Carbon and nitrogen isotope analysis of large yellow croaker tissues: The impact of pretreatments
-
摘要: 碳氮稳定同位素组成(δ13C、δ15N)在揭示鱼类的生理动态、营养关系和产地溯源等方面具有独特的优势。样品的预处理方式可能在很大程度上影响鱼类组织同位素测定结果,但相关研究报道仍显不足,缺乏对于其内在机制的规律性认认识。本研究中,我们选取大黄鱼(Larimichthys crocea)—中国最重要的海洋养殖经济鱼类之一作为研究对象,评估了鱼体组织同位素分析前处理中两个关键步骤(肌肉去脂和鳞片酸浸)对大黄鱼组织碳氮稳定同位素组成的影响。结果表明,肌肉去脂操作总体上导致大黄鱼δ13C测值显著升高,而对鳞片进行酸浸操作则导致δ13C测值降低,同位素混合模型可以较好地解释预处理方式对鱼体组织δ13C测值的影响。这两种预处理方式均导致鱼体组织δ15N测值有所升高,暗示部分氮同位素信号的损失。根据鱼类生长过程中稳定同位素的动态平衡模型,建立了肌肉与鳞片碳氮同位素的理论替代关系,证实鳞片有望作为肌肉的替代物进行氮同位素分析。本研究为探讨大黄鱼稳定同位素组成的异质性提供了关键基础数据,对理解不同组织间的代谢动态具有参考价值,并为非致死性取样技术在鱼类稳定同位素研究中的应用提供了科学依据。Abstract: Stable carbon (δ13C) and nitrogen (δ15N) isotope compositions are powerful tools for elucidating fish physiology, trophic interactions, and origin. However, pretreatment methods can substantially influence isotopic results, and the underlying mechanisms remain poorly understood. This study investigates the effects of lipid removal from muscle and acid leaching of scales on the δ13C and δ15N values of large yellow croaker (Larimichthys crocea), a major mariculture species in China. We found that lipid extraction significantly increased muscle δ13C, while acid leaching decreased scale δ13C. An isotope mixing model effectively explained these δ13C variations. Conversely, both pretreatments increased δ15N, suggesting potential losses of specific nitrogen isotope signals. Utilizing a dynamic equilibrium model, we established a theoretical relationship between carbon and nitrogen isotopes in muscle and scales, validating scales as a muscle proxy for nitrogen isotope analysis. This research provides critical baseline data for understanding stable isotope heterogeneity in large yellow croaker, contributes to our understanding of inter-tissue metabolic dynamics, and supports the application of non-lethal sampling in fish stable isotope studies.
-
图 1 大黄鱼样品预处理前后δ13C值和δ15N值的变化(a~d)及各组织有机碳δ13C与体长L的关系(e~f)(虚线为拟合直线;阴影为95%置信区间)
Fig. 1 Changes in δ13C and δ15N values before and after pretreatment of large yellow croaker samples (a~d) and the relationship between organic carbon δ13C and body length L in various tissues (e~f) (dashed line represents fitted line; shaded area represents 95% confidence interval)
图 6 大黄鱼肌肉和鳞片的氨基酸组成差异(鳞片氨基酸数据来自罗红宇[21];肌肉氨基酸数据来自颜孙安等[22]、李松等[23]、郭全友等[24]、吴燕燕等[25]、徐大凤等[26]的平均值;图中未列出占比<1%的氨基酸,包括色氨酸、半胱氨酸、谷氨酰胺和天冬酰胺)
Fig. 6 Differences in amino acid composition between muscles and scales of yellow croaker (scale amino acid data from Luo Hongyu[21]; muscle amino acid data from the average values of Yan S et al.[22], Li S et al.[23], Guo Q et al.[24], Wu Y et al.[25], Xu D et al.[26]; amino acids with a proportion of less than 1% are not listed in the figure, including tryptophan, cysteine, glutamine and asparagine)
表 1 样品碳氮同位素δ值及C∶N比值统计数据
Tab. 1 Statistical data of δ values of carbon and nitrogen isotopes and C∶N ratio of samples
样品类别 δ13C / ‰ δ15N / ‰ C∶N 平均值 标准差 最小值 最大值 平均值 标准差 最小值 最大值 平均值 标准差 最小值 最大值 肌肉 −21.1 1.1 −22.5 −19.8 12.5 0.3 11.7 12.9 6.80 1.37 5.09 8.96 去脂肌肉 −16.7 0.2 −17.0 −16.3 14.0 0.2 13.6 14.5 3.74 0.17 3.32 3.90 鳞片 −13.6 0.7 −14.5 −12.3 11.6 0.5 10.8 12.2 3.53 0.08 3.40 3.66 酸浸鳞片 −14.2 0.5 −14.7 −13.2 11.9 0.5 11.4 12.7 3.37 0.02 3.35 3.42 表 2 脂质校正模型拟合结果
Tab. 2 Fitting results of lipid correction model
