The study on geochemical characteristics and enrichment mechanism of deep sea REY-rich sediments in the Central Indian Ocean Basin
-
摘要: 本文对中印度洋海盆深海富稀土沉积区两根柱样GC02和GC06开展了沉积物涂片观察,X-射线衍射分析,主量、微量和稀土元素分析,以及单矿物原位微区地球化学分析等,探讨了其地球化学特征、物质来源及稀土元素(REY)的富集机制。结果表明,GC02柱状沉积物类型为钙质黏土和沸石黏土,GC06柱状沉积物类型为钙质黏土、含沸石黏土和沸石黏土。稀土元素主要在含沸石黏土和沸石黏土中富集。北美页岩标准化(NASC)配分模式指示沉积物的REY主要来源于海水,矿物学和地球化学等特征表明该地区沉积物陆源组分可能主要源于澳大利亚的风尘物质。元素相关性和CaO/P2O5比值等指示了深海富稀土沉积中REY的主要赋存矿物为生物磷灰石(鱼牙/骨等),其次为铁锰微结核。本文总结和探讨了深海富稀土沉积的形成机制,完善了深海富稀土沉积形成过程的概念模型。Abstract: In this paper, sediment smear observations, X-ray diffraction analyses, major, trace and rare earth elements analyses, and in situ micro zone geochemical analyses of single minerals were carried out on samples of core GC02 and GC06 from the rare earth-rich deep-sea sediments in the Central Indian Ocean Basin to explore their geochemical characteristics, material sources and enrichment mechanisms of rare earth elements (REY). The results show that the sediment types of core GC02 are calcareous clay and zeolitic clay, and the sediment types of core GC06 are calcareous clay, zeolite-bearing clay and zeolitic clay. Rare earth elements are enriched in zeolite-bearing clays and zeolitic clays. The North American Shale Composite (NASC) Standardized patterns of REY in the sediments indicate a possible seawater origin. Mineralogical and geochemical signatures indicate that the terrestrial fraction of these sediments in the study area should be the eolian dust material originated primarily from Australian. Elemental correlations and CaO/P2O5 ratios indicate that the main host mineral of REY in REY-rich deep-sea sediments is bioapatite (fish teeth/bone), followed by Fe-Mn micronodule. This study summarizes and discusses the formation mechanism of REY-rich sediments and improves a conceptual model for the formation process of REY-rich sediments.
-
图 1 采样位置及研究区地质背景
a. 全球主要风尘物质运输路径图(参考文献[33]);b. 样品采样点位置图。底图数据来自GEBCO(http://www.gebco.net)
Fig. 1 Sampling location and geological background of the study area
a. Major global transport routes of eolian dust (refer to reference[33]); b. schematic diagram of the sampling positions. Base map data from GEBCO (http://www.gebco.net)
图 3 GC06柱样沉积物X-射线衍射特征图
Mnt:蒙脱石;Qtz:石英;Php:钙十字沸石;Ill:伊利石;Fsp:钾长石;Pl:斜长石;Gt:针铁矿;Hal:岩盐;Ap:磷灰石;Px:辉石;Am:角闪石;Cal:方解石;Kln:高岭石;Gp:石膏
Fig. 3 X-Ray diffraction characteristics of sediment samples from GC06
Mnt: Montmorillonite; Qtz: Quartz; Php: Phillipsite; Ill: Illite; Fsp: Feldspar; Pl: Plagioclase; Gt: Goethite; Hal: Halite; Ap: Apatite; Px : Pyroxene; Am: Amphibole; Cal: Calcite; Kln: Kaolinite; Gp: Gypsum
图 6 不同类型深海沉积物的北美页岩标准化配分模式(太平洋CC区钙质软泥和西太平洋硅质软泥数据参考文献[2];北美页岩数据参考文献[37],下文相同)
Fig. 6 North American shale standardized (NASC)-normalized REY patterns for different types of deep-sea sediments (the data of calcareous ooze from the CC Zone of the Pacific Ocean and siliceous ooze from the western Pacific Ocean refer to reference [2]; NASC date refer to reference [37], the same as below)
图 8 GC02和GC06柱状沉积物及其中鱼牙CaO/P2O5−∑REY相关关系
a. 印度洋不同站位沉积物的CaO/P2O5−∑REY;b. 样品中鱼牙CaO/P2O5−∑REY。鱼牙中CaO/P2O5的范围(1.30~1.90)参考文献[53],DSDP 和ODP站位数据参考文献[24–25]
Fig. 8 Cross-plots of CaO/P2O5 versus ∑REY for sediments and fish teeth from GC02 and GC06
a. Cross-plot of CaO/P2O5 versus ∑REY for sediments from different stations in the Indian Ocean; b. cross-plot of CaO/P2O5 versus ∑REY for fish teeth in GC02 and GC06. The range of CaO/P2O5 in fish teeth (1.30−1.90) refer to reference [53], and the DSDP and ODP site data refer to references [24–25]
