留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄河三角洲近岸潮汐动力对地貌演变的响应及其沉积效应

龚雪雷 姬泓宇 李鹏 陈沈良

龚雪雷,姬泓宇,李鹏,等. 黄河三角洲近岸潮汐动力对地貌演变的响应及其沉积效应[J]. 海洋学报,2024,46(2):64–78 doi: 10.12284/hyxb2024021
引用本文: 龚雪雷,姬泓宇,李鹏,等. 黄河三角洲近岸潮汐动力对地貌演变的响应及其沉积效应[J]. 海洋学报,2024,46(2):64–78 doi: 10.12284/hyxb2024021
Gong Xuelei,Ji Hongyu,Li Peng, et al. Response of tidal dynamics to geomorphic evolution and depositional effects in the Huanghe River Delta[J]. Haiyang Xuebao,2024, 46(2):64–78 doi: 10.12284/hyxb2024021
Citation: Gong Xuelei,Ji Hongyu,Li Peng, et al. Response of tidal dynamics to geomorphic evolution and depositional effects in the Huanghe River Delta[J]. Haiyang Xuebao,2024, 46(2):64–78 doi: 10.12284/hyxb2024021

黄河三角洲近岸潮汐动力对地貌演变的响应及其沉积效应

doi: 10.12284/hyxb2024021
基金项目: 中国博士后科学基金第73批面上资助(2023M731092);国家自然科学基金项目(U1706214)。
详细信息
    作者简介:

    龚雪雷(1998—),女,江苏省南通市人,主要从事海岸动力地貌与工程应用研究。E-mail:51253904068@stu.ecnu.edu.cn

    通讯作者:

    陈沈良(1964—),男,浙江省海盐县人,教授,主要从事河口海岸学及其应用研究。E-mail: slchen@sklec.ecnu.edu.cn

  • 中图分类号: P736.21+3

Response of tidal dynamics to geomorphic evolution and depositional effects in the Huanghe River Delta

  • 摘要: 近年来自然过程和人类活动显著改变了黄河入海流路以及近岸地貌格局,而剧烈的地貌演变对近岸水动力环境的影响尚未得到充分研究。为厘清近30年来黄河三角洲近岸水文动力格局对地貌演变的响应过程,本文基于Landsat系列遥感影像和多期测深数据,分析了1992–2020年黄河三角洲岸线和地形变化,并采用TELEMAC-2D建立了多套覆盖整个渤海的数值模型,研究了地貌演变对黄河三角洲邻近海域潮汐动力的影响及其沉积效应。结果表明,黄河三角洲近岸冲淤格局呈现显著的时空异质性,分布多个淤积和侵蚀中心,且2000–2020年南侧老清水沟外侵蚀中心向南移动9.6 km,1992–2015年北侧刁口河口外侵蚀中心东移6.4 km。中长时间尺度黄河三角洲岸线和地形变化主导了潮汐动态,三角洲北部刁口河口近岸潮差减小,清水沟河口外潮差增大,5 m水深处的潮差变化增大幅度达0.27 m;黄河口近岸K1分潮振幅显著增加,M2分潮振幅明显减小,东营港附近无潮点向东迁移3.8 km。刁口河口和老河口外高流速区持续减弱,现行河口外逐渐发育形成另一高流速区,持续稳定的高流速区造成了水下三角洲的冲刷,南北侧高流速区沉积物粗化。
  • 图  1  研究区概况

    a. 黄河流域;b. 黄河三角洲及其邻近海域

    Fig.  1  Sketch map of the study area

    a. The Huanghe River Basin; b. the Huanghe River Delta and its adjacent seas

    图  2  测深站点和地形插值结果(a)和沉积物粒径采样点分布(b)

    Fig.  2  Distributions of bathymetric surveying stations and interpolated bathymetry (a) and surface sediment sampling sites (b)

    图  4  部分研究区域边缘点分布图(a),研究区局地图(b),PlanetScope影像边缘点细节图(c)和Landsat影像边缘点细节图(d)

    Fig.  4  Layout of edge-points in the part of study area (a), local thumbnails (b), edge-points details of PlanetScope (c) and edge-points details of Landsat images (d)

    图  3  模型网格与测站位置

    Fig.  3  Model grid and location of in-situ observation stations

    图  5  2009年和2018年模型计算水位与潮位站观测结果对比

    Fig.  5  Comparisons between the simulated water elevation and the observed values in 2009 and 2018

