留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度学习的船基数字图像处理及海冰密集度识别研究

马蕴涵 陈晓东 赵观辉 季顺迎 杨海天

马蕴涵,陈晓东,赵观辉,等. 基于深度学习的船基数字图像处理及海冰密集度识别研究[J]. 海洋学报,2025,47(x):1–11
引用本文: 马蕴涵,陈晓东,赵观辉,等. 基于深度学习的船基数字图像处理及海冰密集度识别研究[J]. 海洋学报,2025,47(x):1–11
, , , et al. Research on Ship based Digital Image Processing and Sea Ice Concentration Recognition Based on Deep Learning[J]. Haiyang Xuebao,2025, 47(x):1–11
Citation: , , , et al. Research on Ship based Digital Image Processing and Sea Ice Concentration Recognition Based on Deep Learning[J]. Haiyang Xuebao,2025, 47(x):1–11

基于深度学习的船基数字图像处理及海冰密集度识别研究

基金项目: 工信部极地船舶专项 (CBG2N21-2-3)和国家自然科学基金(42176241, 52101300, 52101331 U20A20327)。
详细信息
    作者简介:

    马蕴涵(—),男,辽宁省沈阳市人,主要从事极地海洋工程研究。E-mail:mayunhan100027@163.com

    通讯作者:

    陈晓东,男,辽宁省抚顺市人,博士,高级工程师,主要从事海冰力学及极地海洋工程研究。E-mail: chenxiaodong@dlut.edu.cn

  • 中图分类号: P714

Research on Ship based Digital Image Processing and Sea Ice Concentration Recognition Based on Deep Learning

  • 摘要: 海冰是极地海域的典型环境特征,对船载视频图像进行像素级分类可获取高分辨率的海冰信息。由于极地场景中的光照条件与海冰形态较为复杂,传统计算机图形学方法的泛化性难以满足海冰要素的智能识别需求。因此,本文采用基于DeeplabV3+语义分割网络结构的深度学习方法对极地场景中海冰要素进行识别。将“雪龙”号科考船在冰区航行中的实测海冰图像制作为数据集,并对深度学习模型进行训练与验证。根据海冰要素的识别需求与走航观测视频图像特点,将像素信息划分为海冰、天空、海水与船体四种语义类别。根据训练集中的图像信息与语义信息间关联构建深度学习模型,并通过所训练模型对验证集或其他图像中像素点的语义信息进行预测,从而实现海冰信息的自动识别。为了研究该方法的鲁棒性进一步分析了海冰密集度、光照条件以及海冰类型对识别结果的影响。此外,研究了数据集规模与迭代次数对识别精度的影响。图像识别结果显示,四类语义信息识别结果的平均交并比高于95%。这表明深度学习方法能够在极地复杂的环境中较为准确的获取各类要素分类信息。
  • 图  1  基于DeeplabV3+的海冰识别模型

    Fig.  1  Sea ice recognition model based on DeeplabV3+

    图  2  数据集标签图像

    Fig.  2  Original image and annotated image of the dataset

    图  3  海冰图像分类识别结果

    Fig.  3  Segmentation results of sea ice images

    图  4  海冰图像的畸变矫正与倾斜矫正

    Fig.  4  Distortion and perspective correction of sea ice images

    图  5  识别精度随海冰密集度的变化趋势

    Fig.  5  The trend of recognition accuracy with ice concentration

    图  6  验证集平均交并比随观测距离的变化趋势

    Fig.  6  The correlation between image mIoU and oberservation distance

    图  7  识别精度随迭代次数变化趋势

    Fig.  7  The trend of recognition accuracy with the epochs

    图  8  验证集平均交并比随训练集大小的变化趋势

    Fig.  8  The trend of mIoU of the validation set with the image amount

    图  9  不同场景海冰图像预测结果

    Fig.  9  Prediction results of sea ice images in different scenarios

    表  1  海冰图像识别的软硬件配置

    Tab.  1  Configurations of hardwares and softwares for identification of sea ice images

    硬件参数CPUIntel i7
    RAM16 GB
    Graphics cardNvidia GeForce RTX 3060 Laptop
    GPU Memory6 GB
    软件参数Operating systemWindows 11
    PythonPython 3.8
    FrameworkTensorflow-gpu 2.6
    CUDA11.2
    下载: 导出CSV

    表  2  针对不同场景识别结果的单项交并比与平均交并比

    Tab.  2  IoU and mIoU of different samples

    IoU-Sea(%) IoU-Ice (%) IoU-Sky(%) IoU-Ship(%) mIoU(%)
    场景1 99.9 97.6 97.4 98.3
    场景2 99.8 93.5 87.9 87.7 90.8
    场景3 99.9 92.1 97.1 95.7 96.2
    场景4 96.9 95.3 98.8 93.3 96.9
    场景5 95.9 96.2 98.8 93.9 97.2
    验证集(67张) 96.9 97.4 96.5 95.8 96.0
    下载: 导出CSV
  • [1] 苏洁, 郝光华, 叶鑫欣, 等. 极区海冰密集度AMSR-E数据反演算法的试验与验证[J]. 遥感学报, 2013, 17(3): 495−513. doi: 10.11834/jrs.20132043

