The Determination of Henry’s Law Constant of Carbon Dioxide in Stratified Seawater of the South China Sea's Shenhu Sea by D-value of Multi Balance Systems
-
摘要: 海水中溶存CO2含量在一定程度上影响全球气候的变化,影响海洋生物的生长,控制海底碳酸盐岩的形成,是海洋环境、海底矿产资源以及海洋生物调查与评价的重要指标之一,对于海底矿产的勘探开发、海洋环境监测、海水及海底沉积物碳循环乃至全球碳循环的研究具有重要的学术价值。检测水中游离CO2通常采用滴定法或亨利法,滴定法适用于检测地下水中游离CO2的含量,目标通常为单个样品;亨利法更适用于海水中游离CO2含量的检测,尤其适用船载现场采自同一海域的批量同源海水样品,检测结果主要基于CO2在水中的理论亨利常数,但由于不同海水的温度、盐度、成分不同,其CO2的亨利常数并不相同,需要先行测定海水样品中CO2的亨利常数。本文依据质量守恒原理和CO2在海水中的溶解规律,设计了测定海水中CO2亨利常数的差量平衡法,预先构建多个不同质量、体积的气液平衡体系,再根据平衡体系间CO2物质的量的差值求算CO2亨利常数。应用差量平衡法测定了24个南海神狐海域分层海水样品中CO2的亨利常数值,并通过多体系转换重合实验验证了差量平衡法的科学性与可行性。Abstract: The concentration of dissolved carbon dioxide in seawater affects global climate change, the growth of marine organisms and controls the formation of submarine carbonates, it is one of the most important indices in the marine environment and mineral resource survey. It has important academic value for the exploration of seabed minerals, monitoring of marine environment, the study of carbon cycle in seabed sediments and even the global carbon cycle. Titration and Henrys are used to determine the concentration of dissolved carbon dioxide in seawater. The Henrys is more suitable for seawater, especially for a great deal of seawater samples collected from the same sea area on board ships, the results are mainly based on the theoretical Henry's constant of carbon dioxide in seawater, in fact, the Henry’s Law Constants of carbon dioxide in different seawater are different. In order to achieve higher measurement accuracy and precision, the Henry’s Law Constants of carbon dioxide in seawater have to be determined first. An experimental plan is designed and D-value of Multi Balance Systems is put forward in this article, which is used to determine the Henry’s Law Constants of carbon dioxide in seawater. D-value of Multi Balance Systems is based on the principle of mass conservation and the dissolution behavior of carbon dioxide in seawater. In D-value of Multi Balance Systems, multiple gas-liquid balance systems with different masses and volumes are constructed in advance, then the Henry’s Law Constant of carbon dioxide is derived on the basis of the different mass of carbon dioxide between the balance systems. The Henry's values of carbon dioxide in 24 stratified seawater samples from the South China Sea's Shenhu Sea are determined by D-value of Multi Balance Systems. At last the scientificalness and feasibility of D-value of Multi Balance Systems are proved by multiple system conversion coincidence experiments.
-
图 2 实验设计流程图
1气源 2原液桶 3真空单元-真空泵 4真空单元-隔水三角瓶 5-8平衡单元-定气标液配制器9-1平衡单元-恒温振荡箱 9-2平衡单元-恒温振荡箱控制器 10分析单元-CO2分析仪
Fig. 2 Schematic representation of experimental design process
1gas source 2 stock solution barrel 3 vacuum unit–vacuum pump 4 vacuum unit–waterproof conical flask 5-8 balance unit–calibrating standard solution prepare 9-1 balance unit–oscillator 9-2 balance unit–thermostatic oscillator controller 10 analytical unit–carbon dioxide analyzer
表 1 神狐海域分层海水样品CO2亨利常数实验数据表
Tab. 1 Experimental data table of Henry’s law constant of carbon dioxide in seawater in Shenhu area at various depths
样品编号 样品分层