编号 模型 无边界条件约束 有边界条件约束 a b c R2 AICc a b c R2 AICc 1 Δ = a + b · δ13C −14.22 −0.88 / 0.96 28.10 ND ND ND ND ND 2 Δ = a + b · C∶N −0.11 0.66 / 0.91 28.86 −4.27 1.23 / 0.12 31.18 3 Δ = a + b · δ13C + c · C∶N −9.39 −0.57 0.27 0.99 31.71 ND ND ND ND ND 4 Δ = a + b · (C∶N)−1 8.87 −29.34 / 0.90 29.02 9.83 −36.28 / 0.84 29.50 5 Δ = a + b · (C∶N + c) −1 26.54 −735.34 26.45 0.92 33.64 10.49 −43.86 0.49 0.81 34.44 6 Δ = a + b · ln(C∶N) −4.10 4.48 / 0.91 28.88 −8.96 6.94 / 0.60 30.41 注:/ 表示不存在该参数;ND表示无数据。Note: / indicates that the parameter does not exist; ND indicates no data. -
[1] Trueman C N, Rickaby R E M, Shephard S. Thermal, trophic and metabolic life histories of inaccessible fishes revealed from stable-isotope analyses: a case study using orange roughy Hoplostethus atlanticus[J]. Journal of Fish Biology, 2013, 83(6): 1613−1636. doi: 10.1111/jfb.12267 [2] Gamboa-Delgado J. Isotopic techniques in aquaculture nutrition: state of the art and future perspectives[J]. Reviews in Aquaculture, 2022, 14(1): 456−476. doi: 10.1111/raq.12609 [3] 梅光明, 杨盈悦, 张玉汝, 等. 基于元素及稳定同位素分析的大黄鱼产地区分技术[J]. 浙江大学学报(理学版), 2022, 49(6): 715−725,752.Mei Guangming, Yang Yingyue, Zhang Yuru, et al. Geographical identification of Larimichthys crocea based on analysis of elements and stable isotope ratios[J]. Journal of ZheJiang University(Science Edition), 2022, 49(6): 715−725,752. [4] Hoffman J C. Tracing the origins, migrations, and other movements of fishes using stable isotopes[M]//Morais P, Daverat F. An Introduction to Fish Migration. Boca Raton: CRC Press, 2016. [5] 杨凡, 刘明智, 蒋日进, 等. 基于生物标志物和胃含物分析法的马鞍列岛海域大黄鱼摄食习性研究[J]. 中国水产科学, 2023, 30(2): 247−258. doi: 10.12264/JFSC2022-0372Yang Fan, Liu Mingzhi, Jiang Rijin, et al. Study on the Feeding ecology of Larimichthys crocea in the Ma'an archipelago based on biomarker and stomach content analysis[J]. Journal of Fishery Sciences of China, 2023, 30(2): 247−258. doi: 10.12264/JFSC2022-0372 [6] 徐军, 王玉玉, 王康, 等. 水域生态学中生物稳定同位素样品采集、处理与保存[J]. 水生生物学报, 2020, 44(5): 989−997. doi: 10.7541/2020.114Xu Jun, Wang Yuyu, Wang Kang, et al. Protocols for sample collection, pretreatment and preservation of aquatic organisms in stable isotope ecology[J]. Acta Hydrobiologica Sinica, 2020, 44(5): 989−997. doi: 10.7541/2020.114 [7] Boecklen W J, Yarnes C T, Cook B A, et al. On the use of stable isotopes in trophic ecology[J]. Annual Review of Ecology, Evolution, and Systematics, 2011, 42: 411−440. doi: 10.1146/annurev-ecolsys-102209-144726 [8] Ventura M, Jeppesen E. Evaluating the need for acid treatment prior to δ13C and δ15N analysis of freshwater fish scales: effects of varying scale mineral content, lake productivity and CO2 concentration[J]. Hydrobiologia, 2010, 644(1): 245−259. doi: 10.1007/s10750-010-0121-2 [9] Fincel M J, Vandehey J A, Chipps S R. Non-lethal sampling of walleye for stable isotope analysis: a comparison of three tissues[J]. Fisheries Management and Ecology, 2012, 19(4): 283−292. doi: 10.1111/j.1365-2400.2011.00830.x [10] 王玉玉, 徐军, 雷光春. 鳙(Aristichthy nobilis)、鲢(Hypophthalmichthys molitrix)鱼鳞作为稳定同位素研究非致命采样替代物的有效性[J]. 湖泊科学, 2014, 26(6): 853−856. doi: 10.18307/2014.0606Wang Yuyu, Xu Jun, Lei Guangchun. Scale tissue of bighead carp and silver carp as nonlethal surrogates for muscle tissues in freshwater food web studies using stable isotopes[J]. Journal of Lake Sciences, 2014, 26(6): 853−856. doi: 10.18307/2014.0606 [11] Post D M, Layman C A, Arrington D A, et al. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses[J]. Oecologia, 2007, 152(1): 179−189. doi: 10.1007/s00442-006-0630-x [12] 中华人民共和国农业农村部渔业渔政管理局. 中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2024.The Ministry of Agriculture The Bureau of Fisheries and Fishery Administration. China fishery statistical yearbook[M]. Beijing: China Agriculture Press, 2024. (查阅网上资料, 未找到本条文献作者信息, 请确认) [13] National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals, 8th edition[M]. Washington (DC): National Academies Press (US), 2011. [14] Fry B. Stable isotopic indicators of habitat use by Mississippi River fish[J]. Journal of the North American Benthological Society, 2002, 21(4): 676−685. doi: 10.2307/1468438 [15] Logan J M, Jardine T D, Miller T J, et al. Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods[J]. Journal of Animal Ecology, 2008, 77(4): 838−846. doi: 10.1111/j.1365-2656.2008.01394.x [16] Akaike H. A new look at the statistical model identification[J]. IEEE Transactions on Automatic Control, 1974, 19(6): 716−723. doi: 10.1109/TAC.1974.1100705 [17] Sugiura N. Further analysis of the data by Akaike's information criterion and the finite corrections[J]. Communications in Statistics - Theory and Methods, 1978, 7(1): 13−26. doi: 10.1080/03610927808827599 [18] Hesslein R H, Hallard K A, Ramlal P. Replacement of sulfur, carbon, and nitrogen in tissue of growing broad whitefish (Coregonus nasus) in response to a change in diet traced by δ34S, δ13C, and δ15N[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1993, 50(10): 2071−2076. doi: 10.1139/f93-230 [19] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 32755-2016, 大黄鱼[S]. 北京: 中国标准出版社, 2016.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People’s Republic of China. GB/T 32755-2016, Large yellow croaker[S]. Beijing: Standards Press of China, 2016. [20] 林美金, 黄伟卿, 陈庆荣, 等. 闽-粤东族网箱养殖大黄鱼的生长模型研究[J]. 宁德师范学院学报(自然科学版), 2017, 29(1): 61−65.Lin Meijin, Huang Weiqing, Chen Qingrong, et al. Growth model of Min-Yuedong tribe cultured Larimichthys crocea[J]. Journal of Ningde Normal University(Natural Science), 2017, 29(1): 61−65. [21] 罗红宇. 海鱼鱼鳞营养成分的分析[J]. 食品研究与开发, 2003, 24(3): 63−66. doi: 10.3969/j.issn.1005-6521.2003.03.028Luo Hongyu. Nutrient composition analysis of marine fishes scale[J]. Food Research and Development, 2003, 24(3): 63−66. doi: 10.3969/j.issn.1005-6521.2003.03.028 [22] 颜孙安, 姚清华, 林香信, 等. 不同养殖模式大黄鱼肌肉营养成分比较[J]. 福建农业学报, 2015, 30(8): 736−744. doi: 10.3969/j.issn.1008-0384.2015.08.003Yan Sunan, Yao Qinghua, Lin Xiangxin, et al. Nutrient profile of large yellow croakers (Pseudosciaena crocea Richardson) grown under different aquacultural settings[J]. Fujian Journal of Agricultural Sciences, 2015, 30(8): 736−744. doi: 10.3969/j.issn.1008-0384.2015.08.003 [23] 李松, 郭全友, 李保国, 等. 养殖模式和饵料对养殖大黄鱼体色、质构和营养成分评价的影响[J]. 食品与发酵工业, 2019, 45(21): 118−125.Li Song, Guo Quanyou, Li Baoguo, et al. Evaluation of culture mode and feed on body color, texture and nutritional composition of cultured Pseudosciaena crocea[J]. Food and Fermentation Industries, 2019, 45(21): 118−125. [24] 郭全友, 邢晓亮, 姜朝军, 等. 野生和养殖大黄鱼(Larimichthys crocea)品质特征与差异性探究[J]. 