图 9 不同物质稀土元素含量的北美页岩标准化配分模式图对比
洋中脊玄武岩数据参考文献[54];澳大利亚风尘沉积物数据参考文献[55];孔隙水数据参考文献[56];海水数据参考文献[57];热液数据参考文献[58];北美页岩标准化数据参考文献[37]
Fig. 9 North American shale standardized-normalized rare earth elements patterns for different materials
Mid-ocean ridge basalt data refer to reference [54]; Australian wind-dust sediment data refer to reference [55]; pore water data refer to reference [56]; seawater data refer to reference [57]; hydrothermal data refer to reference [58]; NASC data refer to reference [37]
图 13 GC06柱状沉积物中微结核类型判别图
a. 底图参考文献[72],图中虚线表示混合两种成因过程的趋势,即水成作用和热液作用、水成作用和成岩作用之间存在连续体。实线箭头表示两种作用相互不影响,即只与一种作用相关;b. 底图参考文献[73]
Fig. 13 Discrimination schemes for the genetic classification of the micronodules from the sediments in GC06
Picture on a refer to reference [72], the dotted present the mixing trends between two genetic processes highlighting the continuum existing between hydrogenetic-hydrothermal crusts and hydrogenetic-diagenetic nodules, solid arrows show evolution trends of a sample set related to only one genetic process without influence of another one; picture on b refer to reference [73]
表 1 北美页岩的稀土元素平均含量[37]
Tab. 1 Average value of the rare earth elements content in the North American shale[37]
元素 La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Tm Yb Lu 含量/(mg·kg-1) 32 73 7.9 33 5.7 1.24 5.2 0.85 5.2 27 1.04 3.4 0.5 3.1 0.48 表 2 样品主量元素特征值(单位:wt%)
Tab. 2 Characteristic values of major element contents (unit: wt%)
SiO2 Al2O3 CaO TFe2O3 K2O MgO MnO Na2O P2O5 TiO2 钙质黏土 最小值 26.84 7.59 3.32 6.32 1.61 1.90 1.98 4.40 0.51 0.33 最大值 42.54 12.66 21.82 11.26 2.85 2.99 3.71 5.96 1.93 0.57 平均值 37.96 11.30 8.37 9.52 2.40 2.72 2.79 5.36 0.99 0.51 含沸石黏土 最小值 43.12 12.35 1.79 9.76 2.64 2.88 2.68 4.86 0.72 0.57 最大值 45.62 13.74 2.55 10.77 2.99 3.15 3.39 5.81 1.39 0.68 平均值 44.20 13.27 2.16 10.27 2.84 3.00 3.11 5.12 1.12 0.63 沸石黏土 最小值 40.06 11.75 2.06 10.61 2.62 2.75 3.10 4.86 0.98 0.53 最大值 43.74 13.54 3.39 12.89 3.02 3.17 3.67 6.08 2.01 0.65 平均值 41.80 13.08 2.38 11.82 2.82 3.00 3.35 5.39 1.30 0.60 表 3 样品主量元素和稀土元素总量的相关性系数
Tab. 3 Correlation coefficients between major element and ∑REY (REE and Y) contents in the sediments
SiO2 Al2O3 CaO TFe2O3 K2O MgO MnO Na2O P2O5 TiO2 ∑REY 钙质黏土 SiO2 1 Al2O3 0.994 1 CaO –0.988 –0.997 1 TFe2O3 0.847 0.886 –0.917 1 K2O 0.964 0.966 –0.983 0.936 1 MgO 0.981 0.994 –0.999 0.930 0.981 1 MnO 0.710 0.726 –0.781 0.915 0.872 0.787 1 Na2O 0.869 0.899 –0.869 0.727 0.764 0.875 0.418 1 P2O5 0.533 0.532 –0.597 0.757 0.731 0.599 0.956 0.147 1 TiO2 0.991 0.999 –0.999 0.902 0.973 0.998 0.750 0.890 0.559 1 ∑REY 0.631 0.642 –0.702 0.858 0.813 0.708 0.992 0.300 0.985 0.668 1 含沸石黏土 SiO2 1 Al2O3 0.567 1 CaO –0.847 –0.467 1 TFe2O3 –0.706 –0.295 0.694 1 K2O –0.897 –0.500 0.901 0.546 1 MgO 0.879 0.620 –0.883 –0.465 –0.926 1 MnO –0.887 –0.382 0.965 0.773 0.888 –0.839 1 Na2O 0.069 –0.398 –0.266 –0.102 –0.160 0.061 –0.361 1 P2O5 –0.888 –0.427 0.981 0.652 0.943 –0.911 0.977 –0.328 1 TiO2 0.848 0.767 –0.690 –0.482 –0.801 0.865 –0.645 –0.384 –0.699 1 ∑REY –0.882 –0.412 0.952 0.668 0.926 –0.900 0.964 –0.304 0.978 –0.710 1 沸石黏土 SiO2 1 Al2O3 0.375 1 CaO –0.451 –0.755 1 TFe2O3 –0.431 0.347 –0.502 1 K2O –0.333 0.356 –0.492 0.666 1 MgO 0.793 0.426 –0.351 –0.271 –0.513 1 MnO –0.052 0.053 –0.367 0.276 0.527 –0.197 1 Na2O –0.116 –0.010 0.192 0.170 –0.226 0.112 –0.719 1 P2O5 –0.363 –0.396 0.013 0.265 0.486 –0.541 0.779 –0.562 1 TiO2 0.766 0.620 –0.501 –0.250 –0.339 0.892 0.008 –0.211 –0.467 1 ∑REY –0.406 –0.088 –0.236 0.459 0.797 −0.658 0.793 –0.542 0.876 –0.466 1 表 4 鱼牙/骨的原位主量元素特征值(单位:wt%)
