留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

舟山渔场鱼类群落的空间格局及其季节变化

赵若菡 杨静 孙阳 何雨燕 王晶 王迎宾 李羽如

赵若菡,杨静,孙阳,等. 舟山渔场鱼类群落的空间格局及其季节变化[J]. 海洋学报,2025,47(x):1–9
引用本文: 赵若菡,杨静,孙阳,等. 舟山渔场鱼类群落的空间格局及其季节变化[J]. 海洋学报,2025,47(x):1–9
Zhao Ruohan,Yang Jing,Sun Yang, et al. Spatial patterns of the fish community and their seasonal variations in Zhoushan Fishing Ground[J]. Haiyang Xuebao,2025, 47(x):1–9
Citation: Zhao Ruohan,Yang Jing,Sun Yang, et al. Spatial patterns of the fish community and their seasonal variations in Zhoushan Fishing Ground[J]. Haiyang Xuebao,2025, 47(x):1–9

舟山渔场鱼类群落的空间格局及其季节变化

基金项目: 浙江省基础公益研究计划项目(ZCLQ24D0601);浙江省教育厅一般项目(Y202353756);国家级大学生创新创业训练计划立项资助项目(2024-A-024)。
详细信息
    作者简介:

    赵若菡:作者简介:

    通讯作者:

    李羽如,博士,主要从事鱼类群落生态学研究。E-mail: liyuru@zjou.edu.cn

Spatial patterns of the fish community and their seasonal variations in Zhoushan Fishing Ground

  • 摘要: 舟山渔场是中国最大的渔场,渔业资源丰富。在气候变化和人类干扰的影响下,局域海洋环境变化和选择性捕捞诱发鱼类群落的生境和功能的空间异质性增强,进而导致生态系统失稳。然而,受生物功能数据缺失的影响,舟山渔场鱼类群落功能结构的空间格局相对于基于分类水平的研究仍存在严重不足。本研究基于2006~2007年舟山渔场4个季度的渔业资源调查和鱼类功能性状数据,通过计算每个功能性状的群落加权平均值度量群落的功能组成,计算群落之间的β多样性度量群落的空间异质性,研究舟山渔场鱼类群落分类和功能结构的空间格局及其季节变化,并探讨其与环境因子的关系。研究结果表明:大多数性状群落加权平均值(6/7)至少在两个季节间存在显著差异;分类和功能β多样性均具有较高值,变化范围分别是0.74230.83960.71840.7824,说明舟山渔场鱼类群落分类和功能结构的空间异质性程度均较高;分类β多样性存在显著的季节变化,且与水深、盐度、化学需氧量显著相关,而功能β多样性无显著的季节变化且与环境因子无显著关系。研究结果有助于深入了解舟山渔场鱼类群落的空间格局及其季节动态,可用于指导鱼类多样性保护和渔业资源管理。
  • 图  1  舟山渔场调查站位

    Fig.  1  The survey sites in Zhoushan Fishing Ground

    图  2  舟山渔场2006-2007年春、夏、秋、冬四季的鱼类物种数(a)和物种组成(b)

    Fig.  2  The number of species (a) and species composition (b) of the fish communities in spring, summer, autumn, and winter during 2006~2007 in Zhoushan Fishing Ground

    图  3  舟山渔场鱼类物种和功能丰富度、分类和功能β多样性的季节分布。*表示p < 0.05; **表示 p < 0.01

    Fig.  3  The seasonal changes of species richness, functional richness, taxonomic and functional β diversities of fish communities in Zhoushan Fishing Ground. * indicates p < 0.05; ** indicates p < 0.01

    图  4  舟山渔场鱼类群落物种丰富度和功能丰富度指数的克里金插值图

    Fig.  4  Seasonal kriging-interpolated maps of species richness (a~d) and functional richness (e~h) of fish communities in Zhoushan Fishing Ground.