水深(米)海水温度(℃) 海水盐度(‰) 海水中CO2
亨利常数(kpa)HSSH3-01 0 25.1 34.20 6.07111E-06 HSSH3-02 50 18.0 34.67 7.40505E-06 HSSH3-03 100 16.1 34.71 7.87081E-06 HSSH3-04 150 13.5 34.62 8.51811E-06 HSSH3-05 200 12.5 34.52 8.79949E-06 HSSH3-06 250 11.3 34.43 9.15568E-06 HSSH3-07 300 9.9 34.42 9.59864E-06 HSSH3-08 350 9.5 34.41 9.73095E-06 HSSH3-09 400 9.0 34.42 9.90009E-06 HSSH3-10 450 8.0 34.43 1.02514E-05 HSSH3-11 500 7.8 34.44 1.03238E-05 HSSH3-12 550 7.0 34.45 1.06210E-05 HSSH3-13 600 6.8 34.46 1.06972E-05 HSSH3-14 650 6.4 34.46 1.08520E-05 HSSH3-15 700 6.1 34.46 1.09702E-05 HSSH3-16 750 6.0 34.47 1.10100E-05 HSSH3-17 800 5.9 34.48 1.10500E-05 HSSH3-18 850 5.7 34.49 1.11306E-05 HSSH3-19 900 5.4 34.51 1.12532E-05 HSSH3-20 950 5.2 34.52 1.13359E-05 HSSH3-21 1000 5.0 34.52 1.14196E-05 HSSH3-22 1100 4.5 34.54 1.16325E-05 HSSH3-23 1200 3.9 34.58 1.18955E-05 HSSH3-24 2000 2.9 34.62 1.23529E-05 表 2 多体系转换重合验证实验数据表
Tab. 2 Experimental data table of the systems transformation coincidence experiment
样品编号 H(1-2-3体系)
(kpa)H(1-2-4体系)
(kpa)H(2-3-4体系)
(kpa)RstDev(max)
(‰)HSSH3-02 7.40290254E-06 7.40327279E-06 7.40356899E-06 −0.29 HSSH3-03 7.86821263E-06 7.86860617E-06 7.86892101E-06 −0.33 HSSH3-04 8.51881700E-06 8.51884256E-06 8.52603184E-06 0.93 HSSH3-05 8.79737812E-06 8.79781810E-06 8.79817008E-06 −0.24 HSSH3-06 9.15643992E-06 9.15646739E-06 9.15653148E-06 0.093 HSSH3-07 9.60244106E-06 9.60257544E-06 9.60286340E-06 0.44 HSSH3-09 9.89771398E-06 9.89820898E-06 9.89860499E-06 −0.24 HSSH3-11 1.03249356E-05 1.03254518E-05 1.03258648E-05 0.2 HSSH3-14 1.08477677E-05 1.08480933E-05 1.08485274E-05 −0.39 HSSH3-17 1.10523205E-05 1.10526520E-05 1.10530940E-05 0.28 HSSH3-18 1.11316240E-05 1.11316685E-05 1.11318244E-05 0.11 HSSH3-20 1.13341996E-05 1.13346531E-05 1.13353332E-05 −0.15 HSSH3-22 1.16335702E-05 1.16336167E-05 1.16337796E-05 0.11 -
[1] 陈元瑞, 赵栋梁, 林子宽. 海-气界面气体交换速率与二氧化碳气体通量的估算[J]. 海洋学报, 2021, 43(9): 8−20.Chen Yuanrui, Zhao Dongliang, Lin Zikuan. Estimation of gas exchange rate and carbon dioxide gas flux at the sea-air interface[J]. Haiyang Xuebao, 2021, 43(9): 8−20. [2] 刘涛泽, 王宝利, 朱四喜, 等. 红枫水库水-气界面二氧化碳分压及扩散通量的时空变化[J]. 地球与环境, 2019, 47(6): 851−856.Liu Taoze, Wang Baoli, Zhu Sixi, et al. Spatiotemporal variation of CO2 partial pressure and exchange flux at the air-water interface of the hongfeng reservoir[J]. Earth and Environment, 2019, 47(6): 851−856. [3] 邱爽, 叶海军, 张玉红, 等. 基于航次观测和再分析资料的南海海表二氧化碳分压反演及变化机制分析[J]. 热带海洋学报, 2022, 41(1): 106−116.Qiu Shuang, Ye Haijun, Zhang Yuhong, et al. Multi-linear regression of partial pressure of sea-surface carbon dioxide in the South China Sea and its mechanism[J]. Journal of Tropical Oceanography, 2022, 41(1): 106−116. [4] Liu Guanghu, Deng Liting, Wen Mingming, et al. Determination of concentration of free carbon dioxide in artificial seawater by difference Balance System/Henry’s Law[J]. Sustainability, 2023, 15(6): 5096. doi: 10.3390/su15065096 [5] Wang Yanjun, Li Xiaofeng, Song Jinming, et al. Carbon sinks and variations of PCO2 in the Southern Ocean from 1998 to 2018 based on a deep learning approach[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 3495−3503. doi: 10.1109/JSTARS.2021.3066552 [6] 刘广虎, 温明明, 邓丽婷, 等. 