Tab. 4 Characteristic values of major element contents for fish teeth/bones (unit: wt%)
Na2O MgO Al2O3 F SiO2 P2O5 Cl K2O Min 0.56 0.08 0 0 0 32.63 0 0 Max 1.29 0.46 0.29 4.27 0.73 41.02 0.09 0.04 Ave 0.90 0.26 0.04 2.64 0.03 37.88 0.03 0.01 CaO SO3 CoO TiO2 CuO MnO FeO NiO Min 42.42 0.08 0 0 0 0 0 0 Max 52.66 1.31 0.19 0.10 0.19 0.08 2.26 0.06 Ave 46.91 0.52 0.03 0.01 0.03 0.01 0.09 0.01 表 5 鱼牙/骨的原位稀土元素特征值(单位:mg/kg)
Tab. 5 Characteristic values of rare earth element contents for fish teeth/bones (unit: mg/kg)
La Ce Pr Nd Sm Eu Gd Tb Min 65.88 3.39 18.65 81.97 17.05 4.75 25.86 3.86 Max 3 313.65 904.16 1 038.16 4 765.49 1 275.60 300.89 1 627.31 250.79 Ave 1 016.35 207.46 270.77 1 172.90 289.57 73.65 381.27 60.89 Dy Y Ho Er Tm Yb Lu REY Min 25.34 184.90 5.90 16.00 2.25 14.07 2.88 480.55 Max 1 586.88 10 069.98 331.56 959.10 140.98 829.39 170.17 27 225.97 Ave 401.24 2817.15 87.23 261.20 39.88 243.94 45.29 7 368.81 表 6 微结核的原位主量元素特征值(单位:wt%)
Tab. 6 Characteristic values of major element contents for micronodules (unit: wt%)
Na2O MgO Al2O3 F SiO2 P2O5 Cl K2O Min 0 0.67 0.43 0 1.06 0 0.01 0 Max 0.39 6.26 13.00 0.45 22.10 1.64 0.13 1.68 Ave 0.13 1.70 1.97 0.10 4.53 0.30 0.06 0.12 CaO SO3 CoO TiO2 CuO MnO FeO NiO Min 1.72 0 0 0.05 0.10 25.82 0.61 0.15 Max 4.29 0.51 2.10 2.37 2.34 55.85 23.01 2.46 Ave 3.19 0.30 1.02 1.01 0.54 40.24 13.16 0.65 表 7 微结核的原位稀土元素特征值(单位:mg/kg)
Tab. 7 Characteristic values of rare earth element contents for micronodules (unit: mg/kg)
La Ce Pr Nd Sm Eu Gd Tb Min 17.36 100.21 4.63 17.28 3.57 0.79 3.84 0.49 Max 151.85 1 833.82 36.26 156.72 36.03 8.44 42.79 4.67 Ave 71.11 1 118.55 13.09 48.74 10.63 2.64 12.10 1.78 Dy Y Ho Er Tm Yb Lu REY Min 3.46 9.17 0.76 2.07 0.25 1.59 0.27 177.31 Max 34.42 151.07 5.97 19.00 2.23 13.10 2.10 2 109.70 Ave 10.85 42.16 2.16 6.31 0.98 6.53 0.97 1 348.61 表 8 GC02和GC06柱状沉积物判别函数(DF)计算(Al/Ti)
Tab. 8 Discriminant function (DF) calculation for sediments in GC02 and GC06 (Al/Ti)
-
[1] Kato Y, Fujinaga K, Nakamura K, et al. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements[J]. Nature Geoscience, 2011, 4(8): 535−539. doi: 10.1038/ngeo1185 [2] 黄牧. 太平洋深海沉积物稀土元素地球化学特征及资源潜力初步研究[D]. 青岛: 国家海洋局第一海洋研究所, 2013.Huang Mu. Preliminary study on geochemical characteristics and resource potential of rare earth elements in Pacific deep-sea sediments[D]. Qingdao: The First Institute of Oceanography, State Oceanic Administration, 2013. [3] 黄牧, 刘季花, 石学法, 等. 东太平洋CC区沉积物稀土元素特征及物源[J]. 海洋科学进展, 2014, 32(2): 175−187. doi: 10.3969/j.issn.1671-6647.2014.02.007Huang Mu, Liu Jihua, Shi Xuefa, et al. Geochemical characteristics and material sources of rare earth elements in sediments from the CC area in the eastern Pacific Ocean[J]. Advances in Marine Science, 2014, 32(2): 175−187. doi: 10.3969/j.issn.1671-6647.2014.02.007 [4] 黄牧, 石学法, 刘季花, 等. 太平洋表层沉积物中δCe特征探讨[J]. 矿物学报, 2015(S1): 762−763.Huang Mu, Shi Xuefa, Liu Jihua, et al. The characteristics of δCe in Pacific surface sediments[J]. Acta Mineralogica Sinica, 2015(S1): 762−763. [5] 黄牧, 石学法, 毕东杰, 等. 深海稀土资源勘查开发研究进展[J]. 中国有色金属学报, 2021, 31(10): 2665−2681. doi: 10.11817/j.ysxb.1004.0609.2021-37993Huang Mu, Shi Xuefa, Bi Dongjie, et al. Advances on study of exploration and development of deep-sea rare earth resources[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(10): 2665−2681. doi: 10.11817/j.ysxb.1004.0609.2021-37993 [6] 张霄宇, 邓涵, 张富元, 等. 