留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种多源卫星遥感海面风场融合准实时数据产品

邹巨洪 林文明 吕思睿 王志雄 林明森

邹巨洪,林文明,吕思睿,等. 一种多源卫星遥感海面风场融合准实时数据产品[J]. 海洋学报,2025,47(x):1–10
引用本文: 邹巨洪,林文明,吕思睿,等. 一种多源卫星遥感海面风场融合准实时数据产品[J]. 海洋学报,2025,47(x):1–10
Zou Juhong,Lin Wenming,Lu Sirui, et al. A near-real-time blended sea surface wind data product from multiple satellites[J]. Haiyang Xuebao,2025, 47(x):1–10
Citation: Zou Juhong,Lin Wenming,Lu Sirui, et al. A near-real-time blended sea surface wind data product from multiple satellites[J]. Haiyang Xuebao,2025, 47(x):1–10

一种多源卫星遥感海面风场融合准实时数据产品

基金项目: 国家重点研发计划项目2021YFB3900403。
详细信息
    作者简介:

    邹巨洪(1981—),男,籍贯,副研究员,主要从事……的研究

A near-real-time blended sea surface wind data product from multiple satellites

  • 摘要: 介绍了一种业务化发布的多源卫星遥感海面风场融合准实时数据产品(Blended Sea Surface Wind Data Product From Multiple Satellites,BSSW),以及该数据产品的处理方法,并分析了产品精度。该数据产品以HY-2系列卫星、Metop系列卫星和DMSP系列卫星等组成的虚拟卫星星座观测海面风场/风速产品为输入,通过叉标定和误差分析,以及二维变分分析等处理,实现了时间分辨率为6 h,空间分辨率为25 km的多源卫星主被动遥感海面风场融合产品业务化生产,并通过国家卫星海洋卫星应用中心准实时发布。该数据与浮标数据比对总体风速均方根误差小于1.6 m/s,风向均方根误差小于19°;与ERA5数据比对总体风速均方根误差小于1.2 m/s,风向均方根误差小于11°。精度检验结果表明,海面风场融合产品与浮标观测和ERA5再分析海面风场数据产品具有很高的一致性,可为海洋与大气数值模式资料同化预报、海洋防灾减灾与海洋科学研究提供高质量,无缝隙的全球海面风场数据支撑。
  • 图  1  多源卫星遥感海面风场融合流程图

    Fig.  1  Flow chart of the blended sea surface wind data product from multiple satellites

    图  2  散射计风场质量等级划分示意图

    Fig.  2  Schematic diagram of quality category for scatterometer wind field

    图  3  背景风场误差相关函数

    Fig.  3  Background wind field error correlation function

    图  4  2022年9月13日00时刻海面风场融合结果空间分布(a,黑色实线为CMA最佳路径分析结果),融合风场u分量(b)v分量(c)相对ECMWF背景场的偏差

    Fig.  4  Spatial distribution of blended sea surface wind (a, black solid line corresponds to the CMA best path analysis result), the deviation of the blended sea surface wind u component (b) and v component (c) relative to the ECMWF background field on September 13, 2022 UTC 00:00

    图  5  2023年度融合风场与浮标风场风速(a)与风向(b)比对散点密度图

    Fig.  5  Scatter density plot of wind speed (a) and direction (b) comparison between blended winds and buoy winds during the year of 2023

    图  6  融合风场与浮标风场2023年度风速(a)与风向(b)比对均方根误差空间分布图‌

    Fig.  6  Spatial distribution‌ of standard deviation for wind speed (a) and direction (b) comparison between blended winds and buoy winds during the year of 2023

    图  7  融合风场在2023年各月风速(a)与风向(b)均方根误差与偏差时间序列

    Fig.  7  Time series of standard deviation and bias of wind speed (a) and direction (b) for each month of the blended wind during the year of 2023

    图  8  2023年度融合风场与ERA5 比对的风速均分根误差(a)、偏差(b)与风向均方根误差(c)、偏差(d)空间分布图

    Fig.  8  Spatial distribution of the root mean square error (a) and bias (b) of wind speed as well as the root mean square error (c) and bias (d) of wind direction in the comparison between the blended winds and buoy winds in January 2023.

    图  9  融合风场与ERA5风场2023年1月风速(a)与风向(b)对比散点密度图

    Fig.  9  Scatter density plot of wind speed (a) and direction (b) of the blended winds comparing to ERA5 winds in January 2023

    图  10  融合风场(红色)与ERA5(黑色)风速分布直方图

    Fig.  10  Probability density the blended wind speed (red) and ERA5 wind speed(black)

    表  1  BSSW产品使用的微波散射计沿轨海面风场数据

    Tab.  1  Microwave scatterometer rev. winds data used in BSSW product

    卫星 载荷 发布机构 起始时间 产品 分辨率 刈幅
    HY-2B HSCAT NSOAS 2018.10 风场 25 km 1700 km
    HY-2C HSCAT NSOAS 2020.09 风场 25 km 1700 km
    HY-2D HSCAT NSOAS 2021.05 风场 25 km 1700 km
    CFOSAT CSCAT NSOAS 2018.10 风场 25 km 1000 km
    Metop-B ASCAT EUTMETSAT 2012.09 风场 25 km 500 km×2
    Metop-C ASCAT EUTMETSAT 2018.11 风场 25 km 500 km×2
    下载: 导出CSV