加标/顶空平衡法测定实验水中甲烷亨利常数[J]. 地球学报, 2021, 42(4): 565−571.Liu Guanghu, Wen Mingming, Deng Liting, et al. The determination of Henry’s Law Constant of methane in test water by A. R. M/Headspace[J]. Acta Geoscientica Sinica, 2021, 42(4): 565−571. [7] 郑昭贤, 陈宗宇, 苏晨. 页岩气勘查开发对含水层潜在甲烷污染成因机理[J]. 水文地质工程地质, 2014, 41(6): 116−121.Zheng Zhaoxian, Chen Zongyu, Su Chen. Genetic mechanism of potential methane contamination of aquifer caused by shale gas development[J]. Hydrogeology & Engineering Geology, 2014, 41(6): 116−121. [8] 陈芳, 陆红锋, 刘坚, 等. 南海东北部陆坡天然气水合物多期次分解的沉积地球化学响应[J]. 地球科学, 2016, 41(10): 1619−1629.Chen Fang, Lu Hongfeng, Liu Jian, et al. Sedimentary geochemical response to gas hydrate episodic release on the northeastern slope of the South China sea[J]. Earth Science, 2016, 41(10): 1619−1629. [9] 梁前勇, 赵静, 夏真, 等. 南海北部陆坡天然气水合物区海水甲烷浓度分布特征及其影响因素探讨[J]. 地学前缘, 2017, 24(4): 89−101.Liang Qianyong, Zhao Jing, Xia Zhen, et al. Distribution characteristics and influential factors of dissolved methane in sea water above gas hydrate area on the northern slope of the South China Sea[J]. Earth Science Frontiers, 2017, 24(4): 89−101. [10] 杨涛, 蒋少涌, 葛璐, 等. 南海北部神狐海域浅表层沉积物中孔隙水的地球化学特征及其对天然气水合物的指示意义[J]. 科学通报, 2009, 54(20): 3231−3240.Yang Tao, Jiang Shaoyong, Ge Lu, et al. Geochemical characteristics of pore water in shallow sediments from Shenhu area of South China Sea and their significance for gas hydrate occurrence[J]. Chinese Science Bulletin, 2010, 55(8): 752−760. [11] 李华. 二氧化碳在二甲基亚砜中溶解度的测定及其亨利常数[J]. 高校化学工程学报, 2006, 20(6): 860−863. doi: 10.3321/j.issn:1003-9015.2006.06.002Li Hua. Solubility of dilute CO2 in Dimethyl sulfoxide and its Henry’s constant[J]. Journal of Chemical Engineering of Chinese Universities, 2006, 20(6): 860−863. doi: 10.3321/j.issn:1003-9015.2006.06.002 [12] 乔然, 王彰贵, 陈陟, 等. 太平洋中低纬海水中的二氧化碳分布特征及其与海洋环境条件的关系[J]. 海洋学报, 2005, 27(6): 32−37. doi: 10.3321/j.issn:0253-4193.2005.06.005Qiao Ran, Wang Zhanggui, Chen Zhi, et al. Distribution of marine carbon dioxide and its relationship with other marine parameters and air-sea anomalies[J]. Haiyang Xuebao, 2005, 27(6): 32−37. doi: 10.3321/j.issn:0253-4193.2005.06.005 [13] 王馨仪, 吴楚仪, 吴森森, 等. 高分辨率海水表层二氧化碳分压重构—以大西洋为例[J]. 海洋学报, 2023, 45(3): 147−158.Wang Xinyi, Wu Chuyi, Wu Sensen, et al. Reconstruction of sea surface PCO2 with high resolution: a case study of the Atlantic Ocean[J]. Haiyang Xuebao, 2023, 45(3): 147−158. [14] 周学杭, 张洪海, 马昕, 等. 基于浮标观测的春季青岛近岸海水PCO2变化及海-气CO2通量研究[J]. 海洋学研究, 2023, 41(3): 14−21.Zhou Xuehang, Zhang Honghai, Ma Xin, et al. Variations of PCO2 and sea-air CO2 flux in Qingdao coastal seawater in spring based on buoy observations[J]. Journal of Marine Sciences, 2023, 41(3): 14−21. [15] Dixit A, Lekshmi K, Bharti R, et al. Net sea–air CO2 fluxes and modeled partial pressure of CO2 in open ocean of Bay of Bengal[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(7): 2462-2469. (查阅网上资料, 不确定标黄作者是否正确, 请确认) [16] Chen Shuangling, Hu Chuanmin, Barnes B B, et al. A machine learning approach to estimate surface ocean PCO2 from satellite measurements[J]. Remote Sensing of Environment, 2019, 228: 203−226. doi: 10.1016/j.rse.2019.04.019 [17] 美国材料实验协会. ASTM D513-2006, 水中二氧化碳溶解量和总量的标准试验方法[S]. 