    图  6  模型模拟2007年渤海分潮同潮

    Fig.  6  Simulated co-tidal charts of tidal constituents in the Bohai Sea in 2007

    图  7  模型计算结果与观测站点流速流向对比

    Fig.  7  Comparisons of model computed and station measured current velocity and direction

    图  8  1992−2020年黄河三角洲岸线动态变化

    Fig.  8  Shoreline dynamics of the Huanghe River Delta from 1992 to 2020

    图  9  黄河三角洲近岸水深典型断面位置及D1−D4断面水深变化

    Fig.  9  Location of bathymetry profiles of the Huanghe River Delta and variations of selected cross-shore profiles of D1−D4

    图  10  1992–2020年黄河水下三角洲地貌演变过程

    Fig.  10  Morphological changes of the Huanghe River Subaqueous Delta of 1992−2020

    图  11  1992–2000年(a)和2007–2020年(b)渤海平均潮差分布

    Fig.  11  Tidal ranges in the Bohai Sea during 1992–2000 (a) and 2007–2020 (b)

    图  12  黄河三角洲近岸等距离潮差提取点位置(a)和对应潮差变化(b)

    Fig.  12  Locations of equidistant points along the Huanghe River Delta (a) and changes in tidal range (b)

    图  13  1992年与2020年K1、M2振幅和相位对比图

    Fig.  13  Changes in M2 and K1 tidal amplitudes and phases between 1992 and 2020

    图  14  1992年与2000–2020年各年份M2分潮振幅差对比

    Fig.  14  Changes in M2 tidal amplitudes between 1992 and 2000–2020

    图  15  黄河三角洲近岸涨急的流场分布

    Fig.  15  Velocity distributions at maximum flood phases in the Huanghe River Delta

    图  16  黄河三角洲表层沉积物中值粒径空间分布

    Fig.  16  Spatial distribution of median grain size of surface sediment in the Huanghe River Delta

    表  1  卫星遥感影像和潮高

    Tab.  1  List of different satellite date and tidal heights

    编号成像时间卫星传感器潮高/cm编号成像时间传感器潮高/cm
    11992年8月24日TM95.30112007年5月14日TM120.80
    21992年9月25日TM112.95122007年5月30日TM118.8
    31992年11月12日TM62.30132015年3月1日OLI_TIRS82.73
    41992年12月14日TM38.55142015年5月4日OLI_TIRS96.15
    52000年2月4日TM85.75152015年10月11日OLI_TIRS112.32
    62000年2月20日TM74.00162015年10月27日OLI_TIRS96.83
    72000年3月7日TM67.00172020年5月1日OLI_TIRS144.37
    82000年4月8日TM93.20182020年5月17日OLI_TIRS133.27
    92007年2月7日TM52.00192020年7月20日OLI_TIRS138.22
    102007年3月11日TM70.00202020年10月24日OLI_TIRS42.80
    下载: 导出CSV

    表  2  精度验证结果

    Tab.  2  Results of accuracy verification

    类型非水体水体小计用户精度总体精度Kappa系数
    非水体118131310.901
    水体41091130.965
    小计1221222440.9300.861
    生产者精度0.9670.893
    下载: 导出CSV

    表  3  黄河水下三角洲冲淤体积和速率

    Tab.  3  Erosion/accretion volumes and rates at the Huanghe River Subaqueous Delta