现代食品科技, 2019, 35(10): 92−101.Guo Quanyou, Xing Xiaoliang, Jiang Chaojun, et al. Quality characteristics and differences of wild and cultured large yellow croakers (Larimichthys crocea)[J]. Modern Food Science and Technology, 2019, 35(10): 92−101. [25] 吴燕燕, 陶文斌, 李来好, 等. 宁德地区养殖大黄鱼形态组织结构与品质特性[J]. 水产学报, 2019, 43(6): 1472−1482.Wu Yanyan, Tao Wenbin, Li Laihao, et al. Morphological structure and quality characteristics of cultured Larimichthys crocea in Ningde[J]. Journal of Fisheries of China, 2019, 43(6): 1472−1482. [26] 徐大凤, 杜书然, 张志勇, 等. 不同养殖模式下大黄鱼肌肉营养成分比较分析[J]. 科学养鱼, 2023(11): 80-82. (查阅网上资料, 未找到本条文献英文翻译信息, 请确认) [27] 荣华, 王正阳, 郝亭亭, 等. 甘氨酸、脯氨酸及羟脯氨酸介导胶原蛋白代谢研究进展[J]. 西北农林科技大学学报(自然科学版), 2021, 49(11): 53−61.Rong Hua, Wang Zhengyang, Hao Tingting, et al. Research progress of glycine, proline and hydroxyproline mediated collagen metabolism[J]. Journal of Northwest A& F University (Natural Science Edition), 2021, 49(11): 53−61. [28] Li Xinyu, Zheng Shixuan, Wu Guoyao. Nutrition and metabolism of glutamate and glutamine in fish[J]. Amino Acids, 2020, 52(5): 671−691. doi: 10.1007/s00726-020-02851-2 [29] McMahon K W, McCarthy M D. Embracing variability in amino acid δ15N fractionation: mechanisms, implications, and applications for trophic ecology[J]. Ecosphere, 2016, 7(12): e01511. doi: 10.1002/ecs2.1511 [30] 贡艺, 汪惠琼, 李云凯, 等. 茎柔鱼氨基酸氮稳定同位素特征及营养位置估算[J]. 上海海洋大学学报, 2019, 28(3): 402−408.Gong Yi, Wang Huiqiong, Li Yunkai, et al. Amino acid nitrogen isotopic composition and trophic position estimation of jumbo squid Dosidicus gigas[J]. Journal of Shanghai Ocean University, 2019, 28(3): 402−408. [31] 赵晶晶, 张忠义, 郑能建, 等. 气相色谱-燃烧-同位素比值质谱法分析氨基酸氮稳定同位素并初步评估水生生物体营养级[J]. 分析化学, 2017, 45(3): 309−315. doi: 10.11895/j.issn.0253-3820.160594Zhao Jingjing, Zhang Zhongyi, Zheng Nengjian, et al. Stable nitrogen isotope analysis of amino acids by gas chromatography-combustion-isotope ratio mass spectrometry for high-resolution trophic level estimation[J]. Chinese Journal of Analytical Chemistry, 2017, 45(3): 309−315. doi: 10.11895/j.issn.0253-3820.160594 [32] DeNiro M J, Epstein S. Mechanism of carbon isotope fractionation associated with lipid synthesis[J]. Science, 1977, 197(4300): 261−263. doi: 10.1126/science.327543 [33] Gower L B. Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization[J]. Chemical Reviews, 2008, 108(11): 4551−4627. doi: 10.1021/cr800443h [34] Oehlert A M, Garza J, Nixon S, et al. Implications of dietary carbon incorporation in fish carbonates for the global carbon cycle[J]. Science of the Total Environment, 2024, 916: 169895. doi: 10.1016/j.scitotenv.2024.169895 [35] Chua K W J, Liew J H, Shin K H, et al. Effects of ethanol preservation and formalin fixation on amino acid stable isotope analysis (δ13C and δ15N) and its ecological applications[J]. Limnology and Oceanography: Methods, 2020, 18(2): 77−88. doi: 10.1002/lom3.10347 [36] 周晖, 陈刚, 施钢, 等. 不同蛋白源对军曹鱼幼鱼碳、氮稳定同位素分馏的影响[J]. 热带海洋学报, 2014, 33(5): 35−40. doi: 10.3969/j.issn.1009-5470.2014.05.005Zhou Hui, Chen Gang, Shi Gang, et al. The effects of different diet protein sources on carbon and nitrogen isotope fractionation of juvenile cobia Rachycentron canadum L.[J]. Journal of Tropical Oceanography, 2014, 33(5): 35−40. doi: 10.3969/j.issn.1009-5470.2014.05.005 [37] 贡艺, 陈新军, 高春霞, 等. 脂类抽提对北太平洋柔鱼肌肉碳、氮稳定同位素测定结果的影响[J]. 