    图  5  舟山渔场鱼类群落物种丰富度、功能丰富度、分类和功能β多样性与环境因子的关系

    Fig.  5  The relationships between environmental variables and species richness, functional richness, taxonomic and functional β diversity

    表  1  舟山渔场鱼类功能性状

    Tab.  1  Functional traits of fishes in Zhoushan Fishing Ground

    功能性状 (缩写) 生态意义
    平均适温(MT) 反应鱼类对温度的耐受性[16]
    最大深度(MD) 反应鱼类的栖息地偏好
    性成熟体长(LM) 反应鱼类的生长和繁殖特征[1]
    世代时间(GT) 反应鱼类的个体发育所需要的时间[17]
    生长速率(K) 是体长体重生长方程中的“K”,反应鱼类生长的快慢[18]
    摄食率(Q/B) 鱼类的摄食量与其生物量的比值
    营养级(TL) 反应鱼类在食物网中的位置[19]
    下载: 导出CSV

    表  2  舟山渔场鱼类性状群落加权平均值(CWMx)的季节变化。

    Tab.  2  Seasonal variations in community-weighted mean trait values (CWMx) of fishes in Zhoushan Fishing Ground.

    春季夏季秋季冬季
    CWMMTP19.76±1.8a21.14±2.61ab23.37±1.85b19.34±2.45
    CWMMD273.22±242.46ab191.51±96.87a167.75±59.07b249.63±135.00
    CWMLM16.99±2.52abc15.28±3.67a13.54±5.75b17.72±6.46b
    CWMGT2.67±0.392.32±0.42a2.54±0.67a2.56±0.57
    CWMK0.41±0.06ab0.54±0.14ac0.58±0.30bc0.55±0.22
    CWMQ/B7.54±1.86ab8.48±2.079.24±2.69a9.18±2.72b
    CWMT/L3.58±0.113.62±0.143.68±0.173.62±0.18
    下载: 导出CSV
  • [1] Beukhof E, Dencker T S, Pecuchet L, et al. Spatio-temporal variation in marine fish traits reveals community-wide responses to environmental change[J]. Marine Ecology Progress Series, 2019, 610: 205−222. doi: 10.3354/meps12826
    [2] Yu Xiaoxuan, Gutang Qilin, Wang Yuxuan, et al. Microplastic and associated emerging contaminants in marine fish from the South China Sea: exposure and human risks[J]. Journal of Hazardous Materials, 2024, 480: 136200. doi: 10.1016/j.jhazmat.2024.136200
    [3] McLean M, Mouillot D, Lindegren M, et al. Fish communities diverge in species but converge in traits over three decades of warming[J]. Global Change Biology, 2019, 25(11): 3972−3984. doi: 10.1111/gcb.14785
    [4] Wang Shaopeng, Loreau M, de Mazancourt C, et al. Biotic homogenization destabilizes ecosystem functioning by decreasing spatial asynchrony[J]. Ecology, 2021, 102(6): e03332. doi: 10.1002/ecy.3332
    [5] Kong F Z, Cui W L, Xi H H. Spatial–temporal variation, decoupling effects and prediction of marine fishery based on modified ecological footprint model: case study of 11 coastal provinces in China[J]. Ecological Indicators, 2021, 132: 108271. doi: 10.1016/j.ecolind.2021.108271
    [6] Clavero M, Hermoso V. Reservoirs promote the taxonomic homogenization of fish communities within river basins[J]. Biodiversity and Conservation, 2011, 20(1): 41−57. doi: 10.1007/s10531-010-9945-3
    [7] 吴桢, 张崇良, 薛莹, 等. 山东近海底层鱼类资源空间异质性[J]. 海洋学报, 2022, 44(2): 21−28.

    Wu Zhen, Zhang Chongliang, Xue Ying, et al. Spatial heterogeneity of demersal fish in the offshore waters of Shandong[J]. Haiyang Xuebao, 2022, 44(2): 21−28.
    [8] Li Yuru, Ma Shuyang, Li Jianchao, et al. Difference in seasonal shift of spatial homogenization between taxonomic and functional structure in demersal fish communities[J]. Estuarine, Coastal and Shelf Science, 2023, 295: 108561. doi: 10.1016/j.ecss.2023.108561
    [9] Mims M C, Olden J D. Life history theory predicts fish assemblage response to hydrologic regimes[J]. Ecology, 2012, 93(1): 35−45. doi: 10.1890/11-0370.1
    [10] Jennings S, Pinnegar J K, Polunin N V C, et al. Weak cross-species relationships between body size and trophic level belie powerful size-based trophic structuring in fish communities[J]. Journal of Animal Ecology, 2001, 70(6): 934−944. doi: 10.1046/j.0021-8790.2001.00552.x
    [11] Beukhof E, Dencker T S, Pecuchet L, et al. Spatio-temporal variation in marine fish traits reveals community-wide responses to environmental change[J]. Marine Ecology Progress Series, 2019, 610: 205−222.
    [12] Harvey B P, Marshall K E, Harley C D G, et al. Predicting responses to marine heatwaves using functional traits[J]. Trends in Ecology & Evolution, 2022, 37(1): 20−29.
    [13] Stenevik E K, Sundby S. Impacts of climate change on commercial fish stocks in Norwegian waters[J]. Marine Policy, 2007, 31(1): 19−31. doi: 10.1016/j.marpol.2006.05.001
    [14] 俞存根, 曾江宁, 郑基, 等. 舟山渔场渔业生态学[M]. 北京: 科学出版社, 2011.

