留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海洋中透明胞外聚合颗粒物的生物地球化学特征及其对碳输运的贡献

韩宗原 王启栋 袁华茂 宋金明

韩宗原,王启栋,袁华茂,等. 海洋中透明胞外聚合颗粒物的生物地球化学特征及其对碳输运的贡献[J]. 海洋学报,2025,47(x):1–15
引用本文: 韩宗原,王启栋,袁华茂,等. 海洋中透明胞外聚合颗粒物的生物地球化学特征及其对碳输运的贡献[J]. 海洋学报,2025,47(x):1–15
Han Zongyuan,Wang Qidong,Yuan Huamao, et al. Biogeochemistry characteristic and contribution to carbon transportation of Transparent Exopolymer Particles(TEP) in the ocean[J]. Haiyang Xuebao,2025, 47(x):1–15
Citation: Han Zongyuan,Wang Qidong,Yuan Huamao, et al. Biogeochemistry characteristic and contribution to carbon transportation of Transparent Exopolymer Particles(TEP) in the ocean[J]. Haiyang Xuebao,2025, 47(x):1–15

海洋中透明胞外聚合颗粒物的生物地球化学特征及其对碳输运的贡献

基金项目: 崂山实验室项目(LSKJ202204001)。
详细信息
    作者简介:

    韩宗原(2000—),男,黑龙江省嘉荫县人,硕士研究生,主要从事海洋生物地球化学研究。Email:hanzongyuan23@mails.ucas.ac.cn

    通讯作者:

    王启栋,助理研究员,主要从事海洋生物地球化学研究。E-mail:wangqd@qido.ac.cn

Biogeochemistry characteristic and contribution to carbon transportation of Transparent Exopolymer Particles(TEP) in the ocean

  • 摘要: 透明胞外聚合颗粒物(Transparent Exopolymer Particles,TEP)是在海洋中广泛存在的一类特殊的胞外聚合物,具有透明、含碳量高、黏性强等特点,兼具胶体和颗粒物的特性,在海洋碳输运过程中起重要作用。本文系统梳理了海洋中TEP的生物地球化学特征及其对海洋碳输运的影响。海洋中的TEP呈不定型状态,尺寸差异极大,主要由浮游植物所释放的前体物质自组装生成,并通过生物代谢、海气交换及沉降等过程从海洋中移除,其丰度和分布受浮游植物和细菌等生物的活动、海水理化环境以及动力过程的共同驱动。近岸海域中TEP的浓度变化范围极广(0-14800 μg XG eq /L),通常随离岸距离的增加而降低且与生产力密切相关,因此呈现显著的季节变化;开阔大洋中TEP的浓度一般在0-200 μg XG eq /L,在上层水体中通常随深度的增加而降低,而在中深层水体分布较均匀。作为颗粒有机碳的重要组分,TEP占颗粒有机碳库的比例及其对颗粒有机碳沉降通量的贡献,在近海通常在40%以下,而在开阔大洋则高达50%以上。除了改变颗粒沉降速率影响碳垂直输送,TEP还能通过微表层的富集效应介导海气碳交换,但该过程的机理及对碳输运的贡献仍需进一步明确。未来研究应聚焦TEP定量检测方法、组成形态解析及其碳转换因子的优化,在此基础之上进一步阐释海洋中TEP的生物地球化学行为及其影响海洋碳输运的作用机制。
  • 图  1  海洋中TEP的生物地球化学循环及驱动因素