    时间 淤积/% 侵蚀/% 淤积量/(108 m3 侵蚀量/(108 m3 净变化/(108 m3 净变化率/(108m3·a−1
    1992−2000年 73 27 80.54 30.11 50.43 6.30
    2000−2007年 15 85 16.61 94.26 −77.66 −11.09
    2007−2015年 77 23 86.33 25.19 61.14 7.64
    2015−2020年 31 69 10.50 23.80 −13.29 −2.66
    下载: 导出CSV
  • [1] Arkema K K, Guannel G, Verutes G, et al. Coastal habitats shield people and property from sea-level rise and storms[J]. Nature Climate Change, 2013, 3(10): 913−918. doi: 10.1038/nclimate1944
    [2] Konlechner T M, Kennedy D M, O’Grady J J, et al. Mapping spatial variability in shoreline change hotspots from satellite data; a case study in Southeast Australia[J]. Estuarine, Coastal and Shelf Science, 2020, 246: 107018. doi: 10.1016/j.ecss.2020.107018
    [3] Temmerman S, Meire P, Bouma T J, et al. Ecosystem-based coastal defence in the face of global change[J]. Nature, 2013, 504(7478): 79−83. doi: 10.1038/nature12859
    [4] Pardo-Pascual J E, Almonacid-Caballer J, Ruiz L A, et al. Automatic extraction of shorelines from Landsat TM and ETM+ multi-temporal images with subpixel precision[J]. Remote Sensing of Environment, 2012, 123: 1−11. doi: 10.1016/j.rse.2012.02.024
    [5] Jabaloy-Sánchez A, Lobo F J, Azor A, et al. Human-driven coastline changes in the Adra River deltaic system, Southeast Spain[J]. Geomorphology, 2010, 119(1/2): 9−22.
    [6] Dai Zhijun, Liu J T, Wei Wen, et al. Detection of the three gorges dam influence on the Changjiang (Yangtze River) submerged delta[J]. Scientific Reports, 2014, 4(1): 6600. doi: 10.1038/srep06600
    [7] Jiang Chao, Chen Shenliang, Pan Shuqi, et al. Geomorphic evolution of the Yellow River Delta: quantification of basin-scale natural and anthropogenic impacts[J]. CATENA, 2018, 163: 361−377. doi: 10.1016/j.catena.2017.12.041
    [8] Byun D S, Wang X H, Holloway P E. Tidal characteristic adjustment due to dyke and seawall construction in the Mokpo coastal zone, Korea[J]. Estuarine, Coastal and Shelf Science, 2004, 59(2): 185−196. doi: 10.1016/j.ecss.2003.08.007
    [9] Takekawa J Y, Woo I, Spautz H, et al. Environmental threats to tidal-marsh vertebrates of the San Francisco Bay Estuary[J]. Avian Biology, 2006, 32: 176−197.
    [10] Blum M D, Roberts H H. Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise[J]. Nature Geoscience, 2009, 2(7): 488−491. doi: 10.1038/ngeo553
    [11] Maloney J M, Bentley S J, Xu Kehui, et al. Mississippi River subaqueous delta is entering a stage of retrogradation[J]. Marine Geology, 2018, 400: 12−23. doi: 10.1016/j.margeo.2018.03.001
    [12] 杨世伦, 朱骏, 李鹏. 长江口前沿潮滩对来沙锐减和海面上升的响应[J]. 海洋科学进展, 2005, 23(2): 152−158. doi: 10.3969/j.issn.1671-6647.2005.02.005

    Yang Shilun, Zhu Jun, Li Peng. Response of tidal bank on the Changjiang River mouth forel and to drastic decline in riverine sediment supply and sea level rise[J]. Advances in Marine Science, 2005, 23(2): 152−158. doi: 10.3969/j.issn.1671-6647.2005.02.005
    [13] 郭磊城, 朱春燕, 何青, 等. 长江河口潮波时空特征再分析[J]. 海洋通报, 2017, 36(6): 652−661.

    Guo Leicheng, Zhu Chunyan, He Qing, et al. Examination of tidal wave properties in the Yangtze River Estuary[J]. Marine Science Bulletin, 2017, 36(6): 652−661.
    [14] 陈道信, 陈木永, 张弛. 围垦工程对温州近海及河口水动力的影响[J]. 河海大学学报(自然科学版), 2009, 37(4): 457−462.

    Chen Daoxin, Chen Muyong, Zhang Chi. Influence of reclamation projects on hydrodynamic force in offshore and estuary of Wenzhou[J]. Journal of Hohai University (Natural Sciences), 2009, 37(4): 457−462.
    [15] 陈沈良, 谷硕, 姬泓宇, 等. 新入海水沙情势下黄河口的地貌演变[J]. 泥沙研究, 2019, 44(5): 60−66.

    Chen Shenliang, Gu Shuo, Ji Hongyu, et al. Processes of the Yellow River Mouth on new water and sediment condition[J]. Journal of Sediment Research, 2019, 44(5): 60−66.
    [16] 杨洋, 陈沈良, 徐丛亮. 黄河口滨海区冲淤演变与潮流不对称[J]. 海洋学报, 2021, 43(6): 13−25.