西太平洋海山区深海软泥中稀土元素富集的地球化学特征[J]. 中国稀土学报, 2013, 31(6): 729−737. doi: 10.11785/S1000-4343.20130614Zhang Xiaoyu, Deng Han, Zhang Fuyuan, et al. Enrichment and geochemical characteristics of rare earth elements in deep-sea mud from seamount area of western Pacific[J]. Journal of the Chinese Society of Rare Earths, 2013, 31(6): 729−737. doi: 10.11785/S1000-4343.20130614 [7] 任江波, 姚会强, 傅飘儿, 等. 深海富稀土泥的发现及其成矿规律[J]. 矿床地质, 2014, 33(S1): 123−124.Ren Jiangbo, Yao Huiqiang, Fu Piaoer, et al. Discovery and metallogenic regularity of rare earth-rich mud in deep sea[J]. Mineral Deposits, 2014, 33(S1): 123−124. [8] 朱克超, 任江波, 王海峰. 太平洋中部富REY深海沉积物的地球化学特征及化学分类[J]. 地球学报, 2016, 37(3): 287−293. doi: 10.3975/cagsb.2016.03.04Zhu Kechao, Ren Jiangbo, Wang Haifeng. Geochemical characteristics and chemical classification of REY-rich pelagic sediments from the Central Pacific Ocean[J]. Acta Geoscientia Sinica, 2016, 37(3): 287−293. doi: 10.3975/cagsb.2016.03.04 [9] 王汾连. 太平洋深海粘土的REE和Nd同位素特征及物源意义[J]. 地质论评, 2017, 63(S1): 201−202.Wang Fenlian. The characteristics of REE and Nd isotopes and their provenance significance of the pelagic sediments from the Pacific Ocean[J]. Geological Review, 2017, 63(S1): 201−202. [10] Zhou T, Shi X, Huang M, et al. Genesis of REY-rich deep-sea sediments in the Tiki Basin, eastern South Pacific Ocean: Evidence from geochemistry, mineralogy and isotope systematics[J]. Ore Geology Reviews, 2021, 138: 104330. doi: 10.1016/j.oregeorev.2021.104330 [11] Bi Dongjie, Shi Xuefa, Huang Mu, et al. Geochemical and mineralogical characteristics of deep-sea sediments from the western North Pacific Ocean: constraints on the enrichment processes of rare earth elements[J]. Ore Geology Reviews, 2021, 138: 104318. doi: 10.1016/j.oregeorev.2021.104318 [12] 黄大松, 张霄宇. 中印度洋洋盆深海沉积泥的稀土元素载体和来源[J]. 矿物学报, 2015, 35(S1): 761.Huang Dasong, Zhang Xiaoyu. Rare earth element carriers and sources of deep-sea sedimentary mud in the Central Indian Ocean Basin[J]. Acta Mineralogica Sinica, 2015, 35(S1): 761. [13] 朱克超, 任江波, 王海峰, 等. 太平洋中部富REY深海粘土的地球化学特征及REY富集机制[J]. 地球科学−中国地质大学学报, 2015, 40(6): 1052−1060. doi: 10.3799/dqkx.2015.087Zhu Kechao, Ren Jiangbo, Wang Haifeng, et al. Enrichment mechanism of REY and geochemical characteristics of REY-rich pelagic clay from the central Pacific[J]. Earth Science-Journal of China University of Geosciences, 2015, 40(6): 1052−1060. doi: 10.3799/dqkx.2015.087 [14] 王汾连, 何高文, 孙晓明, 等. 太平洋富稀土深海沉积物中稀土元素赋存载体研究[J]. 岩石学报, 2016, 32(7): 2057−2068.Wang Fenlian, He Gaowen, Sun Xiaoming, et al. The host of REE+Y elements in deep-sea sediments from the Pacific Ocean[J]. Acta Petrologica Sinica, 2016, 32(7): 2057−2068. [15] 王汾连, 何高文, 王海峰, 等. 马里亚纳海沟柱状沉积物稀土地球化学特征及其指示意义[J]. 海洋地质与第四纪地质, 2016, 36(4): 67−75.Wang Fenlian, He Gaowen, Wang Haifeng, et al. Geochemistry of rare earth elements in a core from Mariana Trench and its significance[J]. Marine Geology & Quaternary Geology, 2016, 36(4): 67−75. [16] 王汾连, 何高文, 姚会强, 等. 深海沉积物中的稀土矿产资源研究进展[J]. 中国地质, 2017, 44(3): 449−459. doi: 10.12029/gc20170304Wang Fenlian, He Gaowen, Yao Huiqiang, et al. The progress in the study of REE-rich deep-sea sediments[J]. Geology in China, 2017, 44(3): 449−459. doi: 10.12029/gc20170304 [17] 石学法, 毕东杰, 黄牧, 等. 深海稀土分布规律与成矿作用[J]. 地质通报, 2021, 40(2/3): 195−208.Shi Xuefa, Bi Dongjie, Huang Mu, et al. Distribution and metallogenesis of deep-sea rare earth elements[J]. Geological Bulletin of China, 2021, 40(2/3): 195−208. [18] 方明山, 石学法, 肖仪武, 等. 