Effect of environmental factors on CPUE of shrimp trawls along the west coast of Madagascar based on Bayesian networks
-
摘要: 研究渔业资源与环境因子的关系,并了解种群分布对环境变化的响应机制,是养护渔业资源、实现渔业可持续发展的基础。渔业资源丰度和种群分布受多种环境因素影响,但目前的研究更多关注环境因素的直接影响,较少考虑环境因素间的相互作用。为了探索不同环境因素对马达加斯加西海岸虾类资源量的影响机制与路径,本研究使用2014−2020年该海域捕虾拖网数据,采用贝叶斯网络分析了降水、径流等海洋环境因子与3种主捕虾类单位捕捞努力量渔获量(catch per unite effort,CPUE)之间的网络关系,探索在多种环境因子影响下3种虾类CPUE的潜在驱动因素。研究结果表明:降水、径流、海面高度距平(sea surface height anomaly,SSHA)和海表面温度(sea surface temperature,SST)是影响印度白虾CPUE的主要因素,径流、SSHA、 SST和叶绿素a浓度(chlorophyll a concentration,Chl-a)是影响独角新对虾和短沟对虾的CPUE的主要因素;降水通过不同路径影响其它环境因子进而对3种虾类CPUE产生间接影响:降水通过径流、SST和SSHA的途径对印度白虾产生间接影响,但对于独角新对虾和短沟对虾,降水通过径流、SST、SSHA和Chl-a的途径产生间接影响。研究结果揭示了马达加斯加西海岸降水和其它海洋环境因子不仅对3种虾类CPUE产生直接影响,降水还能通过影响其它环境因子对虾类种群资源变动的间接影响途径和机制。Abstract: Investigating the relationship between fishery resources and environmental factors, along with understanding species distribution response mechanisms to environmental changes, provides fundamental insights for fisheries conservation and sustainable management. While both resource abundance and species distribution are influenced by multiple environmental factors, existing research has primarily emphasized direct environmental effects, with insufficient attention to inter-factor interactions. This study examines the mechanisms through which diverse environmental factors affect shrimp resources along Madagascar's western coast, utilizing shrimp trawl fishery data (2014−2020) and Bayesian network analysis to investigate relationships between precipitation, runoff, marine environmental factors, and catch per unit effort (CPUE) of three key shrimp species. Our analysis identified critical drivers of CPUE variation under combined environmental influences. Results demonstrated that precipitation, runoff, sea surface height anomaly (SSHA), and sea surface temperature (SST) predominantly influenced Fenneropenaeus indicus CPUE. For Metapenaeus monoceros and Penaeus semisulcatus, runoff, SSHA, SST, and chlorophyll-a concentration (Chl-a) constituted primary controlling factors. Precipitation exerted indirect effects on all species' CPUE through environmental mediators: impacting F. indicus via runoff-SST-SSHA pathways, while influencing M. monoceros and P. semisulcatus through runoff-SST-SSHA-Chl-a interactions. These findings clarify both direct effects of precipitation and marine environmental factors on shrimp CPUE, and reveal cascading indirect impacts where precipitation modulates population dynamics through environmental intermediaries, elucidating pathway mechanisms underlying these ecological relationships.
