留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Sentinel-2的香港近海浊度遥感监测研究

孟仟 黄珏

孟仟,黄珏. 基于Sentinel-2的香港近海浊度遥感监测研究[J]. 海洋学报,2025,47(x):1–13
引用本文: 孟仟,黄珏. 基于Sentinel-2的香港近海浊度遥感监测研究[J]. 海洋学报,2025,47(x):1–13
Meng Qian,Huang Jue. A Study on Remote Sensing Monitoring of Nearshore Turbidity in Hong Kong Based on Sentinel-2[J]. Haiyang Xuebao,2025, 47(x):1–13
Citation: Meng Qian,Huang Jue. A Study on Remote Sensing Monitoring of Nearshore Turbidity in Hong Kong Based on Sentinel-2[J]. Haiyang Xuebao,2025, 47(x):1–13

基于Sentinel-2的香港近海浊度遥感监测研究

基金项目: 国家自然科学基金(42076185)。
详细信息
    作者简介:

    孟仟(2001—),女,山东泰安人,研究方向为水色遥感。E-mail:mengqian@sdust.edu.cn

    通讯作者:

    黄珏,女,湖南韶山人,教授,研究方向为水环境遥感。E-mail:huangjue@sdust.edu.cn

A Study on Remote Sensing Monitoring of Nearshore Turbidity in Hong Kong Based on Sentinel-2

  • 摘要: 浊度是评估水质状况的可靠指标之一,通过浊度监测能够有效反映水体健康状况,保障生态系统的可持续发展和水资源的安全利用。本文利用2016-2023年的Sentinel-2 MSI影像,通过构建遥感定量反演模型,分析8年间香港近海浊度的时空分布特征和变化规律,并探究其主要影响因素。对比传统经验模型、随机森林(RF)模型、梯度提升决策树(GBDT)模型、K最近邻(KNN)模型,基于RF的浊度反演模型精度最高(R2=0.71,RMSE=1.77 NTU,MAE=1.44 NTU)。结果表明,年均水体浊度的变化范围为4.02-4.16 NTU,近8年呈波动下降趋势(−0.0243 NTU/a),且空间分布呈西北高东南低的特点;季均水体浊度从高到低依次为冬季(4.54 NTU)、秋季(4.03 NTU)、春季(3.86 NTU)、夏季(3.76 NTU)。本文利用气象数据及香港地区的污水处理投资数据,从自然环境和人类活动两方面分析影响浊度时空分布的因素。香港近海水体浊度与入海径流量、气温呈负相关关系,并受到香港污水处理这一人为因素的影响,此外热带气旋活动期内的降水量和风速与水体浊度变化显著相关。
  • 图  1  研究区域及监测站点示意图

    Fig.  1  Study area and schematic diagram of monitoring stations

    图  2  验证数据集反演模型性能比较

    Fig.  2  Comparison of inversion model performance for validation dataset

    图  3  2016−2023年研究区域浊度年均变化

    Fig.  3  Annual mean change of turbidity in the study area from 2016 to 2023

    图  4  2020年11月5日MODIS真彩色影像(a)、Sentinel-2 MSI真彩色影像(b)及MODIS浊度空间分布反演图(c)、Sentinel-2浊度空间分布反演图(d)

    Fig.  4  MODIS true-color imagery (a), Sentinel-2 MSI true-color imagery (b) and inversion of MODIS spatial distribution of turbidity (c) and Sentinel-2 spatial distribution of turbidity (d) for 5 November 2020

    图  5  2016−2023年香港近海浊度逐年均值分布

    Fig.  5  Annual mean distribution of turbidity in the offshore waters of Hong Kong from 2016 to 2023

    图  6  2016−2023年香港近海浊度月均分布

    Fig.  6  Monthly mean distribution of turbidity in the offshore waters of Hong Kong from 2016 to 2023

    图  7  香港近海浊度季均值(a、b、c、d)和年均值(e)分布

    Fig.  7  Seasonal mean (a, b, c, d) and annual mean (e) distribution of turbidity in the offshore waters of Hong Kong

