留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

孟加拉湾海域背景流-中尺度涡-高频扰动之间的相互作用

季页 杨洋 梁湘三

季页,杨洋,梁湘三. 孟加拉湾海域背景流-中尺度涡-高频扰动之间的相互作用[J]. 海洋学报,2022,44(x):1–15
引用本文: 季页,杨洋,梁湘三. 孟加拉湾海域背景流-中尺度涡-高频扰动之间的相互作用[J]. 海洋学报,2022,44(x):1–15
Ji Ye,Yang Yang,Liang Xiangshan. Multiscale Interactions among the Background Flow, Mesoscale Eddy and High-Frequency Perturbation in the Bay of Bengal[J]. Haiyang Xuebao,2022, 44(x):1–15
Citation: Ji Ye,Yang Yang,Liang Xiangshan. Multiscale Interactions among the Background Flow, Mesoscale Eddy and High-Frequency Perturbation in the Bay of Bengal[J]. Haiyang Xuebao,2022, 44(x):1–15

孟加拉湾海域背景流-中尺度涡-高频扰动之间的相互作用

基金项目: 国家自然科学基金项目(41975064、41806023);2015江苏双创团队项目;江苏省特聘教授项目。
详细信息
    作者简介:

    季页(1998-),女,江苏省射阳县人,主要从事海洋多尺度动力学研究。 E-mail:15189827598@163.com

    通讯作者:

    梁湘三(1967-),男,教授,主要从事大气海洋多尺度动力学、定量因果推断等方面研究,x.san.liang@gmail.com

Multiscale Interactions among the Background Flow, Mesoscale Eddy and High-Frequency Perturbation in the Bay of Bengal

  • 摘要: 基于一套涡分辨模式数据,本文利用一种新的泛函工具——多尺度子空间变换——将孟加拉湾(BOB)海域的环流系统分解到背景流(>96天)、中尺度(24~96天)和高频尺度(<24天)三个子空间,并用正则传输理论探讨了三个尺度子空间之间内在的非线性相互作用。结果表明,BOB西北部边界和斯里兰卡岛东部是BOB海域多尺度相互作用最显著的区域,中部则较弱。前两个区域的背景流大多正压、斜压不稳定,动能和有效位能正则传输主要表现为正向级串;后者则以逆尺度动能级串为主。具体来说,在BOB西北部与斯里兰卡东部,中尺度涡动能(EKE)主要来源于正压能量路径(即背景流动能向EKE传输),其次来源于斜压能量路径(即背景流有效位能向中尺度有效位能传输,并进一步转换为EKE)。通过这两个能量路径得到的EKE向更高频的扰动传输能量,起到了耗散中尺度涡的作用。不同于此二者,BOB中部海域的EKE和高频尺度动能主要通过斜压路径获得,随后通过逆尺度级串将动能返还给背景流。苏门答腊岛的西北部也是中尺度和高频尺度扰动较强的海域,正压能量路径和斜压能量路径均是该海域扰动能的来源,但以斜压能量路径为主。
  • 图  1  孟加拉湾及其周边海域海底地形(数据来自ETOPO1,单位: m)。区域1-4分别代表BOB西北部边界(EICC的流经区域)、BOB中部海域、斯里兰卡岛的东部海域和苏门答腊岛的西北部海域,详细的区域选取说明见2.3。

    Fig.  1  The bathymetry in the Bay of Bengal based on the ETOPO1 data (unit: m).. The numbered boxes from 1 to 4 denote the northwestern boundary of BOB (EICC region), the central BOB , the east of Sri Lank and northwest of Sumatra, respectively. See 2.3 for detailed description of the region selection.

    图  2  三个尺度子空间框架下的能量循环示意图

    红色箭头表示跨尺度能量传输($\Gamma _K^\varpi $和$\Gamma _A^\varpi $)和浮力转换过程(${b^\varpi }$),绿色箭头表示同尺度输运($\nabla \cdot {\mathbf{Q}}_K^\varpi $、$\nabla \cdot {\mathbf{Q}}_P^\varpi $和$\nabla \cdot {\mathbf{Q}}_A^\varpi $),灰色箭头表示同尺度外强迫、耗散等过程($F_K^\varpi $和$F_A^\varpi $)

    Fig.  2  The energy cycle diagram for a three-window decomposition.

    Red arrows denote canonical transfers and buoyancy conversions. Green arrows denote nonlocal transport processes, and grey arrows for forcing/dissipation processes.