-
Key words:
- bayesian networks /
- environmental factors /
- shrimp /
- CPUE /
- precipitation /
- runoff
-
图 4 2014–2020年马达加斯加西海岸3种虾类CPUE和环境变量的月平均变化
a. 印度白虾CPUE(WCPUE); b. 独角新对虾CPUE(BCPUE); c. 短沟对虾CPUE(TCPUE); d. 降水; e. 径流; f. 海表面温度; g. 海表面高度异常; h. 叶绿素-a
Fig. 4 Monthly average variations in CPUE of three shrimp species and environmental variables along the west coast of Madagascar from 2014 to 2020
a. Fenneropenaeus indicus CPUE (WCPUE); b. Metapenaeus monoceros CPUE (BCPUE); c. Penaeus semisulcatus CPUE (TCPUE); d. Precipitation; e. Runoff; f. SST; g. SSHA; h. Chl-a
图 6 3种虾类的贝叶斯网络图(有向无环图及条件概率表,蓝色、红色箭头分别代表正显著和负显著关系)
a. WCPUE(印度白虾)<10; b. WCPUE(印度白虾)≥10; c. BCPUE(独角新对虾)<10; d. BCPUE(独角新对虾)≥10; e. TCPUE(短沟对虾)<5; f. TCPUE(短沟对虾)≥5
Fig. 6 Bayesian Network of three shrimp species (DAGs and CPTs, blue and red arrows represent positive and negative significance relationship respectively)
a. WCPUE(F. indicus)<10; b. WCPUE(F. indicus)≥10; c. BCPUE(M. monoceros)<10; d. BCPUE(M. monoceros)≥10; e. TCPUE(P. semisulcatus)<5; f. TCPUE(P. semisulcatus)≥5
表 1 环境变量的描述性统计
Tab. 1 Descriptive statistics of environment variables
环境变量
Variable均值
Mean标准差
SD最大值
Max.最小值
Min.降水 Precipitation/(mm∙d−1) 1.18 2.44 15.03 0 径流 Runoff/(kg∙m−2) 0.40 0.98 5.31 0 海表面温度 SST/℃ 27.54 1.63 30.82 23.72 海面高度异常 SSHA/cm 0.06 0.05 0.34 −0.11 叶绿素a浓度 Chl-a/(mg∙L−1) 1.80 1.69 11.38 0.10 表 2 所有变量及其离散化区间
Tab. 2 All variables and their discretization intervals
降水
Precipitation/
(mm∙d−1)径流
Runoff/
(kg∙m-2)海表面
温度
SST/℃海表面高
度异常
SSHA/cm叶绿素-a
Chl-a/
(mg∙L−1)印度白虾
WCPUE/
(kg∙h−1)独角新对虾
BCPUE/
(kg∙h−1)短沟对虾
TCPUE/
(kg∙h−1)x=0 x=0 x<27 x<0 x<3 x<10 x<10 x<5 x>0 x>0 x≥27 x≥0 x≥3 x≥10 x≥10 x≥5 -
[1] Caverivière A, Chaboud C, Rafalimanana T, et al. Les Crevettes Côtières de Madagascar: Biologie, Exploitation, Gestion[M]. Marseille: IRD Éditions, 2017. [2] Fourmanoir P. Nouvelles expériences de pêche du Gabriel-II effectuées du 24 juillet[J]. Bulletin de Madagascar, 1952(52): 17−21. [3] Farfante I P, Kensley B. Penaeoid and Sergestoid Shrimps and Prawns of the World[M]. Paris: Mémoires Du Museum National D'histoire Naturelle, 1997. [4] De Young C. Review of the State of World Marine Capture Fisheries Management: Indian Ocean / Edited by Cassandra de Young[M]. Rome: Food and Agriculture Organization of the United Nations, 2006. [5] Manach F L, Gough C, Harris A, et al. Unreported fishing, hungry people and political turmoil: the recipe for a food security crisis in Madagascar?[J]. Marine Policy, 2012, 36(1): 218−225 [6] Aeinjamshid K, Fazelpoor K, Rabbaniha M, et al. Identification of shrimp potential fishing zones in the northern part of the Persian Gulf using the Fuzzy Overlay model for integrating satellite and ground-based data[J]. Iranian Journal of Fisheries Sciences, 2023, 22(4): 907−924. [7] Díaz-Ochoa J A, Quiñones R A. Relationship of precipitation, freshwater input, and sea level height with the abundance of the white shrimp (Litopenaeus occidentalis; Street, 1871) off Buenaventura, eastern tropical Pacific[J]. Fisheries Research, 2008, 92(2−3): 148−161. doi: 10.1016/j.fishres.2008.01.002 [8] Grimes C B. Fishery production and the Mississippi River discharge[J]. Fisheries, 2001, 26(8): 17−26. doi: 10.1577/1548-8446(2001)026<0017:FPATMR>2.0.CO;2 [9] Erzini K. Trends in NE Atlantic