    图  8  香港近海月均浊度与入海径流量(a)、降水量(b)、气温(c)、风速(d)的关系

    Fig.  8  Relationship between monthly mean turbidity and inlet runoff (a), precipitation (b), air temperature (c) and wind speed (d) in the Hong Kong offshore waters

    图  9  自然环境因素贡献度(a)及香港近海年均浊度与污水处理投资的关系(b)

    Fig.  9  Contribution of natural environmental factors and relationship between annual mean turbidity and investment data on sewage treatment in the Hong Kong offshore waters

    表  1  Sentinel-2 MSI影像光谱波段信息

    Tab.  1  Sentinel-2 MSI image spectral band information

    波段号波段中心波长(μm)空间分辨率(m)波段号波段中心波长(μm)空间分辨率(m)
    B1气溶胶0.44360B8近红外0.84210
    B20.49010B8A窄波近红外0.86520
    B3绿0.56010B9水蒸气0.94560
    B40.66510B10卷云1.37560
    B5红边10.70520B11短波红外1.61020
    B6红边20.74020B12短波红外2.19020
    B7红边30.78320
    下载: 导出CSV

    表  2  经验模型表达式及机器学习模型最优参数组合

    Tab.  2  Empirical model expressions and optimal parameter combinations for machine learning models

    模型 变量 表达式/参数
    多项式模型 LH456 y = 666.14x2 + 76.2x + 4.11
    指数函数模型 B3-B2,(B3+B5)/(B2/B3) ${ \mathrm{y}=1.95{\mathrm{e}}^{(3.56{\mathrm{x}}_{1}+0.68{\mathrm{x}}_{2})} }$
    RF B4,
    B5,
    B3-B2,
    LH456
    LH567
    (B3+B5)/(B2/B3)
    n_estimators:25
    min_samples_split:4
    max_depth:15
    GBDT n_estimators:100
    learning_rate:0.08
    min_samples_split:3
    max_depth:5
    KNN n_neighbors:15
    algorithm:kd_tree
    weights:uniform
      注:在多项式模型中,变量x为LH456;指数函数模型中变量x1、x2分别为B3-B2,(B3+B5)/(B2/B3)。
    下载: 导出CSV

    表  3  Sentinel-2典型波段及波段组合与浊度的相关性分析

    Tab.  3  Correlation analysis of typical Sentinel-2 bands and band combinations with turbidity

    波段组合 相关系数 波段组合 相关系数
    B4 0.42** LH456 0.76**
    B5 0.42** LH567 −0.69**
    B3-B2 0.60** (B3+B5)/(B2/B3) 0.57**
      注:**表示相关性在0.01水平上显著
    下载: 导出CSV