    Su Jie, Hao Guanghua, Ye Xinxin, et al. The experiment and validation of sea ice concentration AMSR-E retrieval algorithm in polar region[J]. Journal of Remote Sensing, 2013, 17(3): 495−513. doi: 10.11834/jrs.20132043
    [2] 魏彬航, 李宝辉, 刘煜, 等. 辽东湾海冰分布面积历史数据重构及其影响因素分析[J]. 海洋学报, 2023, 45(11): 20−33.

    Wei Binhang, Li Baohui, Liu Yu, et al. Reconstruction of sea ice extent in the Liaodong Bay and analysis of its impact factors[J]. Haiyang Xuebao, 2023, 45(11): 20−33.
    [3] 崔洪宇, 胡大士, 孔帅, 等. 基于正则化方法的雪龙号破冰船冰载荷反演的研究[J]. 中国造船, 2020, 61(1): 109−119. doi: 10.3969/j.issn.1000-4882.2020.01.011

    Cui Hongyu, Hu Dashi, Kong Shuai, et al. Study on inversion of ice load for Xue Long icebreaker based on regularization method[J]. Shipbuilding of China, 2020, 61(1): 109−119. doi: 10.3969/j.issn.1000-4882.2020.01.011
    [4] 邓娟, 柯长青, 雷瑞波, 等. 2009年春夏季北极海冰运动及其变化监测[J]. 极地研究, 2013, 25(1): 96−104. doi: 10.3724/SP.J.1084.2013.00096

    Deng Juan, Ke Changqing, Lei Ruibo, et al. Monitoring the motion of arctic sea-ice and its changes in summer and winter 2009[J]. Chinese Journal of Polar Research, 2013, 25(1): 96−104. doi: 10.3724/SP.J.1084.2013.00096
    [5] 张培宣, 陈晓东, 孔帅, 等. 基于Hough变换原理的海冰厚度识别方法[J]. 海洋学报, 2022, 44(7): 161−169. doi: 10.12284/j.issn.0253-4193.2022.7.hyxb202207015

    Zhang Peixuan, Chen Xiaodong, Kong Shuai, et al. Research on sea ice thickness identification method based on Hough transform principle[J]. Haiyang Xuebao, 2022, 44(7): 161−169. doi: 10.12284/j.issn.0253-4193.2022.7.hyxb202207015
    [6] Laxon S W, Giles K A, Ridout A L, et al. CryoSat-2 estimates of Arctic sea ice thickness and volume[J]. Geophysical Research Letters, 2013, 40(4): 732−737. doi: 10.1002/grl.50193
    [7] Aldenhoff W, Berg A, Eriksson L E B. Sea ice concentration estimation from Sentinel-1 Synthetic Aperture Radar images over the Fram Strait[C]//Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium. Beijing, China: IEEE, 2016: 7675−7677.
    [8] Liu Yinghui, Key J, Mahoney R. Sea and freshwater ice concentration from VIIRS on suomi NPP and the future JPSS satellites[J]. Remote Sensing, 2016, 8(6): 523. doi: 10.3390/rs8060523
    [9] 郑付强, 匡定波, 胡勇, 等. 基于U-ASPP-Net的北极独立海冰精细识别方法[J]. 红外与毫米波学报, 2021, 40(6): 798−808. doi: 10.11972/j.issn.1001-9014.2021.06.014

    Zheng Fuqiang, Kuang Dingbo, Hu Yong, et al. Refined segmentation method based on U-ASPP-Net for Arctic independent sea ice[J]. Journal of Infrared and Millimeter Waves, 2021, 40(6): 798−808. doi: 10.11972/j.issn.1001-9014.2021.06.014
    [10] 周嘉儒, 卢鹏, 王庆凯, 等. 基于视频图像获取冰面特征的自动检测算法研究[J]. 水利科学与寒区工程, 2021, 4(5): 60−65. doi: 10.3969/j.issn.2096-5419.2021.05.014

    Zhou Jiaru, Lu Peng, Wang Qingkai, et al. Research on automatic detection algorithm based on video image acquisition for ice surface feature[J]. Hydro Science and Cold Zone Engineering, 2021, 4(5): 60−65. doi: 10.3969/j.issn.2096-5419.2021.05.014
    [11] Toyota T, Haas C, Tamura T. Size distribution and shape properties of relatively small sea-ice floes in the Antarctic marginal ice zone in late winter[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2011, 58(9/10): 1182−1193.
    [12] 季顺迎, 王安良, 王宇新, 等. 渤海海冰现场监测的数字图像技术及其应用[J]. 海洋学报, 2011, 33(4): 79−87.