    Fig.  1  Biogeochemical cycle and driving factors of marine TEP

    图  2  不同海域中TEP的丰度

    Fig.  2  Abundance of TEP across Different oceans

    图  3  不同大洋中TEP的垂直分布

    Fig.  3  Vertical distribution of TEP in different oceans

    表  1  TEP的不同测定方法比较

    Tab.  1  Comparison of different methods for TEP determination

    方法 染色 检测限(μg XG eq/L) 使用硫酸 盐分干扰 分析时间 特点 参考文献
    显微镜计数法 可观察尺寸形态但费时费力 [1]
    传统比色法 5 >2 h 操作简便但复现性低 [6]
    快速分光光度法 100 ~30 min 速度较快但不适用海水 [7]
    比色法 海水测量时间较长 可测量TEP前体,但海水需预处理 [8]
    TOC校准法 >2 h 结果精确但易受有机碳影响且单位不同 [11]
    10kDa法 0.05 >2 h 可测量前体,复现性高且检测限低但步骤繁琐 [9]
    AB-DI法 5 >1 h 避免使用硫酸,TEP及其前体使用同一标准曲线 [10]
    UV254/光谱法 0.6-32或0.01-0.1 快速或>1 h 可快速测定但需预制标准曲线 [10]
    顺磁性功能化微球体法 >160 min 无需染色和硫酸提取但存在损失且单位不同 [13]
    在线监测法 5000 30 min-1 h 分析时间较短但检测限非常高 [14]
    下载: 导出CSV

    表  2  不同海域中Chl a及TEP的丰度

    Tab.  2  Abundance of Chl a and TEP across Different oceans

    海域 季节 采样深度(m) Chl a(mg/m3) TEP含量(μg XG eq/L) 文献
    河口和海湾
    切萨皮克湾河口 全年 0-23.7 492(37-2820 [22]
    圣劳伦斯河口 夏秋 0-50 15-1548(291) [6]
    吉雄河口 0-4 0.18-25.00 225-1059 [23]
    珠江口 夏冬 0-30 2.01-124.11 908.1(88.7-1586.9 [24]
    长江口 春夏秋 0-80 0.19-40.20 37.9-1226.11 [25]
    胶州湾 全年 0.5m 1.28±1.48 75-553 [26]
    贾兰湾 全年 0-20 1.8±1.6 215.9±172.2(26.5-1695.4 [27]
    布拉内斯湾 全年 0.5-20 0.48±0.23 81.7±11.7(11.3-289.1) [28]
    东京湾 全年 0-20 <5-81.2 14-1774 [29]
    加的斯湾 5-100 0-600 [30]
    近海
    阿尔沃兰海 0-75 <25-539 [31]
    波罗的海 4-20 145-322 [32]
    白令海 0-3421 34-628 [33]
    爱琴海 春夏秋 0-100 0.19±0.12 73.1±35.2(15.4-188) [34]
    亚得里亚海 全年 0-35 570(4-14800 [35]
    罗斯海 0-150 4.0 308(0-2800 [36]
    地中海 3-3164 <0.92 0.6-81.7 [37]
    南海 5-3700 0-1.96 0.6-78.6 [38]
    东海 全年 3-150 <1-17.14 115±67(28-376) [39]
    闽东沿海 0-40 0.61-18.95 201.8±177.9(25.2-935.5) [40]
    温州近海 夏秋 0-150 1.47±2.11 0-1374.7 [41]
    开阔大洋
    东北大西洋 0-70 0.07-0.59 10-124 [42]
    太平洋 0-200 0.09-1.4 25±7.4(5.3-40) [43]
    西北太平洋 春夏 5-300 0.05-0.27 41.8±9.1(18-69) [44]
    南大洋 0-200 0.01-5.36 15.4±10(0-48.9) [45]
    西北冰洋 0-200 0.12-1.2 120±22(37-130) [43]
    东南印度洋 0-200 0.18±0.16 20±6(5-46.4) [46]
    下载: 导出CSV