应用生态学报, 2014, 25(11): 3349−3356.Gong Yi, Chen Xinjun, Gao Chunxia, et al. Effects of lipid extraction on stable carbon and nitrogen isotope analyses of Ommastrephes bartramii muscle[J]. Chinese Journal of Applied Ecology, 2014, 25(11): 3349−3356. [38] 徐亮, 宁加佳, 王雪辉, 等. 脂类去除对南海鸢乌贼肌肉碳、氮稳定同位素分析的影响[J]. 南方水产科学, 2018, 14(4): 88−93. doi: 10.3969/j.issn.2095-0780.2018.04.011Xu Liang, Ning Jiajia, Wang Xuehui, et al. Effect of lipid removal on carbon and nitrogen isotopes of Sthenoeuthis oualaniensis from South China Sea[J]. South China Fisheries Science, 2018, 14(4): 88−93. doi: 10.3969/j.issn.2095-0780.2018.04.011 [39] 杨蕊, 田思泉, 高春霞, 等. 浙江南部近海前肛鳗肌肉脂质去除对其稳定同位素测定结果的影响[J]. 中国水产科学, 2020, 27(9): 1085−1094.Yang Rui, Tian Siquan, Gao Chunxia, et al. Effects of lipid removal on the stable isotopes of Dysomma anguillaris in the offshore waters of southern Zhejiang[J]. Journal of Fishery Sciences of China, 2020, 27(9): 1085−1094. [40] Bodin N, Le Loc'h F, Hily C. Effect of lipid removal on carbon and nitrogen stable isotope ratios in crustacean tissues[J]. Journal of Experimental Marine Biology and Ecology, 2007, 341(2): 168−175. doi: 10.1016/j.jembe.2006.09.008 [41] De Lecea A M, Smit A J, Fennessy S T. The effects of freeze/thaw periods and drying methods on isotopic and elemental carbon and nitrogen in marine organisms, raising questions on sample preparation[J]. Rapid Communications in Mass Spectrometry, 2011, 25(23): 3640−3649. doi: 10.1002/rcm.5265 [42] O'Toole C, Weigum E, Graham C T, et al. Acid treatment of Atlantic salmon (Salmo salar) scales prior to analysis has negligible effects on δ13C and δ15N isotope ratios[J]. Journal of Fish Biology, 2020, 97(4): 1285−1290. doi: 10.1111/jfb.14501 [43] Wu Libin, Xu Liqiang, Sun Jing, et al. Correlation between δ13C and δ15N in flying fish (Exocoetus volitans) muscle and scales from the South China Sea[J]. Oceanological and Hydrobiological Studies, 2017, 46(3): 307−313. doi: 10.1515/ohs-2017-0032 [44] Syväranta J, Vesala S, Rask M, et al. Evaluating the utility of stable isotope analyses of archived freshwater sample materials[J]. Hydrobiologia, 2008, 600(1): 121−130. doi: 10.1007/s10750-007-9181-3 [45] Hanisch J R, Tonn W M, Paszkowski C A. δ13C and δ15N signatures in salmonid muscle and fin tissues: non-lethal sampling methods for stable isotope analysis of fish[D]. Canada: University of Alberta, 2009. (查阅网上资料, 未找到本条文献出版信息, 请确认) [46] Winter E R, Nyqvist M, Britton J R. Non-lethal sampling for stable isotope analysis of pike Esox lucius: how mucus, scale and fin tissue compare to muscle[J]. Journal of Fish Biology, 2019, 95(3): 956−958. doi: 10.1111/jfb.14059 [47] Cano-Rocabayera O, Maceda-Veiga A, De Sostoa A. Fish fins and scales as non-lethally sampled tissues for stable isotope analysis in five fish species of north - eastern Spain[J]. Environmental Biology of Fishes, 2015, 98(3): 925−932. doi: 10.1007/s10641-014-0328-6 [48] Chiang C I, Lu C Y, Wang C H. Stable isotopes in scales of mangrove snapper Lutjanus argentimaculatus as an indicator for origin discrimination[J]. Aquaculture International, 2024, 32(3): 2939−2956. doi: 10.1007/s10499-023-01305-2 [49] Hutchinson J J, Trueman C N. Stable isotope analyses of collagen in fish scales: limitations set by scale architecture[J]. Journal of Fish Biology, 2006, 69(6): 1874−1880. doi: 10.1111/j.1095-8649.2006.01234.x -