landings (southern Portugal): identifying the relative importance of fisheries and environmental variables[J]. Fisheries Oceanography, 2005, 14(3): 195−209. doi: 10.1111/j.1365-2419.2005.00332.x [10] Doney S C. The growing human footprint on coastal and open-ocean biogeochemistry[J]. Science, 2010, 328: 1512−1516. doi: 10.1126/science.1185198 [11] Najjar R G, Pyke C R, Adams M B, et al. Potential climate-change impacts on the Chesapeake Bay[J]. Estuarine, Coastal and Shelf Science, 2010, 86(1): 1−20. doi: 10.1016/j.ecss.2009.09.026 [12] Gracia A. Relationship between environmental factors and white shrimp abundance in the southwestern Gulf of Mexico[J]. Anales del Instituto Ciencias del Mar y Limnología, 1989, 16(1): 171−182. [13] Evans C, Opnai L J, Kare B D. Fishery ecology and oceanography of the prawn Penaeus merguiensis (de Man) in the Gulf of Papua: estimation of maximum sustainable yield and modelling of yield, effort and rainfall[J]. Marine and Freshwater Research, 1997, 48(3): 219−228. doi: 10.1071/MF94222 [14] Tucker S, Thiess M S, Morris J F T, et al. Coastal distribution and consequent factors influencing production of endangered Snake River sockeye salmon[J]. Transactions of the American Fisheries Society, 2015, 144(1): 107−123. doi: 10.1080/00028487.2014.968292 [15] 唐浩, 许柳雄, 陈新军, 等. 基于GAM模型研究时空及环境因子对中西太平洋鲣鱼渔场的影响[J]. 海洋环境科学, 2013, 32(4): 518−522.Tang Hao, Xu Liuxiong, Chen Xinjun, et al. Effects of spatiotemporal and environmental factors on the fishing ground of skipjack tuna (Katsuwonus pelamis) in the Western and Central Pacific Ocean based on generalized additive model[J]. Marine Environmental Science, 2013, 32(4): 518−522. [16] Gu Yixin, Wang Lifei, Lyu S L, et al. Assessing potential driving factors of the ecosystem service value of mariculture shellfish in China using a structural equation modeling approach[J]. Frontiers in Marine Science, 2023, 10: 1232211. doi: 10.3389/fmars.2023.1232211 [17] 廖祖军, 王学锋, 周艳波, 等. 基于结构方程模型分析海洋环境因子对南海鸢乌贼的影响[J]. 南方水产科学, 2024, 20(2): 11−18.Liao Zujun, Wang Xuefeng, Zhou Yanbo, et al. Analysis of effects of environmental factors on Sthenoteuthis oualaniensis based on structural equation model[J]. South China Fisheries Science, 2024, 20(2): 11−18. [18] 张颖, 王旭红, 冯子豪, 等. 基于SEM模型的热环境时空特征及影响因素分析: 以西安都市圈为例[J]. 环境科学, 2024, 45(6): 3734−3745.Zhang Ying, Wang Xuhong, Feng Zihao, et al. Spatiotemporal pattern and influencing factors of thermal environment based on SEM model: a case study in Xi'an metropolitan area[J]. Environmental Science, 2024, 45(6): 3734−3745. [19] Hertz E, Trudel M, Tucker S, et al. Influences of ocean conditions and feeding ecology on the survival of juvenile Chinook Salmon (Oncorhynchus tshawytscha)[J]. Fisheries oceanography, 2016, 25(4): 407−419. doi: 10.1111/fog.12161 [20] Araujo H A, Holt C, Curtis J M, et al. Building an ecosystem model using mismatched and fragmented data: a probabilistic network of early marine survival for coho salmon Oncorhynchus kisutch in the Strait of Georgia[J]. Progress in Oceanography, 2013, 115: 41−52. doi: 10.1016/j.pocean.2013.05.022 [21] Malick M J, Cox S P, Peterman R M, et al. Accounting for multiple pathways in the connections among climate variability, ocean processes, and coho salmon recruitment in the Northern California Current[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2015, 72(10): 1552−1564. doi: 10.1139/cjfas-2014-0509 [22] 马有成, 黄斌, 张健, 等. 