    表  3  不同海域中TEP对POC贡献的比较

    Tab.  3  Comparison of TEP Contribution to POC across different oceans

    海域 季节 采样深度 POC(mg/L) 转换因子 POC% 文献
    河口和海湾
    切萨皮克湾河口 全年 0-23.7 0.53 32±16%(0-89%) [22]
    纽斯河口 全年 0.75 16±9% [21]
    贾兰湾 全年 0-20 0.40±0.19 0.51 2.4-78% [27]
    多纳保拉湾 全年 1 0.75 6.9±5.8%(0.1-22.8%) [75]
    胶州湾 全年 0.5 0.60±0.30 0.75 26% [26]
    特拉诺瓦湾 0.09 0.51 9.8±3.1% [51]
    0.17 21.9±7.1%
    0.08 26.9±6.1%
    0.07 13.0±4.2%
    近海
    爱琴海东北岸 0-100 0.06±0.02 0.51 73.6±30.9%(37.5-147%) [34]
    0.05±0.02 79.7±27.7(33.3-136%)
    0.03±0.01 52.0±24.3%(14.4-111%)
    东海沿海 表-底 0.08-1.47 0.53 32.03% [76]
    闽东沿海 0-40(表-底) 0.24±0.09 0.53 44.8±101.7%(9.8-110.8%) [40]
    温州近海 0-150(表-底) 0.17±0.18 0.53 42.2% [41]
    0.65±1.09 41.90%
    开阔大洋
    东北大西洋 0.04±0.01 0.75 85.2±1.6%(27.2-139.2%) [37]
    0.01 78.7±3.0%(33.5-182.8%)
    0.01 66.7±1.2%(22.1-169.1%)
    大西洋 4 16.6±15.8 0.51 73±36%(28-110%) [65]
    西北冰洋 0-200 0.04 0.51 160% [43]
    太平洋 0-200 0.02 80%
    下载: 导出CSV
  • [1] Alldredge A L, Passow U, Logan B E. The abundance and significance of a class of large, transparent organic particles in the ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1993, 40(6): 1131−1140. doi: 10.1016/0967-0637(93)90129-Q
    [2] Passow U. Transparent exopolymer particles (TEP) in aquatic environments[J]. Progress in Oceanography, 2002, 55(3/4): 287−333.
    [3] Mopper K, Zhou Jian, Sri Ramana K, et al. The role of surface-active carbohydrates in the flocculation of a diatom bloom in a mesocosm[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1995, 42(1): 47−73. doi: 10.1016/0967-0645(95)00004-A
    [4] Tan Qiyin, Shen Yue, Sun Jiahao, et al. Effects of calcium ions and polysaccharides type on transparent exopolymer particle formation and the related fouling mechanisms[J]. Science of the Total Environment, 2024, 951: 175775. doi: 10.1016/j.scitotenv.2024.175775
    [5] Sugimoto K, Fukuda H, Koike I, et al. Heterogeneity of transparent exopolymer particles in a coastal marine environment (Sagami Bay, Japan): seasonal variation and its possible bacterial causes[J]. Frontiers in Marine Science, 2021, 8: 766771. doi: 10.3389/fmars.2021.766771
    [6] Passow U, Alldredge A L. A dye‐binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP)[J]. Limnology and Oceanography, 1995, 40(7): 1326−1335. doi: 10.4319/lo.1995.40.7.1326
    [7] Arruda Fatibello S H S, Henriques Vieira A A, Fatibello-Filho O. A rapid spectrophotometric method for the determination of transparent exopolymer particles (TEP) in freshwater[J]. Talanta, 2004, 62(1): 81−85. doi: 10.1016/S0039-9140(03)00417-X
    [8] Thornton D C O, Fejes E M, DiMarco S F, et al. Measurement of acid polysaccharides in marine and freshwater samples using alcian blue[J]. Limnology and Oceanography: Methods, 2007, 5(2): 73−87. doi: 10.4319/lom.2007.5.73
    [9] Villacorte L O, Ekowati Y, Calix-Ponce H N, et al. Improved method for measuring transparent exopolymer particles (TEP) and their precursors in fresh and saline water[J]. Water Research, 2015, 70: 300−312. doi: 10.1016/j.watres.2014.12.012
    [10] Nguyen H D, Nurhayati M, Pham T T T, et al. Updated measurement method for transparent exopolymer particles (TEPs) and their precursors with insights into efficient monitoring[J]. Desalination, 2024, 591: 117975. doi: 10.1016/j.desal.2024.117975
    [11] Kennedy M D, Muñoz Tobar F P, Amy G, et al. Transparent exopolymer particle (TEP) fouling of ultrafiltration membrane systems[J]. Desalination and Water Treatment, 2009, 6(1/3): 169−176.
    [12] Bittar T B, Passow U, Hamaraty L, et al. An updated method for the calibration of transparent exopolymer particle measurements[J]. Limnology and Oceanography: Methods, 2018, 16(10): 621−628. doi: 10.1002/lom3.10268
    [13] Mari X, Dam H G. Production, concentration, and isolation of transparent exopolymeric particles using paramagnetic functionalized microspheres[J]. Limnology and Oceanography: Methods, 2004, 2(1): 13−24. doi: 10.4319/lom.2004.2.13
    [14] Sim L N, Suwarno S R, Lee D Y S, et al. Online monitoring of transparent exopolymer particles (TEP) by a novel membrane-based spectrophotometric method[J]. Chemosphere, 2019, 220: 107−115. doi: 10.1016/j.chemosphere.2018.12.066