    图  3  孟加拉湾海域不同区域平均的表层流场动能谱

    动能谱采用了方差保持的形式。蓝色实线表示OFES数据,红色实线表示AVISO数据。绿色虚线表示周期为24天和96天。单位:$ c{m^2}{d^{ - 2}} $

    Fig.  3  The frequency spectra of KE averaged over (a) the BOB and (b)–(e) the four subdomains as marked in Fig. 1.

    The spectra are in variance-preserving form. The blue and red curves are estimated from the velocity fields from OFES and AVISO, respectively. The dashed vertical lines from left to right denote the periods of 96 and 24 days, respectively (unit: $ c{m^2}{d^{ - 2}} $).

    图  4  1999-2007年表层海洋多尺度动能的气候态空间分布(单位:$J{m^{ - 3}}$

    Fig.  4  Temporally (1999-2007) averaged surface multiscale KE components based on AVISO (upper panel) and OFES (lower panel, unit: $J{m^{ - 3}}$).

    图  5  1999-2017年上层海洋(0-300 m)多尺度动能和有效位能垂向积分的气候态空间分布,单位:${10^2}J{m^{ - 2}}$

    Fig.  5  Temporally averaged (1999-2017) and vertically (upper 300 m) integrated multiscale KE and APE components (unit: ${10^2}J{m^{ - 2}}$).

    图  6  1999-2017年上层海洋多尺度动能和有效位能的气候态垂直剖线图(单位:$J{m^{ - 3}}$

    Fig.  6  The vertical distributions of the time-mean (1999-2017) multiscale energetics averaged over (a) the BOB and (b)–(e) the four subdomains as marked in Fig. 1 (unit: $J{m^{ - 3}}$).

    图  7  1999-2017年上层海洋(0-300 m)正则传输($\Gamma _K^\varpi $$\Gamma _A^\varpi $${b^\varpi }$)垂向积分的气候态空间分布(单位:${10^{{\text{ - 3}}}}W{m^{ - 2}}$

    Fig.  7  Temporally (1999-2017) averaged and vertically (upper 300 m) integrated canonical transfers and buoyancy conversions (unit: ${10^{{\text{ - 3}}}}W{m^{ - 2}}$).

    图  8  BOB不同区域多尺度相互作用能量项的气候态平均垂直剖线图

    Fig.  8  The vertical distributions of the time-mean multiscale energetics (${10^{{\text{ - 4}}}}W{m^{ - 3}}$) averaged over (a) the BOB and (b)–(e) the four subdomains as indicated in Fig. 1.

    图  9  BOB不同区域的Lorenz能量框图

    箭头上的数字表示1999-2017年上层海洋(0-300 m)体积平均值,箭头的粗细刻画了能量传输的大小(单位:${10^{{\text{ - 6}}}}W{m^{ - 3}}$)

    Fig.  9  Schematics of the Lorenz energy cycle for (a) the BOB and (b)–(e) the four subdomains as indicated in Fig. 1.

    The numbers above arrows are obtained from temporally (1999-2017) and volume-averaged energy terms, with the arrow sizes indicate the strength of the energy terms (unit: ${10^{{\text{ - 6}}}}W{m^{ - 3}}$).