太平洋深海沉积物中稀土矿物的分布特征研究[J]. 矿冶, 2016, 25(5): 81−84. doi: 10.3969/j.issn.1005-7854.2016.05.019Fang Mingshan, Shi Xuefa, Xiao Yiwu, et al. Research on distribution characteristics of rare earth mineral of deep sea sediments in the Pacific Ocean[J]. Mining and Metallurgy, 2016, 25(5): 81−84. doi: 10.3969/j.issn.1005-7854.2016.05.019 [19] Sa Rina, Sun Xiaoming, He Gaowen, et al. Enrichment of rare earth elements in siliceous sediments under slow deposition: a case study of the central North Pacific[J]. Ore Geology Reviews, 2018, 94: 12−23. doi: 10.1016/j.oregeorev.2018.01.019 [20] Liao Jianlin, Sun Xiaoming, Wu Zhongwei, et al. Fe-Mn (oxyhydr) oxides as an indicator of REY enrichment in deep-sea sediments from the central North Pacific[J]. Ore Geology Reviews, 2019, 112: 103044. doi: 10.1016/j.oregeorev.2019.103044 [21] 尹延鸿, 孙嘉诗, 侯贵卿, 等. 东太平洋573孔始新世末渐新世初地层特征及稀土元素地球化学[J]. 吉林大学学报(地球科学版), 2002, 32(1): 29−33.Yin Yanhong, Sun Jiashi, Hou Guiqing, et al. The characteristics and REEs geochemistry in the strata from late Eocene to early Oligocene in Site 573, the eastern Pacific[J]. Journal of Jilin University (Earth Science Edition), 2002, 32(1): 29−33. [22] 刘季花. 太平洋东部深海沉积物稀土元素地球化学[J]. 海洋地质与第四纪地质, 1992, 12(2): 33−42.Liu Jihua. Geochemistry of REE of deep sea sediments in the East Pacific Ocean[J]. Marine Geology & Quaternary Geology, 1992, 12(2): 33−42. [23] Liao Jianlin, Sun Xiaoming, Li Dengfeng, et al. New insights into nanostructure and geochemistry of bioapatite in REE-rich deep-sea sediments: LA-ICP-MS, TEM, and Z-contrast imaging studies[J]. Chemical Geology, 2019, 512: 58−68. doi: 10.1016/j.chemgeo.2019.02.039 [24] Yasukawa K, Liu Hanjie, Fujinaga K, et al. Geochemistry and mineralogy of REY-rich mud in the eastern Indian Ocean[J]. Journal of Asian Earth Sciences, 2014, 93: 25−36. doi: 10.1016/j.jseaes.2014.07.005 [25] Yasukawa K, Nakamura K, Fujinaga K, et al. Rare-earth, major, and trace element geochemistry of deep-sea sediments in the Indian Ocean: implications for the potential distribution of REY-rich mud in the Indian Ocean[J]. Geochemical Journal, 2015, 49(6): 621−635. doi: 10.2343/geochemj.2.0361 [26] Das P, Iyer S D, Hazra S. Petrological characteristics and genesis of the Central Indian Ocean Basin basalts[J]. Acta Geologica Sinica, 2012, 86(5): 1154−1170. doi: 10.1111/j.1755-6724.2012.00738.x [27] Dutkiewicz A, Müller R D, O’Callaghan S, et al. Census of seafloor sediments in the world’s ocean[J]. Geology, 2015, 43(9): 795−798. doi: 10.1130/G36883.1 [28] Nath B N, Roelandts I, Sudhakar M, et al. Rare earth element patterns of the Central Indian Basin sediments related to their lithology[J]. Geophysical Research Letters, 1992, 19(12): 1197−1200. doi: 10.1029/92GL01243 [29] Mudholkar A V, Pattan J N, Parthiban G. Geochemistry of deep-sea sediment cores from the Central Indian Ocean Basin[J]. Indian Journal of Marine Sciences, 1993, 22(4): 241−246. [30] Jauhari P, Iyer S D. A comprehensive view of manganese nodules and volcanics of the Central Indian Ocean Basin[J]. Marine Georesources & Geotechnology, 2008, 26(4): 231−258. [31] Borole D V. Late pleistocene sedimentation: a case study of the central Indian Ocean Basin[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 1993, 40(4): 761−775. doi: 10.1016/0967-0637(93)90070-J [32] Schott F A, McCreary Jr J P. The monsoon circulation of the Indian Ocean[J]. Progress in Oceanography, 2001, 51(1): 1−123. doi: 10.1016/S0079-6611(01)00083-0 [33] Maher B A, Prospero J M, Mackie D, et al. Global connections between Aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum[J]. Earth-Science Reviews, 2010, 99(1/2): 61−97. [34] Rothwell R G. Minerals and Mineraloids in Marine Sediments: An Optical Identification Guide[M]. Dordrecht: Springer, 1989. [35] Biscaye P E. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans[J]. GSA Bulletin, 1965, 76(7): 803−832. doi: 10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2 [36] Gao Jingjing, Liu Jihua, Li Xianguo, et al. The determination of 52 elements in marine geological samples by an inductively coupled plasma optical emission spectrometry and an inductively coupled plasma mass spectrometry with a high-pressure closed digestion method[J]. Acta Oceanologica Sinica, 2017, 36(1): 109−117. doi: 10.1007/s13131-017-0991-5 [37] Gromet L P, Haskin L A, Korotev R L, et al. The “North American shale composite”: its compilation, major and trace element characteristics[J]. Geochimica et Cosmochimica Acta, 1984, 48(12): 2469−2482. doi: 10.1016/0016-7037(84)90298-9 [38] Boskey A L. Mineralization of bones and teeth[J]. Elements, 2007, 3(6): 385−391. doi: 10.2113/GSELEMENTS.3.6.385 [39] 刘季花. 判别海洋沉积物物质来源的几种地球化学标志[J]. 海洋地质动态, 1994(1): 1−3.Liu Jihua. Several geochemical signatures to distinguish the origin of marine sediment materials[J]. Marine Geology Frontiers, 1994(1): 1−3. [40] 刘季花. 东太平洋沉积物稀土元素和Nd同位素地球化学特征及其环境指示意义[D]. 青岛: 中国科学院海洋研究所, 2004: 1−100.Liu Jihua. The geochemistry of REEs and Nd isotope in deep-sea sediments from the eastern Pacific and their geological implications[D]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences, 2004: 1−100. [41] Chamley H. Clay Sedimentology[M]. Berlin: Springer, 1989: 269−280. [42] 邱忠荣, 马维林, 张霄宇, 等. 西北太平洋表层沉积物地球化学特征及其物源指示意义[J]. 浙江大学学报(理学版), 2020, 47(3): 345−354, 369.Qiu Zhongrong, Ma Weilin, Zhang Xiaoyu, et al. Geochemical characteristics of surface sediments in Northwest Pacific and their indication of material sources[J]. Journal of Zhejiang University (Science Edition), 2020, 47(3): 345−354, 369. [43] 李双林, 李绍全. 黄海YA01孔沉积物稀土元素组成与源区示踪[J]. 海洋地质与第四纪地质, 2001, 21(3): 51−56.Li Shuanglin, Li Shaoquan. REE composition and source tracing of sediments from core YA01 in Yellow Sea[J]. Marine Geology & Quaternary Geology, 2001, 21(3): 51−56. [44] Hovan S A, Rea D K. The Cenozoic record of continental mineral deposition on Broken and Ninetyeast Ridges, Indian Ocean: southern African aridity and sediment delivery from the Himalayas[J]. Paleoceanography, 1992, 7(6): 833−860. doi: 10.1029/92PA02176 [45] 于淼, 石学法, 李传顺, 等. 中印度洋海盆富稀土沉积物物质来源[C]//中国矿物岩石地球化学学会第17届学术年会论文集. 杭州: 中国矿物岩石地球化学学会, 2019.Yu Miao, Shi Xuefa, Li Chuanshun, et al. Sources of rare earth-rich sediments in the central Indian Ocean Basin[C]//Abstracts of the 17th Annual Academic Conference of the Chinese Society of Mineralogy, Petrology and Geochemistry. Hangzhou: CSMPG, 2019. [46] Ringrose S, Harris C, Huntsman-Mapila P, et al. Origins of strandline duricrusts around the Makgadikgadi Pans (Botswana Kalahari) as deduced from their chemical and isotope composition[J]. Sedimentary Geology, 2009, 219(1/4): 262−279. [47] Douglas G B, Hart B T, Beckett R, et al. Geochemistry of suspended particulate matter (SPM) in the Murray-Darling River system: a conceptual isotopic/geochemical model for the fractionation of major, trace and rare earth elements[J]. Aquatic