    [15] Verdugo P. Marine microgels[J]. Annual Review of Marine Science, 2012, 4: 375−400. doi: 10.1146/annurev-marine-120709-142759
    [16] Passow U. Production of transparent exopolymer particles (TEP) by phyto-and bacterioplankton[J]. Marine Ecology Progress Series, 2002, 236: 1−12. doi: 10.3354/meps236001
    [17] Ling S C, Alldredge A L. Does the marine copepod Calanus pacificus consume transparent exopolymer particles (TEP)?[J]. Journal of Plankton Research, 2003, 25(5): 507−515. doi: 10.1093/plankt/25.5.507
    [18] Heinonen K B, Ward J E, Holohan B A. Production of transparent exopolymer particles (TEP) by benthic suspension feeders in coastal systems[J]. Journal of Experimental Marine Biology and Ecology, 2007, 341(2): 184−195. doi: 10.1016/j.jembe.2006.09.019
    [19] McKee M P, Ward J E, MacDonald B A, et al. Production of transparent exopolymer particles (TEP) by the eastern oyster Crassostrea virginica[J]. Marine Ecology Progress Series, 2005, 288: 141−149. doi: 10.3354/meps288141
    [20] Iuculano F, Duarte C M, Marbà N, et al. Seagrass as major source of transparent exopolymer particles in the oligotrophic Mediterranean coast[J]. Biogeosciences, 2017, 14(22): 5069−5075. doi: 10.5194/bg-14-5069-2017
    [21] Wetz M S, Robbins M C, Paerl H W. Transparent exopolymer particles (TEP) in a river-dominated estuary: spatial–temporal distributions and an assessment of controls upon TEP formation[J]. Estuaries and Coasts, 2009, 32(3): 447−455. doi: 10.1007/s12237-009-9143-2
    [22] Malpezzi M A, Sanford L P, Crump B C. Abundance and distribution of transparent exopolymer particles in the estuarine turbidity maximum of Chesapeake Bay[J]. Marine Ecology Progress Series, 2013, 486: 23−35. doi: 10.3354/meps10362
    [23] Bar-Zeev E, Rahav E. Microbial metabolism of transparent exopolymer particles during the summer months along a eutrophic estuary system[J]. Frontiers in Microbiology, 2015, 6: 403.
    [24] Sun Cuici, Wang Youshao, Li Q P, et al. Distribution characteristics of transparent exopolymer particles in the Pearl River estuary, China[J]. Journal of Geophysical Research: Biogeosciences, 2012, 117(G4): G00N17.
    [25] Guo Shujin, Sun Xiaoxia. Concentrations and distribution of transparent exopolymer particles in a eutrophic coastal sea: a case study of the Changjiang (Yangtze River) estuary[J]. Marine and Freshwater Research, 2019, 70(10): 1389−1401. doi: 10.1071/MF18211
    [26] Guo Shujin, Zhao Yongfang, Zhu Mingliang, et al. Spatio-temporal variation of transparent exopolymer particles (TEP) and their sinking flux in a temperate bay: Jiaozhou Bay, China[J]. Estuarine, Coastal and Shelf Science, 2020, 246: 107051. doi: 10.1016/j.ecss.2020.107051
    [27] Lee J H, Lee W C, Kim H C, et al. Transparent exopolymer particle (TEPs) dynamics and contribution to particulate organic carbon (POC) in Jaran Bay, Korea[J]. Water, 2020, 12(4): 1057. doi: 10.3390/w12041057
    [28] Ortega-Retuerta E, Marrasé C, Muñoz-Fernández A, et al. Seasonal dynamics of transparent exopolymer particles (TEP) and their drivers in the coastal NW mediterranean sea[J]. Science of the Total Environment, 2018, 631-632: 180-190.
    [29] Ramaiah N, Furuya K. Seasonal variations in phytoplankton composition and transparent exopolymer particles in a eutrophicated coastal environment[J]. Aquatic Microbial Ecology, 2002, 30: 69−82. doi: 10.3354/ame030069
    [30] García C M, Prieto L, Vargas M, et al. Hydrodynamics and the spatial distribution of plankton and TEP in the Gulf of Cádiz (SW Iberian Peninsula)[J]. Journal of Plankton Research, 2002, 24(8): 817−833. doi: 10.1093/plankt/24.8.817
    [31] Prieto L, Navarro G, Cózar A, et al. Distribution of TEP in the euphotic and upper mesopelagic zones of the southern Iberian coasts[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2006, 53(11/13): 1314−1328.
    [32] Engel A. Direct relationship between CO2 uptake and transparent exopolymer particles production in natural phytoplankton[J]. Journal of Plankton Research, 2002, 24(1): 49−53. doi: 10.1093/plankt/24.1.49
    [33] 马丽丽, 陈敏, 郭劳动, 等. 北白令海透明胞外聚合颗粒物的含量与来源[J]. 海洋学报, 2012, 34(5): 81−90.