    Yu Cungen, Zeng Jiangning, Zheng Ji, et al. Zhoushan Fishing Ground Fishery Ecology[M]. Beijing: Science Press, 2011.
    [15] 卢昌彩, 赵景辉. "东海无鱼"应对措施探讨[J]. 中国渔业经济, 2013, 31(6): 27−32.

    Lu Changcai, Zhao Jinghui. An investigation on the countermeasures against "No fish in East China Sea"[J]. Chinese Fisheries Economics, 2013, 31(6): 27−32.
    [16] Nay T J, Johansen J L, Habary A, et al. Behavioural thermoregulation in a temperature-sensitive coral reef fish, the five-lined cardinalfish (Cheilodipterus quinquelineatus)[J]. Coral Reefs, 2015, 34(4): 1261−1265. doi: 10.1007/s00338-015-1353-4
    [17] Blažek R, Polačik M, Reichard M. Rapid growth, early maturation and short generation time in African annual fishes[J]. EvoDevo, 2013, 4(1): 24. doi: 10.1186/2041-9139-4-24
    [18] Froese R, Pauly D. FishBase. World Wide Web electronic publication[EB/OL]. https://www.scienceopen.com/document?vid=dc419213-0ca3-48cc-901c-2934ecf4441e, 2014-01-02.
    [19] Pauly D. Food consumption by tropical and temperate fish populations: some generalizations[J]. Journal of Fish Biology, 1999, 35(sA): 11−20.
    [20] Olán-González M, Briones-Fourzán P, Lozano-Álvarez E, et al. Similar functional composition of fish assemblages despite contrasting levels of habitat degradation on shallow Caribbean coral reefs[J]. PLoS One, 2023, 18(12): e0295238. doi: 10.1371/journal.pone.0295238
    [21] Villéger S, Mason N W H, Mouillot D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology[J]. Ecology, 2008, 89(8): 2290−2301. doi: 10.1890/07-1206.1
    [22] Baselga A. Partitioning the turnover and nestedness components of beta diversity[J]. Global Ecology and Biogeography, 2010, 19(1): 134−143. doi: 10.1111/j.1466-8238.2009.00490.x
    [23] Villéger S, Grenouillet G, Brosse S. Decomposing functional β-diversity reveals that low functional β-diversity is driven by low functional turnover in European fish assemblages[J]. Global Ecology and Biogeography, 2013, 22(6): 671−681. doi: 10.1111/geb.12021
    [24] 郭朋军, 江新琴, 俞存根, 等. 舟山沿岸渔场春秋季鱼类群落结构特征分析[J]. 渔业科学进展, 2020, 41(4): 1−11.

    Guo Pengjun, Jiang Xinqin, Yu Cungen, et al. Analysis of the fish community structure in the spring and autumn of the Zhoushan coastal fishing grounds[J]. Progress in Fishery Sciences, 2020, 41(4): 1−11.
    [25] 朱梦华, 钱卫国. 舟山渔场渔业资源衰退原因及修复对策[J]. 农村经济与科技, 2022, 33(9): 79−82.

    Zhu Menghua, Qian Weiguo. The relationship between distribution of fish abundance and environmental factors in the outer waters of the Zhoushan Islands[J]. Rural Economy and Science-Technology, 2022, 33(9): 79−82.
    [26] 唐嘉威, 于南京, 郑基, 等. 舟山渔场大小鱼山附近海域鱼类群落结构及生物多样性[J]. 浙江海洋大学学报(自然科学版), 2021, 40(3): 209−217,233.