美国材料实验协会, 2006.American Society for Testing and Materials. ASTM D513-2006, Standard test methods for total and dissolved carbon dioxide in water[S]. American Society for Testing and Materials, 2006. (查阅网上资料, 未找到本条文献出版信息, 请确认) [18] 中华人民共和国自然资源部. DZ/T 0064.47-2021, 地下水质分析方法 第47部分: 游离二氧化碳的测定滴定法[S]. 2021.Ministry of Natural Resources, People’s Republic of China. DZ/T 0064.47-2021, Methods for analysis of groundwater quality-Part 47: determination of the free carbon dioxide—Titration[S]. 2021. (查阅网上资料, 未找到本条文献出版信息, 请确认) [19] 中华人民共和国自然资源部. DZ/T 0064.48-2021, 地下水质分析方法 第48部分: 侵蚀性二氧化碳的测定滴定法[S]. 北京: 地质出版社, 2021.Ministry of Natural Resources, People’s Republic of China. DZ/T 0064.48-2021, Methods for analysis of groundwater quality-Part 48: determination of corrosive carbon dioxide—Titration method[S]. Beijing: Geological Publishing House, 2021. [20] 中华人民共和国自然资源部. DZ/T 0064.74-2021, 地下水质分析方法 第74部分: 氦气、氢气、氧气、氩气、氮气、甲烷、一氧化碳、二氧化碳和硫化氢的测定 气相色谱法[S]. 2021.Ministry of Natural Resources, People’s Republic of China. DZ/T 0064.74-2021, Methods for analysis of groundwater quality-Part 74: determination of helium, hydrogen, oxygen, argon, nitrogen, methane, carbon monoxide, carbon dioxide and hydrogen sulfide—Gas chromatography[S]. 2021. (查阅网上资料, 未找到本条文献出版信息, 请确认) [21] 中华人民共和国自然资源部. DZ/T 0064.49-2021, 地下水质分析方法 第49部分: 碳酸根、重碳酸根和氢氧根离子的测定 滴定法[S]. 2021.Ministry of Natural Resources, People’s Republic of China. DZ/T 0064.49-2021, Methods for analysis of groundwater quality-Part 49: determination of carbonate, bicarbonate ions, hydroxyl—titration[S]. 2021. (查阅网上资料, 未找到本条文献出版信息, 请确认) [22] 中华人民共和国水利部. SL 80-1994, 游离二氧化碳的测定(碱滴定法)[S]. 1995.Ministry of Water Resources the People’s Republic of China. SL 80-1994, Determination of free carbon dioxide (base titration method)[S]. 1995. (查阅网上资料, 未找到本条文献出版信息, 请确认) [23] 付晓泰, 王振平, 卢双舫. 气体在水中的溶解机理及溶解度方程[J]. 中国科学(B辑), 1996, 26(2): 124−130.Fu Xiaotai, Wang Zhenping, Lu Shuangfang. Dissolution mechanism of gases in water and solubility equations[J]. Science in China (Series B), 1996, 26(2): 124−130. (查阅网上资料, 未找到本条文献英文翻译信息, 请确认) [24] 何艺兵, 王玉英, 吴重华, 等. 应用定量结构-性质相关法预测有机物的亨利常数[J]. 环境科学学报, 1997, 17(2): 227−231.He Yibing, Wang Yuying, Wu Chonghua, et al. Quantitative structure property relationship for predicting Henry′s constants of organic compounds[J]. Acta Scientiae Circumstantiae, 1997, 17(2): 227−231. [25] 吕燕, 张巍, 黄流雅, 等. 挥发性有机污染物水中亨利常数的简易测定方法[J]. 华东理工大学学报(自然科学版), 2009, 35(6): 860−865. doi: 10.3969/j.issn.1006-3080.2009.06.012Lü Yan, Zhang Wei, Huang Liuya, et al. Methods for estimating Henry′s law constants of volatile organic water pollutants[J]. Journal of East China University of Science and Technology, 2009, 35(6): 860−865. doi: 10.3969/j.issn.1006-3080.2009.06.012 [26] Altschuh J, Brüggemann R, Santl H, et al. Henry’s law constants for a diverse set of organic chemicals: experimental determination and comparison of estimation methods[J]. Chemosphere, 1999, 39(11): 1871−1887. doi: 10.1016/S0045-6535(99)00082-X [27] Gautier C, Le Calvé S, Mirabel P. Henry's law constants measurements of alachlor and dichlorvos between 283 and 298 K[J]. Atmospheric Environment, 2003, 37(17): 2347−2353. doi: 10.1016/S1352-2310(03)00155-9 [28] Ettre L S, Welter C, Kolb B. Determination of gas-liquid partition coefficients by automatic equilibrium headspace-gas chromatography utilizing the phase ratio variation method[J]. Chromatographia, 1993, 35(1): 73−84. [29] Ettre L S, Welter C, Kolb B. Determination of gas-liquid partition coefficients by automatic equilibrium headspace-gas chromatography utilizing the phase ratio variation method[J]. Chromatographia, 1993, 35(1): 73-84. (查阅网上资料, 本条文献与第28条文献重复, 请确认) [30] Fischer A, Müller M, Klasmeier J. Determination of Henry's law constant for methyl tert-butyl ether (MTBE) at groundwater temperatures[J]. Chemosphere, 2004, 54(6): 689−694. doi: 10.1016/j.chemosphere.2003.08.025 [31] Al-Ghawas H A, Hagewisesche D P, Rulz-Ibanez G, et al. Physicochemical properties important for carbon dioxide absorption in aqueous methyldiethanolamine[J]. Journal of Chemical and Engineering Data, 1989, 34(4): 385−391. doi: 10.1021/je00058a004 [32] Kolb B, Welter C, Bichler C. Determination of partition coefficients by automatic equilibrium headspace gas chromatography by vapor phase calibration[J]. Chromatographia, 1992, 34(5): 235−240. [33] 王凯雄, 姚铭. 亨利定律及其在环境科学与工程中的应用[J]. 浙江树人大学学报, 2004, 4(6): 85−89,93.Wang Kaixiong, Yao Ming. A critical review of Henry’s Law and its application in environmental science and engineering[J]. Journal of Zhejiang Shuren University, 2004, 4(6): 85−89,93. [34] 王永华, 陶澍, 李新云, 等. 两次相平衡/气相色谱法测定水中挥发性氯代烃[J]. 环境化学, 1997, 16(1): 68−72.Wang Yonghua, Tao Shu, Li Xinyun, et al. Determination of volatile organohalides in water by twice phase equilibration/gc[J]. Environmental Chemistry, 1997, 16(1): 68−72. [35] 李建权, 沈成银, 王鸿梅, 等. 质子转移反应质谱动态测量苯系物的亨利常数[J]. 物理化学学报, 2008, 24(4): 705−708. doi: 10.3866/PKU.WHXB20080428Li Jianquan, Shen Chengyin, Wang Hongmei, et al. Dynamic measurements of Henry’s law constant of aromatic compounds using proton transfer reaction mass spectrometry[J]. Acta Physico-Chimica Sinica, 2008, 24(4): 705−708. doi: 10.3866/PKU.WHXB20080428 [36] Gossett J M. Measurement of Henry’s law constants for C1 and C2 chlorinated hydrocarbons[J]. Environmental Science & Technology, 1987, 21(2): 202−208. [37] Dukes III A D. Measuring the Henry’s law constant for carbon dioxide and water with UV-visible absorption spectroscopy[J]. Analytical Sciences, 2020, 36(8): 971−975. doi: 10.2116/analsci.19P477 [38] Levy J B, Hornack F M, Levy M A. Simple determination of Henry’s law constant for carbon dioxide[J]. Journal of Chemical Education, 1987, 64(3): 260. doi: 10.1021/ed064p260 [39] Robbins G A, Wang Suya, Stuart J D. Using the static headspace method to determine Henry’s law constants[J]. Analytical Chemistry, 1993, 65(21): 3113−3118. doi: 10.1021/ac00069a026 [40] 冯士筰. 海洋科学导论[M]. 北京: 高等教育出版社, 1999: 1−503.Feng Shizuo. An introduction to marine science[M]. Beijing: Higher Education Press, 1999: 1−503. [41] 贾永永, 刘广虎, 谭覃, 等. 定值痕量溶解CH4标准实验溶液的配制试验研究[J]. 科技创新导报, 2020, 17(5): 113−116.Jia Yongyong, Liu Guanghu, Tan Tan, et al. Experimental study on the preparation of standardized trace dissolved CH4 reference solution[J]. Science and Technology Innovation Herald, 2020, 17(5): 113−116. (查阅网上资料, 未找到本条文献英文翻译信息, 请确认) -