]. China Fisheries, 2019(3): 7-10. (查阅所有网上资料, 未找到本条文献对应的英文翻译信息, 请作者确认)
    [2] 许晓娟, 李加儿, 区又君. 盐度对卵形鲳鲹胚胎发育和早期仔鱼的影响[J]. 南方水产, 2009, 5(6): 31−35.

    Xu Xiaojuan, Li Jiaer, Ou Youjun. Effects of salinity on embryonic development and early larvae in ovate pompano Trachinotus ovatus[J]. South China Fisheries Science, 2009, 5(6): 31−35.
    [3] 孙莘溢, 黄小林, 黄忠, 等. 卵形鲳鲹摄食、耗氧节律和胃肠排空时间的研究[J]. 南方水产科学, 2019, 15(5): 77−83. doi: 10.12131/20190072

    Sun Xinyi, Huang Xiaolin, Huang Zhong, et al. Diet feeding, oxygen consumption rhythm and gastrointestinal evacuation time of Trachinotus ovatus[J]. South China Fisheries Science, 2019, 15(5): 77−83. doi: 10.12131/20190072
    [4] 黄倩倩, 林黑着, 周传朋, 等. 卵形鲳鲹幼鱼对维生素B2的需要量[J]. 南方水产科学, 2019, 15(1): 69−76.

    Huang Qianqian, Lin Heizhao, Zhou Chuanpeng, et al. Vitamin B2 requirement of juvenile golden pompano (Trachinotus ovatus)[J]. South China Fisheries Science, 2019, 15(1): 69−76.
    [5] 刘锡强, 马学坤, 刘康, 等. 华南地区金鲳鱼养殖报告[J]. 当代水产, 2014, 39(2): 26−29. doi: 10.3969/j.issn.1674-9049.2014.02.002

    Liu Xiqiang, Ma Xuekun, Liu Kang, et al. Report on the culture of golden pompano in south China[J]. Current Fisheries, 2014, 39(2): 26−29. doi: 10.3969/j.issn.1674-9049.2014.02.002
    [6] 李丹, 林小涛, 李想, 等. 水流对杂交鲟幼鱼游泳行为的影响[J]. 淡水渔业, 2008, 38(6): 46−51. doi: 10.3969/j.issn.1000-6907.2008.06.010

    Li Dan, Lin Xiaotao, Li Xiang, et al. Effects of water current on swimming performance of juvenile hybird sturgeon (Huso duricus Georgi × Acipenser schrencki Brandt ♀)[J]. Freshwater Fisheries, 2008, 38(6): 46−51. doi: 10.3969/j.issn.1000-6907.2008.06.010
    [7] 殷名称. 鱼类生态学[M]. 北京: 中国农业出版社, 1995.

    Yin Mingcheng. Fish Ecology[M]. Beijing: China Agriculture Press, 1995.
    [8] Merino G E, Piedrahita R H, Conklin D E. The effect of fish stocking density on the growth of California halibut (Paralichthys californicus) juveniles[J]. Aquaculture, 2007, 265(1/4): 176−186.
    [9] 黄宁宇, 程起群, 高露娇, 等. 流速、温度对西伯利亚鲟幼鱼生长的影响[J]. 水产学报, 2007, 31(1): 31−37.

    Huang Ningyu, Cheng Qiqun, Gao Lujiao, et al. Effect of water current and temperature on growth of juvenile Acipenser baeri[J]. Journal of Fisheries of China, 2007, 31(1): 31−37.
    [10] 宋波澜, 林小涛, 王伟军, 等. 不同流速下红鳍银鲫趋流行为与耗氧率的变化[J]. 动物学报, 2008, 54(4): 686−694.

    Song Bolan, Lin Xiaotao, Wang Weijun, et al. Effects of water velocities on rheotaxis behaviour and oxygen consumption rate of tinfoil barbs Barbodes schwanenfeldi[J]. Current Zoology, 2008, 54(4): 686−694.
    [11] Ogata H Y, Oku H. Effects of water velocity on growth performance of juvenile Japanese flounder Paralichthys olivaceus[J]. Journal of the World Aquaculture Society, 2000, 31(2): 225−231. doi: 10.1111/j.1749-7345.2000.tb00357.x
    [12] 胡佳, 李艳华, 王鲁, 等. 不同流速下西杂鲟稚鱼生长对比研究[J]. 水产科学, 2022, 41(6): 1023−1028. doi: 10.16378/j.cnki.1003-1111.21028

    Hu Jia, Li Yanhua, Wang Lu, et al. Comparative growth of juvenile sturgeon hybrid Acipenser baerii ♀×A. schrenckii ♂ under different water velocity[J]. Fisheries Science, 2022, 41(6): 1023−1028. doi: 10.16378/j.cnki.1003-1111.21028
    [13] 朱晏苹, 曹振东, 付世建. 不同游泳速度条件下瓦氏黄颡幼鱼的有氧和无氧代谢反应[J]. 水生生物学报, 2010, 34(5): 905−912.