马达加斯加西海岸3种虾类CPUE时空分布及其与环境因子关系[J]. 海洋渔业, 2024, 46(5): 540−550.Ma Youcheng, Huang Bin, Zhang Jian, et al. Temporal and spatial distribution of CPUE in three species of shrimps and its relationship with environmental factors along the west coast of Madagascar[J]. Marine Fisheries, 2024, 46(5): 540−550. [23] Nagarajan R, Scutari M, Lèbre S. Bayesian Networks in R[M]. New York: Springer, 2013, 122: 125-127. [24] Pearl J. Bayesian networks A model of self-activated memory for evidential reasoning[C]//Proceedings of the 7th Conference of the Cognitive Science Society. Irvine: University of California, 1985: 15−17. [25] Uusitalo L. Advantages and challenges of Bayesian networks in environmental modelling[J]. Ecological modelling, 2007, 203(3/4): 312−318. [26] 张省宇. 马达加斯加西海岸海洋环境因子与主要虾类CPUE的关系[D]. 上海: 上海海洋大学, 2015.Zhang Shengyu. The relation between marine environment factor and the CPUE of main shrimp and prawn in inshore west of Madagascar[D]. Shang Hai: Shanghai Ocean University, 2015. [27] Scutari M. Bayesian network constraint-based structure learning algorithms: parallel and optimized implementations inthe bnlearn R Package[J]. Journal of Statistical Software, 2017, 77(2): 1−20. [28] Le Reste L, Marcille J. Biologie de la crevette Penaeus indicus H. Milne Edwards à Madagascar: croissance, recrutement, migrations reproduction, mortalité: contribution à l'étude d'une baie eutrophique tropicale[J]. Cahiers ORSTOM. Série Océanographie, 1976, 14(2): 109−127. [29] Crocos P J, Van der Velde T D. Seasonal, spatial and interannual variability in the reproductive dynamics of the grooved tiger prawn Penaeus semisulcatus in Albatross Bay, Gulf of Carpentaria, Australia: the concept of effective spawning[J]. Marine Biology, 1995, 122(4): 557−570. doi: 10.1007/BF00350678 [30] Whitfield A. A characterization of southern African estuarine systems[J]. Southern African Journal of Aquatic Sciences, 1992, 24(1/2): 86−98. [31] Chang Jian, Wei Jie, Wang Yimin, et al. Precipitation and runoff variations in the Yellow River Basin of China[J]. Journal of Hydroinformatics, 2017, 19(1): 138−155. doi: 10.2166/hydro.2016.047 [32] Caddy J F, Bakun A. A tentative classification of coastal marine ecosystems based on dominant processes of nutrient supply[J]. Ocean & Coastal Management, 1994, 23(3): 201−211. [33] Cowley P, Whitfield A, Bell K. The surf zone ichthyoplankton adjacent to an intermittently open estuary, with evidence of recruitment during marine overwash events[J]. Estuarine, Coastal and Shelf Science, 2001, 52(3): 339−348. doi: 10.1006/ecss.2000.0710 [34] Vanza J G, Solanki H G, Borichangar R V, et al. Effect of different salinities levels on growth and survival of Indian white shrimp (Fenneropenaeus indicus)[J]. International Journal of Current Microbiology and Appied Sciences, 2018, 7(7): 2295−2304. doi: 10.20546/ijcmas.2018.707.268 [35] Niamaimandi N, Arshad A B, Daud S K, et al. Population dynamic of green tiger prawn, Penaeus semisulcatus (De Haan) in Bushehr coastal waters, Persian Gulf[J]. Fisheries Research, 2007, 86(2/3): 105−112. [36] Amores A, Rueda L, Monserrat S, et al. Influence of the hydrodynamic