    Yang Yang, Chen Shenliang, Xu Congliang. Morphodynamics and tidal flow asymmetry of the Huanghe River Estuary[J]. Haiyang Xuebao, 2021, 43(6): 13−25.
    [17] Lu Jingfang, Zhang Yibo, Lü Xianqing, et al. The temporal evolution of coastlines in the Bohai Sea and its impact on hydrodynamics[J]. Remote Sensing, 2022, 14(21): 5549. doi: 10.3390/rs14215549
    [18] 梁慧迪, 匡翠萍. 岸线变化及海平面上升对渤海潮波运动影响研究[J]. 水动力学研究与进展, 2021, 36(3): 462−470.

    Liang Huidi, Kuang Cuiping. Impacts of coastline changes and sea level rise on tides in the Bohai Sea[J]. Chinese Journal of Hydrodynamics, 2021, 36(3): 462−470.
    [19] Zhang Lili, Shi Hongyuan, Xing Hao, et al. Analysis of the evolution of the Yellow River Delta coastline and the response of the tidal current field[J]. Frontiers in Marine Science, 2023, 10: 1232060. doi: 10.3389/fmars.2023.1232060
    [20] 徐丛亮, 陈沈良, 陈俊卿. 新情势下黄河口出汊流路三角洲体系的演化模式[J]. 海岸工程, 2018, 37(4): 35−43. doi: 10.3969/j.issn.1002-3682.2018.04.005

    Xu Congliang, Chen Shenliang, Chen Junqing. Evolution mode of channel bifurcation delta system at the Yellow River Estuary under the new situation[J]. Coastal Engineering, 2018, 37(4): 35−43. doi: 10.3969/j.issn.1002-3682.2018.04.005
    [21] 陈沈良, 张国安, 谷国传. 黄河三角洲海岸强侵蚀机理及治理对策[J]. 水利学报, 2004, 35(7): 1−6, 13.

    Chen Shenliang, Zhang Guoan, Gu Guochuan. Mechanism of heavy coastal erosion on Yellow River Delta and its countermeasures[J]. Journal of Hydraulic Engineering, 2004, 35(7): 1−6, 13.
    [22] 刘锋, 陈沈良, 周永东, 等. 黄河2009年调水调沙期间河口水动力及悬沙输移变化特征[J]. 泥沙研究, 2010, 35(6): 1−8.

    Liu Feng, Chen Shenliang, Zhou Yongdong, et al. Effect of water-sediment regulation in Yellow River on hydrodynamics and suspended sediment transport in its estuary[J]. Journal of Sediment Research, 2010, 35(6): 1−8.
    [23] 李鹏, 陈沈良, 刘清兰, 等. 黄河尾闾沙洲及河口形态对水沙变化的响应[J]. 泥沙研究, 2022, 47(2): 57−64.

    Li Peng, Chen Shenliang, Liu Qinglan, et al. Responses of the processes in the Yellow River lowermost channel sandbars and estuary to the variation of water and sediment[J]. Journal of Sediment Research, 2022, 47(2): 57−64.
    [24] 苏国宾, 陈沈良, 徐丛亮, 等. 基于GF-1影像的黄河口潮滩高程定量反演[J]. 海洋地质前沿, 2018, 34(11): 1−9.

    Su Guobing, Chen Shenliang, Xu Congliang, et al. Quantitative retrival of tidal flat elevation with GF-1 images in the Yellow River Mouth[J]. Marine Geology Frontiers, 2018, 34(11): 1−9.
    [25] Jia Mingming, Wang Zongming, Mao Dehua, et al. Rapid, robust, and automated mapping of tidal flats in China using time series Sentinel-2 images and Google Earth Engine[J]. Remote Sensing of Environment, 2021, 255: 112285. doi: 10.1016/j.rse.2021.112285
    [26] Ran Baichuan, Chen Shenliang, Pan Shunqi, et al. Impacts of sea-access roads on wetland landscape dynamics in the Yellow River Delta front[J]. Ocean & Coastal Management, 2023, 244: 106834.
    [27] Ji Hongyu, Pan Shunqi, Chen Shenliang. Impact of river discharge on hydrodynamics and sedimentary processes at Yellow River Delta[J]. Marine Geology, 2020, 425: 106210. doi: 10.1016/j.margeo.2020.106210
    [28] McLaren P, Bowles D. The effects of sediment transport on grain-size distributions[J]. Journal of Sedimentary Research, 1985, 55(4): 457−470.
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  207
  • HTML全文浏览量:  119
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-13
  • 修回日期:  2024-01-13
  • 网络出版日期:  2024-03-25
  • 刊出日期:  2024-05-29

目录

    /

    返回文章
    返回