    表  4  建模数据集各模型性能对比

    Tab.  4  Comparison of the performance of each model in the modelled dataset

    模型R2RMSEMAE
    多项式模型0.671.972.36
    指数函数模型0.592.071.52
    RF0.911.110.68
    GBDT0.801.551.28
    KNN0.631.201.27
    下载: 导出CSV
  • [1] Dogliotti A I, Ruddick K G, Nechad B, et al. A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters[J]. Remote Sensing of Environment, 2015, 156: 157−168. doi: 10.1016/j.rse.2014.09.020
    [2] Nienhuis J H, Ashton A D, Edmonds D A, et al. Global-scale human impact on delta morphology has led to net land area gain[J]. Nature, 2020, 577(7791): 514−518. doi: 10.1038/s41586-019-1905-9
    [3] McCarthy M J, Muller-Karger F E, Otis D B, et al. Impacts of 40 years of land cover change on water quality in Tampa Bay, Florida[J]. Cogent Geoscience, 2018, 4(1): 1422956. doi: 10.1080/23312041.2017.1422956
    [4] Li Jian, Chen Xiaoling, Tian Liqiao, et al. Improved capabilities of the Chinese high-resolution remote sensing satellite GF-1 for monitoring suspended particulate matter (SPM) in inland waters: radiometric and spatial considerations[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 106: 145−156. doi: 10.1016/j.isprsjprs.2015.05.009
    [5] Liu Ge, Li Lin, Song Kaishan, et al. An OLCI-based algorithm for semi-empirically partitioning absorption coefficient and estimating chlorophyll a concentration in various turbid case-2 waters[J]. Remote Sensing of Environment, 2020, 239: 111648. doi: 10.1016/j.rse.2020.111648
    [6] Peterson K T, Sagan V, Sloan J J. Deep learning-based water quality estimation and anomaly detection using Landsat-8/Sentinel-2 virtual constellation and cloud computing[J]. GIScience & Remote Sensing, 2020, 57(4): 510−525.
    [7] Zheng Lufei, Qiu Zhongfeng, Zhou Yan, et al. Comparisons of algorithms to estimate water turbidity in the coastal areas of China[J]. International Journal of Remote Sensing, 2016, 37(24): 6165−6186. doi: 10.1080/01431161.2016.1256510
    [8] Wang Shengqiang, Mao Ying, Zheng Lufei, et al. Remote sensing of water turbidity in the Eastern China Seas from Geostationary Ocean Colour Imager[J]. International Journal of Remote Sensing, 2020, 41(11): 4080−4101. doi: 10.1080/01431161.2020.1714775
    [9] El-Alem A, Chokmani K. A machine learning-based regional hybrid model for remote retrieving turbidity from Landsat imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 8021605.
    [10] Drusch M, Del Bello U, Carlier S, et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services[J]. Remote Sensing of Environment, 2012, 120: 25−36. doi: 10.1016/j.rse.2011.11.026
    [11] Tian Liqiao, Wai O W H, Chen Xiaoling, et al. Assessment of total suspended sediment distribution under varying tidal conditions in deep bay: initial results from HJ-1A/1B satellite CCD images[J]. Remote Sensing, 2014, 6(10): 9911−9929. doi: 10.3390/rs6109911
    [12] Nazeer M, Nichol J E. Combining Landsat TM/ETM+ and HJ-1 A/B CCD sensors for monitoring coastal water quality in Hong Kong[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9): 1898−1902. doi: 10.1109/LGRS.2015.2436899
    [13] Hafeez S, Wong M S. Measurement of coastal water quality indicators using Sentinel-2; an evaluation over Hong Kong and the Pearl River Estuary[C]//IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama: IEEE, 2019: 8249-8252.
    [14] Kuhn C, De Matos Valerio A, Ward N, et al. Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity[J]. Remote Sensing of Environment, 2019, 224: 104−118. doi: 10.1016/j.rse.2019.01.023
    [15] Warren M A, Simis S G H, Selmes N. Complementary water quality observations from high and medium resolution Sentinel sensors by aligning chlorophyll-a and turbidity algorithms[J]. Remote Sensing of Environment, 2021, 265: 112651. doi: 10.1016/j.rse.2021.112651
    [16] Wilson R T. Py6S: a Python interface to the 6S radiative transfer model[J]. Computers & Geosciences, 2013, 51: 166−171.
    [17] Nazeer M, Nichol J E, Yung Y K. Evaluation of atmospheric correction models and Landsat surface reflectance product in an urban coastal environment[J]. International Journal of Remote Sensing, 2014, 35(16): 6271−6291. doi: 10.1080/01431161.2014.951742
    [18] Ouma Y O, Noor K, Herbert K. Modelling reservoir chlorophyll-a, TSS, and turbidity using Sentinel-2A MSI and Landsat-8 OLI satellite sensors with empirical multivariate regression[J]. Journal of Sensors, 2020, 2020: 8858408.
    [19] Murphy S, Hård J. Atmospheric correction of Sentinel 2 imagery in Google Earth Engine using Py6S(2020)[Z]. https://github.com/samsammurphy/gee-atmcorr-S2. (不确定本条文献类型及格式是否正确,请确认)