conditions on the accessibility of Aristeus antennatus and other demersal species to the deep water trawl fishery off the Balearic Islands (western Mediterranean)[J]. Journal of Marine Systems, 2014, 138: 203−210. doi: 10.1016/j.jmarsys.2013.11.014 [37] Zhang Xiaolin, Takashi M. Climate mode impacts on the sea surface height anomaly in the Indian Ocean[J]. ESS Open Authorea Preprints, 2022. [38] Huang Ruixin, Jin Xiangze. Sea surface elevation and bottom pressure anomalies due to thermohaline forcing. Part I: Isolated perturbations[J]. Journal of Physical Oceanography, 2002, 32(7): 2131−2150. doi: 10.1175/1520-0485(2002)032<2131:SSEABP>2.0.CO;2 [39] Zhang Xiaolin, Clarke A J. Observations of interannual equatorial freshwater jets in the western Pacific[J]. Journal of Physical Oceanography, 2015, 45(11): 2848−2865. doi: 10.1175/JPO-D-14-0245.1 [40] Cota-Durán A, Petatán-Ramírez D, Ojeda-Ruiz M Á, et al. Potential impacts of climate change on shrimps distribution of commercial importance in the Gulf of California[J]. Applied Sciences, 2021, 11(12): 5506. doi: 10.3390/app11125506 [41] El-Damhogy K A E, Heneash A M M, Ahmed E. Impact of water temperature and salinity on the distribution and abundance of shrimp (Crustacean: Decapoda) at Lake Burullus, Egypt[J]. International Journal of Ecotoxicology and Ecobiology, 2016, 2(1): 1−7. [42] Rao G S, Radhakrishnan E, Josileen J. Handbook of Marine Prawns of India[M]. Kochi: ICAR-Central Marine Fisheries Research Institute, 2013. [43] 赵静, 梁金玲, 周曦杰, 等. 基于GAM模型的马鞍列岛海域优势甲壳类与环境因子的关系研究[J]. 南方水产科学, 2017, 13(3): 26−35.Zhao Jing, Liang Jinling, Zhou Xijie, et al. Research on relationship between dominant crustacean species and environmental factors based on GAM[J]. South China Fisheries Science 2017, 13(3): 26−35. [44] Wu Renguang. Summer precipitation–SST relationship on different time scales in the northern tropical Indian Ocean and western Pacific[J]. Climate Dynamics, 2019, 52(9/10): 5911−5926. [45] Chen Jiepeng, Wang Xin, Zhou Wen, et al. Interdecadal change in the summer SST-precipitation relationship around the late 1990s over the South China Sea[J]. Climate Dynamics, 2018, 51(5/6): 2229−2246. [46] Druon J N, Chassot E, Murua H, et al. Preferred feeding habitat of skipjack tuna in the eastern central Atlantic and western Indian Oceans: relations with carrying capacity and vulnerability to purse seine fishing[C]. Seychelles: IOTC Proceedings. IOTC, 2016: 18−31. [47] Syah A, Ni’am A, Jatisworo D. Potential fishing grounds of Skipjack tuna (Katsuwonus pelamis) in western water of Sumatera using remotely sensed data and maximum entropy model[J]. Bristol: IOP Conference Series: Earth and Environmental Science, 2023, 1251(1): 012066. doi: 10.1088/1755-1315/1251/1/012066 [48] 王建城. 莫桑比克海峡捕虾拖网渔场时空分布及虾类资源丰度与环境因子的关系[D]. 上海: 上海海洋大学, 2023.Wang Jiancheng. Spatial and temporal distribution of shrimp trawl fishing grounds in the Mozambique Channel and the relationship between shrimpre source abundance and environmental factor[D]. Shang Hai: Shanghai Ocean University, 2023. [49] Shafeeque M, Shah P, Platt T, et al. Effect of precipitation on chlorophyll-a in an upwelling dominated region along the west coast of India[J]. Journal of Coastal Research, 2019, 86(sp1): 218−224. doi: 10.2112/SI86-032.1 -