    Ma Lili, Chen Min, Guo Laodong, et al. Distribution and source of transparent exopolymer particles in the northern Bering Sea[J]. Haiyang Xuebao, 2012, 34(5): 81−90.
    [34] Parinos C, Gogou A, Krasakopoulou E, et al. Transparent Exopolymer Particles (TEP) in the NE Aegean Sea frontal area: seasonal dynamics under the influence of Black Sea water[J]. Continental Shelf Research, 2017, 149: 112−123. doi: 10.1016/j.csr.2017.03.012
    [35] Radić T, Kraus R, Fuks D, et al. Transparent exopolymeric particles’ distribution in the northern Adriatic and their relation to microphytoplankton biomass and composition[J]. Science of the Total Environment, 2005, 353(1/3): 151−161.
    [36] Hong Ying, Smith W O Jr, White A M. Studies on transparent exopolymer particles (Tep) produced in the Ross Sea (Antarctica) and by Phaeocystis antarctica (Prymnesiophyceae)[J]. Journal of Phycology, 1997, 33(3): 368−376. doi: 10.1111/j.0022-3646.1997.00368.x
    [37] Ortega-Retuerta E, Mazuecos I P, Reche I, et al. Transparent exopolymer particle (TEP) distribution and in situ prokaryotic generation across the deep Mediterranean Sea and nearby North East Atlantic Ocean[J]. Progress in Oceanography, 2019, 173: 180−191. doi: 10.1016/j.pocean.2019.03.002
    [38] Ge Zaiming, Li Q P, Yang Weifeng, et al. Transparent exopolymer particle dynamics along a shelf-to-sea gradient and impacts on the regional carbon cycle[J]. Science of the Total Environment, 2022, 808: 152117. doi: 10.1016/j.scitotenv.2021.152117
    [39] 舒逸, 张桂成, 孙军. 东海PN断面透明胞外聚合颗粒物分布特征及来源研究[J]. 海洋学报, 2018, 40(8): 110−119. doi: 10.3969/j.issn.0253-4193.2018.08.011