    Zhu Yanping, Cao Zhendong, Fu Shijian, et al. Aerobic and anaerobic metabolism in response to different swimming speed of juvenile darkbarbel catfish(Pelteobagrus Vachelli richardson)[J]. Acta Hydrobiologica Sinica, 2010, 34(5): 905−912.
    [14] Pelley J W. Fatty acid and triglyceride metabolism[M]//Pelley J W. Elsevier’s Integrated Review Biochemistry. 2nd ed. Amsterdam: Elsevier, 2012: 81-88.
    [15] 徐冬青, 陈家琦, 李静先. 力竭运动对大鼠骨骼肌自由基代谢及肌细胞膜通透性的影响[J]. 天津体育学院学报, 1999, 14(3): 27−29,33. doi: 10.13297/j.cnki.issn1005-0000.1999.03.009

    Xu Dongqing, Chen Jiaqi, Li Jingxian, et al. Effects of exhaustive exercise on free radical metabolism and cell membrane permeability in rat skeletal muscle[J]. Journal of Tianjin University of Sport, 1999, 14(3): 27−29,33. doi: 10.13297/j.cnki.issn1005-0000.1999.03.009
    [16] Litalien C, Beaulieu P. Molecular mechanisms of drug actions: from receptors to effectors[M]//Fuhrman B P, Zimmerman J J. Pediatric Critical Care. 4th ed. Amsterdam: Elsevier, 2011: 1553-1568.
    [17] 袁成凌, 姚建铭, 余增亮. 花生四烯酸及其代谢物的生物学作用[J]. 中国药物化学杂志, 2000, 10(1): 78−81. doi: 10.3969/j.issn.1005-0108.2000.01.023

    Yuan Chengling, Yao Jianming, Yu Zengliang. Synthesis of cetirizine hydrochloride[J]. Chinese Journal of Medicinal Chemistry, 2000, 10(1): 78−81. doi: 10.3969/j.issn.1005-0108.2000.01.023
    [18] O’Flaherty J T, Rogers L C, Paumi C M, et al. 5-Oxo-ETE analogs and the proliferation of cancer cells[J]. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 2005, 1736(3): 228−236. doi: 10.1016/j.bbalip.2005.08.009
    [19] Aggarwal B B, Sethi G, Nair A, et al. Nuclear factor-κb: a holy grail in cancer prevention and therapy[J]. Current Signal Transduction Therapy, 2006, 1(1): 25−52. doi: 10.2174/157436206775269235
    [20] 杨春, 李恒, 李海, 等. 5-烷基间苯二酚诱导人结直肠癌细胞凋亡的机制探讨[J]. 世界华人消化杂志, 2017, 25(29): 2621−2630. doi: 10.11569/wcjd.v25.i29.2621

    Yang Chun, Li Heng, Li Hai, et al. Mechanism study of 5-alkylresorcinols-induced colon cancer cell apoptosis in vitro[J]. World Chinese Journal of Digestology, 2017, 25(29): 2621−2630. doi: 10.11569/wcjd.v25.i29.2621
    [21] Fujinaka H, Nakamura J, Kobayashi H, et al. Glucose 1-phosphate increases active transport of calcium in intestine[J]. Archives of Biochemistry and Biophysics, 2007, 460(2): 152−160. doi: 10.1016/j.abb.2006.09.006
    [22] Aiello D P, Fu L W, Miseta A, et al. Intracellular Glucose 1-Phosphate and glucose 6-phosphate levels modulate Ca2+ homeostasis in Saccharomyces cerevisiae[J]. Journal of Biological Chemistry, 2002, 277(48): 45751−45758. doi: 10.1074/jbc.M208748200
    [23] 张金良, 任懂平. D-半乳糖胺/脂多糖诱导急性肝衰竭机制的研究进展[J]. 武警医学院学报, 2011, 20(9): 761−763,767.