    Tang Jiawei, Yu Nanjing, Zheng Ji, et al. Fish community structure and diversity in the Zhoushan fishing ground sea near Daxiao Yushan[J]. Journal of Zhejiang Ocean University (Natural Science), 2021, 40(3): 209−217,233.
    [27] Wang Jing, Zheng Yijia, Li Yi, et al. Potential risks, source apportionment, and health risk assessment of dissolved heavy metals in Zhoushan fishing ground, China[J]. Marine Pollution Bulletin, 2023, 189: 114751. doi: 10.1016/j.marpolbul.2023.114751
    [28] 于南京, 俞存根, 许永久, 等. 舟山群岛外海域鱼类数量分布与环境因子的关系[J]. 海洋学报, 2020, 42(10): 80−91.

    Yu Nanjing, Yu Cungen, Xu Yongjiu, et al. The relationship between distribution of fish abundance and environmental factors in the outer waters of the Zhoushan Islands[J]. Haiyang Xuebao, 2020, 42(10): 80−91.
    [29] 于南京, 俞存根, 许永久, 等. 舟山群岛外海域鱼类数量分布与环境因子的关系[J]. 海洋学报, 2020, 42(10): 80-91.

    Yu Nanjing, Yu Cungen, Xu Yongjiu, et al. The relationship between distribution of fish abundance and environmental factors in the outer waters of the Zhoushan Islands[J]. Haiyang Xuebao, 2020, 42(10): 80−91.
    [30] 邓小艳, 俞存根, 水玉跃, 等. 舟山近岸海域春秋季鱼类种类组成及其数量时空分布[J]. 生态科学, 2018, 37(1): 10−19.

    Deng Xiaoyan, Yu Cungen, Shui Yuyue, et al. Spatial and temporal variation in fish species composition and abundance in Zhoushan coastal waters during spring and autumn[J]. Ecological Science, 2018, 37(1): 10−19.
    [31] Wu Qiang, Shan Xiujuan, Jin Xianshi, et al. Effects of latitude gradient and seasonal variation on the community structure and biodiversity of commercially important crustaceans in the Yellow Sea and the northern East China Sea[J]. Marine Life Science & Technology, 2020, 2(2): 146−154.
    [32] Yang Zhiyong, Liu Xueqi, Zhou Mohua, et al. The effect of environmental heterogeneity on species richness depends on community position along the environmental gradient[J]. Scientific Reports, 2015, 5(1): 15723. doi: 10.1038/srep15723
    [33] 殷名称. 鱼类生态学[M]. 北京: 中国农业出版社, 1995: 171−187.

    Yin Mingcheng. Fish Ecology[M]. Beijing: China Agriculture Press, 1995: 171−187. (查阅网上资料, 未找到本条文献英文信息, 请确认)
    [34] Magurran A E, Dornelas M, Moyes F, et al. Rapid biotic homogenization of marine fish assemblages[J]. Nature Communications, 2015, 6(1): 8405. doi: 10.1038/ncomms9405
    [35] Smith K F, Brown J H. Patterns of diversity, depth range and body size among pelagic fishes along a gradient of depth[J]. Global Ecology and Biogeography, 2002, 11(4): 313−322. doi: 10.1046/j.1466-822X.2002.00286.x
    [36] Dong Jianyu, Zhao Linlin, Sun Xin, et al. Response of macrobenthic communities to heavy metal pollution in Laoshan Bay, China: a trait-based method[J]. Marine Pollution Bulletin, 2021, 167: 112292. doi: 10.1016/j.marpolbul.2021.112292
    [37] Aleixo M H F, Florêncio F M, Lansac-Tôha F M, et al. Influence of species invasion, seasonality, and connectivity on fish functional and taxonomic beta-diversity in a Neotropical floodplain[J]. Biological Invasions, 2023, 25(10): 3237−3251. doi: 10.1007/s10530-023-03105-4
    [38] Cilleros K, Allard L, Grenouillet G, et al. Taxonomic and functional diversity patterns reveal different processes shaping European and Amazonian stream fish assemblages[J]. Journal of Biogeography, 2016, 43(9): 1832−1843. doi: 10.1111/jbi.12839
    [39] Cilleros K, Allard L, Grenouillet G, et al. Taxonomic and functional diversity patterns reveal different processes shaping European and Amazonian stream fish assemblages[J]. Journal of Biogeography, 2016, 43(9): 1832−1843.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  8
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-04
  • 修回日期:  2025-02-20
  • 网络出版日期:  2025-04-11

目录

    /

    返回文章
    返回