    Shu Yi, Zhang Guicheng, Sun Jun. The distribution and origin of transparent exopolymer particles at the PN section in the East China Sea[J]. Haiyang Xuebao, 2018, 40(8): 110−119. doi: 10.3969/j.issn.0253-4193.2018.08.011
    [40] 薛思佑, 胡佶, 韩正兵, 等. 夏季闽东沿海水体中透明胞外聚合颗粒物的分布特征及影响因素[J]. 海洋学报, 2021, 43(8): 17−30.

    Xue Siyou, Hu Ji, Han Zhengbing, et al. Distribution patterns and influencing factors of transparent exopolymer particles (TEP) in the coast of eastern Fujian in summer[J]. Haiyang Xuebao, 2021, 43(8): 17−30.
    [41] 薛思佑, 胡佶, 蔡昱明, 等. 2019年夏秋季温州近海海水透明胞外聚合颗粒物(TEP)的分布及影响因素分析[J]. 海洋通报, 2022, 41(1): 39−49,60. doi: 10.11840/j.issn.1001-6392.2022.01.005

    Xue Siyou, Hu Ji, Cai Yuming, et al. Distribution and influencing factors of transparent exopolymer particles (TEP) in coastal waters of Wenzhou in the summer and autumn of 2019[J]. Marine Science Bulletin, 2022, 41(1): 39−49,60. doi: 10.11840/j.issn.1001-6392.2022.01.005
    [42] Engel A. Distribution of transparent exopolymer particles (TEP) in the northeast Atlantic Ocean and their potential significance for aggregation processes[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2004, 51(1): 83−92. doi: 10.1016/j.dsr.2003.09.001
    [43] Yamada Y, Yokokawa T, Uchimiya M, et al. Transparent exopolymer particles (TEP) in the deep ocean: full-depth distribution patterns and contribution to the organic carbon pool[J]. Marine Ecology Progress Series, 2017, 583: 81−93. doi: 10.3354/meps12339
    [44] Kodama T, Kurogi H, Okazaki M, et al. Vertical distribution of transparent exopolymer particle (TEP) concentration in the oligotrophic western tropical North Pacific[J]. Marine Ecology Progress Series, 2014, 513: 29−37. doi: 10.3354/meps10954
    [45] Ortega-Retuerta E, Reche I, Pulido-Villena E, et al. Uncoupled distributions of transparent exopolymer particles (TEP) and dissolved carbohydrates in the Southern Ocean[J]. Marine Chemistry, 2009, 115(1/2): 59−65.
    [46] Guo Congcong, Sun Jun, Wang Xingzou, et al. Distribution and settling regime of transparent exopolymer particles (TEP) potentially associated with bio‐physical processes in the eastern Indian Ocean[J]. Journal of Geophysical Research: Biogeosciences, 2021, 126(4): e2020JG005934. doi: 10.1029/2020JG005934
    [47] Cisternas-Novoa C, Lee C, Engel A. Transparent exopolymer particles (TEP) and Coomassie stainable particles (CSP): differences between their origin and vertical distributions in the ocean[J]. Marine Chemistry, 2015, 175: 56−71. doi: 10.1016/j.marchem.2015.03.009
    [48] Nosaka Y, Yamashita Y, Suzuki K. Dynamics and origin of transparent exopolymer particles in the oyashio region of the western subarctic pacific during the spring diatom bloom[J]. Frontiers in Marine Science, 2017, 4: 79.
    [49] 郭聪聪. 东印度洋透明胞外聚合颗粒物浓度分布及其沉降特性[D]. 天津: 天津科技大学, 2020.

    Guo Congcong. The distribution and sinking characteristics of transparent exopolymer particles in the Eastern Indian Ocean[D]. Tianjin: Tianjin University of Science & Technology, 2020.
    [50] Ramaiah N, Furuya K. Phytoplankton blooms and associated variations in transparent exopolymer particles in Tokyo Bay[J]. Fisheries Science, 2002, 68(S1): 592−595.
    [51] Park S, Park J, Yoo K C, et al. Seasonal variations in the biochemical compositions of phytoplankton and transparent exopolymer particles (TEPs) at Jang Bogo station (Terra Nova Bay, Ross Sea), 2017–2018[J]. Water, 2021, 13(16): 2173. doi: 10.3390/w13162173
    [52] Harlay J, De Bodt C, Engel A, et al. Abundance and size distribution of transparent exopolymer particles (TEP) in a coccolithophorid bloom in the northern Bay of Biscay[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2009, 56(8): 1251−1265. doi: 10.1016/j.dsr.2009.01.014
    [53] Fukao T, Kimoto K, Kotani Y. Production of transparent exopolymer particles by four diatom species[J]. Fisheries Science, 2010, 76(5): 755−760. doi: 10.1007/s12562-010-0265-z
    [54] Passow U, Engel A, Ploug H. The role of aggregation for the dissolution of diatom frustules[J]. FEMS Microbiology Ecology, 2003, 46(3): 247−255. doi: 10.1016/S0168-6496(03)00199-5
    [55] Obernosterer I, Herndl G. Phytoplankton extracellular release and bacterial growth: Dependence on the inorganic N: P ratio[J]. Marine Ecology Progress Series, 1995, 116: 247−257. doi: 10.3354/meps116247
    [56] Myklestad S. Production of carbohydrates by marine planktonic diatoms. II. Influence of the NP ratio in the growth medium on the assimilation ratio, growth rate, and production of cellular and extracellular carbohydrates by Chaetoceros affinis var. willei (Gran) Hustedt and Skeletonema costatum (Grev. ) Cleve[J]. Journal of Experimental Marine Biology and Ecology, 1977, 29(2): 161−179. doi: 10.1016/0022-0981(77)90046-6
    [57] 蓝彩碧, 李杰, 赖俊翔, 等. 磷限制对球形棕囊藻生长及TEP形成的影响[J]. 海洋技术学报, 2023, 42(5): 94−101. doi: 10.3969/j.issn.1003-2029.2023.05.012