  • [1] Shankar D, McCreary J P, Han W, et al. Dynamics of the East India Coastal Current: 1. Analytic solutions forced by interior Ekman pumping and local alongshore winds[J]. Journal of Geophysical Research:Oceans, 1996, 101(C6): 13975−13991. doi: 10.1029/96JC00559
    [2] Schott F A, Xie Shangping, McCreary J P Jr. Indian Ocean circulation and climate variability[J]. Reviews of Geophysics, 2009, 47(1): RG1002.
    [3] Cui Wei, Yang Jungang, Ma Yi. A statistical analysis of mesoscale eddies in the Bay of Bengal from 22–year altimetry data[J]. Acta Oceanologica Sinica, 2016, 35(11): 16−27. doi: 10.1007/s13131-016-0945-3
    [4] Subrahmanyam B, Roman-Stork H L, Murty V S N. Response of the Bay of Bengal to 3-7-day synoptic oscillations during the southwest monsoon of 2019[J]. Journal of Geophysical Research:Oceans, 2020, 125(6): e2020JC016200.
    [5] Hood R R, Beckley L E, Wiggert J D. Biogeochemical and ecological impacts of boundary currents in the Indian Ocean[J]. Progress in Oceanography, 2017, 156: 290−325. doi: 10.1016/j.pocean.2017.04.011
    [6] Prasanna Kumar S, Nuncio M, Ramaiah N, et al. Eddy-mediated biological productivity in the Bay of Bengal during fall and spring intermonsoons[J]. Deep Sea Research Part I:Oceanographic Research Papers, 2007, 54(9): 1619−1640. doi: 10.1016/j.dsr.2007.06.002
    [7] Sanchez-Franks A, Kent E C, Matthews A J, et al. Intraseasonal variability of air-sea fluxes over the Bay of Bengal during the southwest monsoon[J]. Journal of Climate, 2018, 31(17): 7087−7109. doi: 10.1175/JCLI-D-17-0652.1
    [8] Durand F, Shankar D, Birol F, et al. Spatiotemporal structure of the East India Coastal Current from satellite altimetry[J]. Journal of Geophysical Research, 2009, 114(C2): C02013.
    [9] Shetye S R, Gouveia A D, Shenoi S S C, et al. The western boundary current of the seasonal subtropical gyre in the Bay of Bengal[J]. Journal of Geophysical Research:Oceans, 1993, 98(C1): 945−954. doi: 10.1029/92JC02070
    [10] Eigenheer A, Quadfasel D. Seasonal variability of the Bay of Bengal circulation inferred from TOPEX/Poseidon altimetry[J]. Journal of Geophysical Research:Oceans, 2000, 105(C2): 3243−3252. doi: 10.1029/1999JC900291
    [11] McCreary J P, Han W, Shankar D, et al. Dynamics of the East India Coastal Current: 2. Numerical solutions[J]. Journal of Geophysical Research:Oceans, 1996, 101(C6): 13993−14010. doi: 10.1029/96JC00560
    [12] Potemra J T, Luther M E, O’Brien J J. The seasonal circulation of the upper ocean in the Bay of Bengal[J]. Journal of Geophysical Research:Oceans, 1991, 96(C7): 12667−12683. doi: 10.1029/91JC01045
    [13] Vinayachandran P N, Kagimoto T, Masumoto Y, et al. Bifurcation of the East India Coastal Current east of Sri Lanka[J]. Geophysical Research Letters, 2005, 32(15): L15606. doi: 10.1029/2005GL022864
    [14] Babu M T, Sarma Y V B, Murty V S N, et al. On the circulation in the Bay of Bengal during Northern spring inter-monsoon (March–April 1987)[J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2003, 50(5): 855−865. doi: 10.1016/S0967-0645(02)00609-4
    [15] Cheng Xuhua, Xie Shangping, McCreary J P, et al. Intraseasonal variability of sea surface height in the Bay of Bengal[J]. Journal of Geophysical Research:Oceans, 2013, 118(2): 816−830. doi: 10.1002/jgrc.20075
    [16] Chen Gengxin, Wang Dongxiao, Hou Yijun. The features and interannual variability mechanism of mesoscale eddies in the Bay of Bengal[J]. Continental Shelf Research, 2012, 47: 178−185. doi: 10.1016/j.csr.2012.07.011
    [17] Cheng Xuhua, McCreary J P, Qiu Bo, et al. Intraseasonal-to-semiannual variability of sea-surface height in the astern, equatorial Indian Ocean and southern Bay of Bengal[J]. Journal of Geophysical Research:Oceans, 2017, 122(5): 4051−4067. doi: 10.1002/2016JC012662
    [18] Nuncio M, Kumar S P. Life cycle of eddies along the western boundary of the Bay of Bengal and their implications[J]. Journal of Marine Systems, 2012, 94: 9−17. doi: 10.1016/j.jmarsys.2011.10.002
    [19] Kumar S P, Nuncio M, Narvekar J, et al. Are eddies nature’s trigger to enhance biological productivity in the Bay of Bengal?[J]. Geophysical Research Letters, 2004, 31(7): L07309.