Geochemistry, 1999, 5(2): 167−194. doi: 10.1023/A:1009632310689 [48] Emmel F J, Curray J R. The Bengal submarine fan, northeastern Indian Ocean[J]. Geo-Marine Letters, 1983, 3(2/4): 119−124. [49] Kon Y, Hoshino M, Sanematsu K, et al. Geochemical characteristics of apatite in heavy REE-rich deep-sea mud from Minami-Torishima Area, Southeastern Japan[J]. Resource Geology, 2014, 64(1): 47−57. doi: 10.1111/rge.12026 [50] Yu Miao, Shi Xuefa, Huang Mu, et al. The transfer of rare earth elements during early diagenesis in REY-rich sediments: an example from the Central Indian Ocean Basin[J]. Ore Geology Reviews, 2021, 136: 104269. doi: 10.1016/j.oregeorev.2021.104269 [51] 张霄宇, 黄牧, 石学法, 等. 中印度洋洋盆GC11岩心富稀土深海沉积的元素地球化学特征[J]. 海洋学报, 2019, 41(12): 51−61.Zhang Xiaoyu, Huang Mu, Shi Xuefa, et al. The geochemical characteristics of rare earth elements rich deep sea deposit of Core GC11 in central Indian Ocean Basin[J]. Haiyang Xuebao, 2019, 41(12): 51−61. [52] Sha L K, Chappell B W. Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis[J]. Geochimica et Cosmochimica Acta, 1999, 63(22): 3861−3881. doi: 10.1016/S0016-7037(99)00210-0 [53] Nemliher J G, Baturin G N, Kallaste T E, et al. Transformation of hydroxyapatite of bone phosphate from the ocean bottom during fossilization[J]. Lithology and Mineral Resources, 2004, 39(5): 468−479. doi: 10.1023/B:LIMI.0000040736.62014.2d [54] Nakamura K, Kato Y, Tamaki K, et al. Geochemistry of hydrothermally altered basaltic rocks from the Southwest Indian Ridge near the Rodriguez Triple Junction[J]. Marine Geology, 2007, 239(3/4): 125−141. [55] Marx S K, Kamber B S. Trace-element systematics of sediments in the Murray-Darling Basin, Australia: sediment provenance and palaeoclimate implications of fine scale chemical heterogeneity[J]. Applied Geochemistry, 2010, 25(8): 1221−1237. doi: 10.1016/j.apgeochem.2010.05.007 [56] Abbott A N, Haley B A, McManus J, et al. The sedimentary flux of dissolved rare earth elements to the ocean[J]. Geochimica et Cosmochimica Acta, 2015, 154: 186−200. doi: 10.1016/j.gca.2015.01.010 [57] Nozaki Y, Alibo D S. Importance of vertical geochemical processes in controlling the oceanic profiles of dissolved rare earth elements in the northeastern Indian Ocean[J]. Earth and Planetary Science Letters, 2003, 205(3/4): 155−172. [58] Hongo Y, Obata H, Gamo T, et al. Rare earth elements in the hydrothermal system at Okinawa Trough back-arc basin[J]. Geochemical Journal, 2007, 41(1): 1−15. doi: 10.2343/geochemj.41.1 [59] Zhang J, Amakawa H, Nozaki Y. The comparative behaviors of yttrium and lanthanides in the seawater of the North Pacific[J]. Geophysical Research Letters, 1994, 21(24): 2677−2680. doi: 10.1029/94GL02404 [60] Nozaki Y, Zhang J, Amakawa H. The fractionation between Y and Ho in the marine environment[J]. Earth and Planetary Science Letters, 1997, 148(1/2): 329−340. [61] Bau M, Möller P, Dulski P. Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox-cycling[J]. Marine Chemistry, 1997, 56(1/2): 123−131. [62] Webb G E, Kamber B S. Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy[J]. Geochimica et Cosmochimica Acta, 2000, 64(9): 1557−1565. doi: 10.1016/S0016-7037(99)00400-7 [63] McLennan S M. Relationships between the trace element composition of sedimentary rocks and upper continental crust[J]. Geochemistry, Geophysics, Geosystems, 2001, 2(4): 2000GC000109. [64] Elderfield H, Pagett R. Rare earth elements in ichthyoliths: variations with redox conditions and depositional environment[J]. Science of the Total Environment, 1986, 49: 175−197. doi: 10.1016/0048-9697(86)90239-1 [65] Grandjean P, Cappetta H, Michard A, et al. The assessment of REE patterns and 143Nd/144Nd ratios in fish remains[J]. Earth and Planetary Science Letters, 1987, 84(2/3): 181−196. [66] Chen Jianbo, Algeo T J, Zhao Laishi, et al. Diagenetic uptake of rare earth elements by Bioapatite, with an example from Lower Triassic conodonts of South China[J]. Earth-Science Reviews, 2015, 149: 181−202. doi: 10.1016/j.earscirev.2015.01.013 [67] Manceau A, Lanson M, Takahashi Y. Mineralogy and crystal chemistry of Mn, Fe, Co, Ni, and Cu in a deep-sea Pacific polymetallic nodule[J]. American Mineralogist, 2014, 99(10): 2068−2083. doi: 10.2138/am-2014-4742 [68] Atkins A L, Shaw S, Peacock C L. Nucleation and growth of todorokite from birnessite: implications for trace-metal cycling in marine sediments[J]. Geochimica et Cosmochimica Acta, 2014, 144: 109−125. doi: 10.1016/j.gca.2014.08.014 [69] Atkins A L, Shaw S, Peacock C L. Release of Ni from birnessite during transformation of birnessite to todorokite: implications for Ni cycling in marine sediments[J]. Geochimica et Cosmochimica Acta, 2016, 189: 158−183. doi: 10.1016/j.gca.2016.06.007 [70] Liu Yuwei, Li Yan, Chen Ning, et al. Cu(II) sorption by biogenic birnessite produced by Pseudomonas putida strain MnB1: structural differences from abiotic birnessite and its environmental implications[J]. CrystEngComm, 2018, 20(10): 1361−1374. doi: 10.1039/C7CE02168B [71] Li Dengfeng, Fu Yu, Liu Qiaofen, et al. High-resolution LA-ICP-MS mapping of deep-sea polymetallic micronodules and its implications on element mobility[J]. Gondwana Research, 2020, 81: 461−474. doi: 10.1016/j.gr.2019.12.009 [72] Josso P, Pelleter E, Pourret O, et al. A new discrimination scheme for oceanic ferromanganese deposits using high field strength and rare earth elements[J]. Ore Geology Reviews, 2017, 87: 3−15. doi: 10.1016/j.oregeorev.2016.09.003 [73] Bonatti E, Kraemer T F, Rydell H. Classification and genesis of submarine iron-manganese deposits[C]//Ferromanganese Deposits on the sea Floor. New York: Arden House, 1972. [74] Ohta J, Yasukawa K, Machida S, et al. Geological factors responsible for REY-rich mud in the western North Pacific Ocean: implications from mineralogy and grain size distributions[J]. Geochemical Journal, 2016, 50(6): 591−603. doi: 10.2343/geochemj.2.0435 [75] Takaya Y, Yasukawa K, Kawasaki T, et al. The tremendous potential of deep-sea mud as a source of rare-earth elements[J]. Scientific Reports, 2018, 8(1): 5763. doi: 10.1038/s41598-018-23948-5 [76] Tanaka E, Nakamura K, Yasukawa K, et al. Chemostratigraphy of deep-sea sediments in the western North Pacific Ocean: implications for genesis of mud highly enriched in rare-earth elements and yttrium[J]. Ore Geology Reviews, 2020, 119: 103392. doi: 10.1016/j.oregeorev.2020.103392 [77] 邓义楠, 任江波, 郭庆军, 等. 太平洋西部富稀土深海沉积物的地球化学特征及其指示意义[J]. 岩石学报, 2018, 34(3): 733−747.Deng Yi’nan, Ren Jiangbo, Guo Qingjun, et al. Geochemistry characteristics of REY-rich sediment from deep sea in western Pacific, and their indicative significance[J]. Acta Petrologica Sinica, 2018, 34(3): 733−747. [78] Van Andel T H. Mesozoic/Cenozoic calcite compensation depth and the global distribution of calcareous sediments[J]. Earth and Planetary Science Letters, 1975, 26(2): 187−194. doi: 10.1016/0012-821X(75)90086-2