    表  2  BSSW产品使用的微波辐射计海面风速数据

    Tab.  2  Microwave radiometer wind speed data used in BSSW product

    卫星 载荷 发布机构 起始时间 产品 分辨率 刈幅
    GCOM-W1 AMSR-2 RSS 2012.05 风速 ~25 km 1000 km
    F16 SSMIS RSS 2003.10 风速 ~25 km 1000 km
    F17 SSMIS RSS 2006.12 风速 ~25 km 1000 km
    F18 SSMIS RSS 2009.10 风速 ~25 km 1000 km
    下载: 导出CSV
  • [1] GCOS. Implementation plan for the global observing system for climate in support of the UNFCCC[R]. GCOS-138, Geneva: GCOS, 2010.
    [2] Marseille G, Stoffelen A. Toward scatterometer winds assimilation in the mesoscale HARMONIE model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(5): 2383−2393. doi: 10.1109/JSTARS.2016.2640339
    [3] Valkonen T, Schyberg H, Figa-Saldaña J. Assimilating Advanced Scatterometer winds in a high-resolution limited area model over Northern Europe[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(5): 2394−2405. doi: 10.1109/JSTARS.2016.2602889
    [4] Atlas R, Hoffman R N, Bloom S C, et al. A multiyear global surface wind velocity dataset using SSM/I wind observations[J]. Bulletin of the American Meteorological Society, 1996, 77(5): 869−882. doi: 10.1175/1520-0477(1996)077<0869:AMGSWV>2.0.CO;2
    [5] Atlas R, Hoffman R N, Ardizzone J, et al. A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications[J]. Bulletin of the American Meteorological Society, 2011, 9(2): 157−174.
    [6] Yu Lisan, Jin Xiangze. Insights on the OAFlux ocean surface vector wind analysis merged from scatterometers and passive microwave radiometers (1987 onward)[J]. Journal of Geophysical Research: Oceans, 2014, 119(8): 5244−5269. doi: 10.1002/2013JC009648
    [7] Zhang Huaimin, Reynolds R W, Bates J J. Blended and gridded high resolution global sea surface wind speed and climatology from multiple satellites: 1987-present[C]//Proceedings of the 14th Conference on Satellite Meteorology and Oceanography. Atlanta: American Meteorological Society, 2006.
    [8] NCEP/NOAA. Global data assimilation system[R/OL]. NESDIS, NOAA. http://www.ncep.noaa.gov/. (查阅网上资料,未找到本条文献信息且网址打不开,请确认)
    [9] Wentz F J, Scott J, Hoffman R. et al. Remote sensing systems cross-calibrated multi-platform (CCMP) 6-hourly ocean vector wind analysis product on 0.25 deg grid, Version 3.1[R]. Santa Rosa, CA: Remote Sensing Systems, 2022. (查阅网上资料, 未找到对应的作者信息, 请确认)
    [10] Mears C A, Scott J, Wentz F J, et al. A near-real-time version of the cross-calibrated multiplatform (CCMP) ocean surface wind velocity data set[J]. Journal of Geophysical Research: Oceans, 2019, 124(10): 6997−7010. doi: 10.1029/2019JC015367
    [11] 高健. 多源测风资料融合技术研究[D]. 杭州: 杭州师范大学, 2015.

    Gao Jian. Research on multi-source wind data fusion technology[D]. Hangzhou: Hangzhou Normal University, 2015.
    [12] 许遐祯, 高健, 张康宇, 等. 基于多源数据的中国近海风场融合方法研究[J]. 杭州师范大学学报(自然科学版), 2016, 15(3): 325−330.

    Xu Xiazhen, Gao Jian, Zhang Kangyu, et al. Fusion method of China's offshore wind field based on multi-source data[J]. Journal of Hangzhou Normal University (Natural Science Edition), 2016, 15(3): 325−330.
    [13] 项杰, 王慧鹏, 王春明, 等. 南海海面风场变分融合的初步研究[J]. 热带气象学报, 2015, 31(2): 153−160.

    Xiang Jie, Wang Huipeng, Wang Chunming, et al. Preliminary study on variational blending of surface vector winds in South China sea[J]. Journal of Tropical Meteorology, 2015, 31(2): 153−160.
    [14] Liu W T, Katsaros K B, Businger J A. Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface[J]. Journal of the Atmospheric Sciences, 1979, 36(9): 1722−1735. doi: 10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2
    [15] 吕思睿, 林文明, 邹巨洪, 等. 多源卫星遥感海面风速误差分析和交叉标定[J]. 海洋学报, 2023, 45(5): 118−128.

    Lü Sirui, Lin Wenming, Zou Juhong, et al. Error quantification and cross calibration of sea surface wind speeds from multiple remote sensing satellites[J]. Haiyang Xuebao, 2023, 45(5): 118−128.
    [16] Vogelzang J, King G P, Stoffelen A. Spatial variances of wind fields and their relation to second-order structure functions and spectra[J]. Journal of Geophysical Research: Oceans, 2015, 120(2): 1048−1064. doi: 10.1002/2014JC010239
    [17] Hoffman R N, Leidner S M, Henderson J M, et al. A two-dimensional variational analysis method for NSCAT ambiguity removal: methodology, sensitivity, and tuning[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(5): 585−605. doi: 10.1175/1520-0426(2003)20<585:ATDVAM>2.0.CO;2
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  13
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-26
  • 修回日期:  2025-01-14
  • 网络出版日期:  2025-02-12

目录

    /

    返回文章
    返回