    [20] Arunraj K S, Jena B K, Suseentharan V, et al. Variability in eddy distribution associated with East India Coastal Current from high-frequency radar observations along southeast coast of India[J]. Journal of Geophysical Research:Oceans, 2018, 123(12): 9101−9118. doi: 10.1029/2018JC014041
    [21] Kurien P, Ikeda M, Valsala V K. Mesoscale variability along the east coast of India in spring as revealed from satellite data and OGCM simulations[J]. Journal of Oceanography, 2010, 66(2): 273−289. doi: 10.1007/s10872-010-0024-x
    [22] Chen Gengxin, Li Yuanlong, Xie Qiang, et al. Origins of eddy kinetic energy in the Bay of Bengal[J]. Journal of Geophysical Research:Oceans, 2018, 123(3): 2097−2115. doi: 10.1002/2017JC013455
    [23] Patnaik K V K R K, Maneesha K, Sadhuram Y, et al. East India Coastal Current induced eddies and their interaction with tropical storms over Bay of Bengal[J]. Journal of Operational Oceanography, 2014, 7(1): 58−68. doi: 10.1080/1755876X.2014.11020153
    [24] Babu M T, Kumar P S, Rao D P. A subsurface cyclonic eddy in the Bay of Bengal[J]. Journal of Marine Research, 1991, 49(3): 403−410. doi: 10.1357/002224091784995846
    [25] Yang Yang, Liang X S. New perspectives on the generation and maintenance of the Kuroshio large meander[J]. Journal of Physical Oceanography, 2019, 49(8): 2095−2113. doi: 10.1175/JPO-D-18-0276.1
    [26] Yang Yang, Weisberg R H, Liu Yonggang, et al. Instabilities and multiscale interactions underlying the loop current eddy shedding in the gulf of Mexico[J]. Journal of Physical Oceanography, 2020, 50(5): 1289−1317. doi: 10.1175/JPO-D-19-0202.1
    [27] Liang X S, Anderson D G M. Multiscale window transform[J]. Multiscale Modeling & Simulation, 2007, 6(2): 437−467.
    [28] Liang X S, Robinson A R. Localized multi-scale energy and vorticity analysis: II. Finite-amplitude instability theory and validation[J]. Dynamics of Atmospheres and Oceans, 2007, 44(2): 51−76. doi: 10.1016/j.dynatmoce.2007.04.001
    [29] Liang X S. Canonical transfer and multiscale energetics for primitive and quasigeostrophic atmospheres[J]. Journal of the Atmospheric Sciences, 2016, 73(11): 4439−4468. doi: 10.1175/JAS-D-16-0131.1
    [30] Masumoto Y, Sasaki H, Kagimoto T, et al. A fifty-year eddy-resolving simulation of the world ocean – Preliminary outcomes of OFES (OGCM for the Earth Simulator)[J]. Journal of the Earth Simulator, 2004, 1: 35−56.
    [31] Sasaki H, Nonaka M, Masumoto Y, et al. An eddy-resolving hindcast simulation of the quasiglobal ocean from 1950 to 2003 on the earth simulator[M]//Hamilton K, Ohfuchi W. High Resolution Numerical Modelling of the Atmosphere and Ocean. New York, NY: Springer, 2008: 157-185.
    [32] Gonaduwage L P, Chen Gengxi, McPhaden M J, et al. Meridional and zonal eddy-induced heat and salt transport in the Bay of Bengal and their seasonal modulation[J]. Journal of Geophysical Research:Oceans, 2019, 124(11): 8079−8101. doi: 10.1029/2019JC015124
    [33] Yang Yang, Liang X S. The intrinsic nonlinear multiscale interactions among the mean flow, low frequency variability and mesoscale eddies in the Kuroshio region[J]. Science China Earth Sciences, 2019, 62(3): 595−608. doi: 10.1007/s11430-018-9289-4
    [34] Renault L, Molemaker M J, McWilliams J C, et al. Modulation of wind work by oceanic current interaction with the atmosphere[J]. Journal of Physical Oceanography, 2016, 46(6): 1685−1704. doi: 10.1175/JPO-D-15-0232.1
    [35] Arbic B K, Müller M, Richman J G, et al. Geostrophic turbulence in the frequency–wavenumber domain: eddy-driven low-frequency variability[J]. Journal of Physical Oceanography, 2014, 44(8): 2050−2069. doi: 10.1175/JPO-D-13-054.1
    [36] Cheng Xuha, McCreary J P, Qiu Bo, et al. Dynamics of eddy generation in the Central Bay of Bengal[J]. Journal of Geophysical Research:Oceans, 2018, 123(9): 6861−6875. doi: 10.1029/2018JC014100
    [37] von Storch J S, Eden C, Fast I, et al. An estimate of the Lorenz energy cycle for the world ocean based on the 1/10° STORM/NCEP simulation[J]. Journal of Physical Oceanography, 2012, 42(12): 2185−2205. doi: 10.1175/JPO-D-12-079.1
  • 加载中
图(9)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  12
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-25
  • 网络出版日期:  2022-06-01

目录

    /

    返回文章
    返回