    Ji Shunying, Wang Anliang, Wang Yuxin, et al. A digital image technology and its application for the sea ice field observation in the Bohai Sea[J]. Haiyang Xuebao, 2011, 33(4): 79−87.
    [13] Blunt J D, Garas V Y, Matskevitch D G, et al. Image analysis techniques for high arctic, deepwater operation support[C]//Proceedings of the OTC Arctic Technology Conference. Houston: OTC, 2012.
    [14] Ijitona T B, Ren Jinchang, Hwang P B. SAR sea ice image segmentation using watershed with intensity-based region merging[C]//Proceedings of 2014 IEEE International Conference on Computer and Information Technology. Xi'an, China: IEEE, 2014: 168−172.
    [15] Zhang Qin, Skjetne R, Metrikin I, et al. Image processing for ice floe analyses in broken-ice model testing[J]. Cold Regions Science and Technology, 2015, 111: 27−38. doi: 10.1016/j.coldregions.2014.12.004
    [16] Kalke H, Loewen M. Support vector machine learning applied to digital images of river ice conditions[J]. Cold Regions Science and Technology, 2018, 155: 225−236. doi: 10.1016/j.coldregions.2018.08.014
    [17] 田萱, 王亮, 丁琪. 基于深度学习的图像语义分割方法综述[J]. 软件学报, 2019, 30(2): 440−468.

    Tian Xuan, Wang Liang, Ding Qi. Review of image semantic segmentation based on deep learning[J]. Journal of Software, 2019, 30(2): 440−468.
    [18] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015: 3431−3440.
    [19] Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481−2495. doi: 10.1109/TPAMI.2016.2644615
    [20] Chen L C, Papandreou G, Kokkinos I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834−848. doi: 10.1109/TPAMI.2017.2699184
    [21] Everingham M, Van Gool L, Williams C K I, et al. The Pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303−338. doi: 10.1007/s11263-009-0275-4
    [22] Garcia-Garcia A, Orts-Escolano S, Oprea S, et al. A survey on deep learning techniques for image and video semantic segmentation[J]. Applied Soft Computing, 2018, 70: 41−65. doi: 10.1016/j.asoc.2018.05.018
    [23] Zhu Xiaoxiang, Tuia D, Mou Lichao, et al. Deep learning in remote sensing: a comprehensive review and list of resources[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(4): 8−36. doi: 10.1109/MGRS.2017.2762307
    [24] Hesamian M H, Jia Wenjing, He Xiangjian, et al. Deep learning techniques for medical image segmentation: achievements and challenges[J]. Journal of Digital Imaging, 2019, 32(4): 582−596. doi: 10.1007/s10278-019-00227-x
    [25] Cooke C L V, Scott K A. Estimating sea ice concentration from SAR: training convolutional neural networks with passive microwave data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7): 4735−4747. doi: 10.1109/TGRS.2019.2892723
    [26] Wang Lei, Scott K A, Xu Linlin, et al. Sea ice concentration estimation during melt from dual-pol SAR scenes using deep convolutional neural networks: a case study[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4524−4533. doi: 10.1109/TGRS.2016.2543660
    [27] Wang Yiran, Li Xiaoming. Arctic sea ice cover data from spaceborne synthetic aperture radar by deep learning[J]. Earth System Science Data, 2021, 13(6): 2723−2742. doi: 10.5194/essd-13-2723-2021
    [28] 宋巍, 祝敏, 石少华, 等. 基于改进DeepLabV3+的轻量化SAR图像冰间水道分割[J]. 计算机工程与应用, 2024(4). (查阅网上资料, 未找到对应的卷期页码信息, 请确认)

    Song Wei, Zhu Min, Shi Shaohua, et al. Lightweight SAR image lead segmentation based on improved DeepLabV3+[J]. Computer Engineering and Applications, 2024(4).
    [29] 孙士昌, 王志勇, 李振今, 等. 基于改进DeepLabV3+模型的海冰提取方法——以北极格陵兰海为例[J]. 海洋学报, 2024, 46(8): 131−142.

    Sun Shichang, Wang Zhiyong, Li Zhenjin, et al. An extraction method for sea ice based on improved DeepLabV3+ model: taking the arctic Greenland sea as an example[J]. Haiyang Xuebao, 2024, 46(8): 131−142.
    [30] Zhang Chengqian, Chen Xiaodong, Ji Shunying. Semantic image segmentation for sea ice parameters recognition using deep convolutional neural networks[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 112: 102885, doi: 10.1016/j.jag.2022.102885
    [31] Chen L C, Zhu Yukun, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the 15th European Conference on Computer Vision. Munich: Springer, 2018, doi: 10.1007/978-3-030-01234-2_49.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  3
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-20
  • 修回日期:  2024-12-20
  • 网络出版日期:  2025-01-21

目录

    /

    返回文章
    返回