    Murphy S, Hård J. Atmospheric correction of Sentinel 2 imagery in Google Earth Engine using Py6S(2020)[Z]. https://github.com/samsammurphy/gee-atmcorr-S2. (不确定本条文献类型及格式是否正确,请确认)
    [20] Kwong I H Y, Wong F K K, Fung T. Automatic mapping and monitoring of marine water quality parameters in Hong Kong using Sentinel-2 image time-series and Google Earth Engine cloud computing[J]. Frontiers in Marine Science, 2022, 9: 871470. doi: 10.3389/fmars.2022.871470
    [21] Gons H J. Optical teledetection of chlorophyll a in turbid inland waters[J]. Environmental Science & Technology, 1999, 33(7): 1127−1132.
    [22] Gower J, King S, Borstad G, et al. Detection of intense plankton blooms using the 709 nm band of the MERIS imaging spectrometer[J]. International Journal of Remote Sensing, 2005, 26(9): 2005−2012. doi: 10.1080/01431160500075857
    [23] Topp S N, Pavelsky T M, Jensen D, et al. Research trends in the use of remote sensing for inland water quality science: moving towards multidisciplinary applications[J]. Water, 2020, 12(1): 169. doi: 10.3390/w12010169
    [24] Ma Yue, Song Kaishan, Wen Zhidan, et al. Remote sensing of turbidity for lakes in northeast China using Sentinel-2 images with machine learning algorithms[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 9132−9146. doi: 10.1109/JSTARS.2021.3109292
    [25] Wang Jun, Tong Yan, Feng Lian, et al. Satellite‐observed decreases in water turbidity in the Pearl River Estuary: potential linkage with sea‐level rise[J]. Journal of Geophysical Research: Oceans, 2021, 126(4): e2020JC016842. doi: 10.1029/2020JC016842
    [26] 李盈盈. 辽河口浊度遥感反演及时空变化分析[D]. 大连: 大连理工大学, 2022.

    Li Yingying. Water turbidity retrieval and spatial-temporal analysis based on remote sensing data in the Liao River Estuary[D]. Dalian: Dalian University of Technology, 2022.
    [27] 黎栩霞, 王裕东, 肖佑鹏, 等. 深圳近岸海域水质遥感监测及时空变化[J]. 环境工程, 2024, 42(1): 243−252.

    Li Xuxia, Wang Yudong, Xiao Youpeng, et al. Quality monitoring of Shenzhen’s coastal waters by satellite and its spatiotemporal variation[J]. Environmental Engineering, 2024, 42(1): 243−252.
    [28] Hou Xuejiao, Feng Lian, Duan Hongtao, et al. Fifteen-year monitoring of the turbidity dynamics in large lakes and reservoirs in the middle and lower basin of the Yangtze River, China[J]. Remote Sensing of Environment, 2017, 190: 107−121. doi: 10.1016/j.rse.2016.12.006
    [29] Lin Jie, Zou Xinqing, Huang Faming. Effects of the thermal discharge from an offshore power plant on plankton and macrobenthic communities in subtropical China[J]. Marine Pollution Bulletin, 2018, 131: 106−114. doi: 10.1016/j.marpolbul.2018.04.005
    [30] Jiang Cong, Xiong Lihua, Wang Dingbao, et al. Separating the impacts of climate change and human activities on runoff using the Budyko-type equations with time-varying parameters[J]. Journal of Hydrology, 2015, 522: 326−338. doi: 10.1016/j.jhydrol.2014.12.060
    [31] Zheng Zhubin, Li Yunmei, Guo Yulong, et al. Landsat-based long-term monitoring of total suspended matter concentration pattern change in the wet season for Dongting Lake, China[J]. Remote Sensing, 2015, 7(10): 13975−13999. doi: 10.3390/rs71013975
    [32] Lu Jian, Jiang Jingbo, Li Anchun, et al. Impact of Typhoon Chan-hom on the marine environment and sediment dynamics on the inner shelf of the East China Sea: in-situ seafloor observations[J]. Marine Geology, 2018, 406: 72−83. doi: 10.1016/j.margeo.2018.09.009
    [33] Liu Dong, Bai Yan, Wei Xiaodao, et al. Sewage treatment decreased organic carbon resources in Hong Kong waters during 1986-2020[J]. Environmental Pollution, 2023, 335: 122219. doi: 10.1016/j.envpol.2023.122219
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  96
  • HTML全文浏览量:  19
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-29
  • 录用日期:  2025-01-22
  • 网络出版日期:  2025-02-21

目录

    /

    返回文章
    返回