    Zhang Jinliang, Ren Dongping. The recent research and development of mechanisms of D-galactosamine combined with Lipopolysaccharide induced acute liver failure[J]. Acta Academiae Medicinae CPAF, 2011, 20(9): 761−763,767.
    [24] Zappia V, Cartenì-Farina M, Cacciapuoti G, et al. Recent studies on the metabolism of 5’-methylthioadenosine[M]//Cavallini D, Gaull G E, Zappia V. Natural Sulfur Compounds: Novel Biochemical and Structural Aspects. New York: Springer, 1980: 133-148.
    [25] 张可, 王小玉, 黄淑莹, 等. 斑马鱼腺苷甲硫氨酸脱羧酶基因短片段缺失突变体的构建与鉴定[J]. 成都医学院学报, 2022, 17(4): 416−420. doi: 10.3969/j.issn.1674-2257.2022.04.002

    Zhang Ke, Wang Xiaoyu, Huang Shuying, et al. Constructionand and identification of zebrafish adenosyImethionine decarboxylase 1 short segment deletion mutant[J]. Journal of Chengdu Medical College, 2022, 17(4): 416−420. doi: 10.3969/j.issn.1674-2257.2022.04.002
    [26] 方婷婷, 刘光芒, 贾刚, 等. 多胺对动物肠道稳态的调控作用及可能机制[J]. 动物营养学报, 2016, 28(11): 3400−3407. doi: 10.3969/j.issn.1006-267x.2016.11.005

    Fang Ting, Liu Guangmang, Jia Gang, et al. Polyamines: regulation on intestinal homeostasis and possible mechanisms[J]. Chinese Journal of Animal Nutrition, 2016, 28(11): 3400−3407. doi: 10.3969/j.issn.1006-267x.2016.11.005
    [27] 田颖, 时明慧. 赖氨酸生理功能的研究进展[J]. 美食研究, 2014, 31(3): 60−64. doi: 10.3969/j.issn.1009-4717.2014.03.014

    Tian Ying, Shi Minghui. The research progress of the physiologic functions of lysine[J]. Journal of Researches on Dietetic Science and Culture, 2014, 31(3): 60−64. doi: 10.3969/j.issn.1009-4717.2014.03.014
    [28] 罗敏蓉, 熊正英. 赖氨酸与运动能力的关系[J]. 四川体育科学, 2006(3): 43−46. doi: 10.3969/j.issn.1007-6891.2006.03.013

    Luo Minrong, Xiong Zhengying. The relationship between lysine and exercise capacity[J]. Sichuan Sports Science, 2006(3): 43−46. doi: 10.3969/j.issn.1007-6891.2006.03.013
    [29] 陆志范, 周全保. 赖氨酸的药用功能[J]. 药学实践杂志, 1996(4): 255−256.

    Lu Zhifan, Zhou Quanbao. Medicinal function of lysine[J]. Journal of Pharmaceutical Practice, 1996(4): 255−256.
    [30] Combs Jr Gerald F, Mcclung J P. Chapter 15 - Pantothenic acid[M]//Combs Jr Gerald F, Mcclung J P. The Vitamins. 6th ed. Academic Press, 2022: 435-452. (查阅所有网上资料, 未找到本条文献信息, 请作者确认)
    [31] 杨延辉, 肖春玲. 泛酸的功能和生物合成[J]. 生命的化学, 2008, 28(4): 448−452. doi: 10.3969/j.issn.1000-1336.2008.04.020

    Yang Yanhui, Xiao Chunling. The functions and biosynthesis of pantothenate[J]. Chemistry of Life, 2008, 28(4): 448−452. doi: 10.3969/j.issn.1000-1336.2008.04.020
    [32] 于长青, 李丽娜. 花生四烯酸研究进展[J]. 农产品加工·学刊, 2007(4): 10−12.

    Yu Changqing, Li Lina. Research advancement on arachidonic acid[J]. Academic Periodical of Farm Products Processing, 2007(4): 10−12.
    [33] 方年富, 李弼民, 冷芳. 维甲酸的免疫调节与炎症性肠病[J]. 世界华人消化杂志, 2011, 19(27): 2857−2862.

    Fang Nianfu, Li Bimin, Leng Fang. Role of retinoic acid in immune regulation: implications in the treatment of inflammatory bowel disease[J]. World Chinese Journal of Digestology, 2011, 19(27): 2857−2862.
    [34] Evans T R J, Kaye S B. Retinoids: present role and future potential[J]. British Journal of Cancer, 1999, 80(1/2): 1−8.
    [35] Wauben-Penris P, Den Brok J, Cemeus D. Immunomodulatory effects of tretinoin: promotion of Th2 responses[J]. Immunology Letters, 1997, 56: 170−171. doi: 10.1016/S0165-2478(97)87520-7
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  77
  • HTML全文浏览量:  21
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-03
  • 修回日期:  2022-11-17
  • 网络出版日期:  2022-12-08

目录

    /

    返回文章
    返回