    Lan Caibi, Li Jie, Lai Junxiang, et al. Effect of phosphorus limitation on the growth and TEP formation of phaeocystis globose[J]. Journal of Ocean Technology, 2023, 42(5): 94−101. doi: 10.3969/j.issn.1003-2029.2023.05.012
    [58] Corzo A, Morillo J A, Rodríguez S. Production of transparent exopolymer particles (TEP) in cultures of Chaetoceros calcitrans under nitrogen limitation[J]. Aquatic Microbial Ecology, 2000, 23: 63−72. doi: 10.3354/ame023063
    [59] Baker C A. Exploring the roles of turbulence and transparent exopolymer particles on particle transformation in the Southern Ocean[R]. 2021. (查阅网上资料, 未找到对应的出版信息, 请确认)
    [60] Toullec J, Moriceau B. Transparent exopolymeric particles (TEP) selectively increase biogenic silica dissolution from fossil diatoms as compared to fresh diatoms[J]. Frontiers in Marine Science, 2018, 5: 102. doi: 10.3389/fmars.2018.00102
    [61] Ortega-Retuerta E, Passow U, Duarte C M, et al. Effects of ultraviolet B radiation on (not so) transparent exopolymer particles[J]. Biogeosciences, 2009, 6(12): 3071−3080. doi: 10.5194/bg-6-3071-2009
    [62] MacGilchrist G A, Shi T, Tyrrell T, et al. Effect of enhanced pCO2 levels on the production of dissolved organic carbon and transparent exopolymer particles in short-term bioassay experiments[J]. Biogeosciences, 2014, 11(13): 3695−3706. doi: 10.5194/bg-11-3695-2014
    [63] Wolfstein K, Stal L J. Production of extracellular polymeric substances (EPS) by benthic diatoms: effect of irradiance and temperature[J]. Marine Ecology Progress Series, 2002, 236: 13−22. doi: 10.3354/meps236013
    [64] Fukao T, Kimoto K, Kotani Y. Effect of temperature on cell growth and production of transparent exopolymer particles by the diatom Coscinodiscus granii isolated from marine mucilage[J]. Journal of Applied Phycology, 2012, 24(2): 181−186. doi: 10.1007/s10811-011-9666-3
    [65] Zamanillo M, Ortega-Retuerta E, Nunes S, et al. Main drivers of transparent exopolymer particle distribution across the surface Atlantic Ocean[J]. Biogeosciences, 2019, 16(3): 733−749. doi: 10.5194/bg-16-733-2019
    [66] Hakspiel-Segura C, Cajal-Medrano R, Maske-Rubach H, et al. Temporal and spatial distribution of transparent exopolymer particles off the northern coast of Baja California, Mexico[J]. Ciencias Marinas, 2017, 43(4): 249−267.
    [67] Berman-Frank I, Spungin D, Rahav E, et al. Dynamics of transparent exopolymer particles (TEP) during the VAHINE mesocosmexperiment in the New Caledonian lagoon[J]. Biogeosciences, 2016, 13(12): 3793−3805. doi: 10.5194/bg-13-3793-2016
    [68] Zäncker B, Engel A, Cunliffe M. Bacterial communities associated with individual transparent exopolymer particles (TEP)[J]. Journal of Plankton Research, 2019, 41(4): 561−565. doi: 10.1093/plankt/fbz022
    [69] Passow U, Alldredge A L. Do transparent exopolymer particles (TEP) inhibit grazing by the euphausiid Euphausia pacifica?[J]. Journal of Plankton Research, 1999, 21(11): 2203−2217. doi: 10.1093/plankt/21.11.2203
    [70] Xue Siyou, Hu Ji, Feng Yubin, et al. Distribution of transparent exopolymer particles and their response to phytoplankton community structure changes in the Amundsen Sea, Antarctica[J]. Advances in Polar Science, 2022, 33(1): 44−54.
    [71] Zamanillo M, Ortega-Retuerta E, Nunes S, et al. Distribution of transparent exopolymer particles (TEP) in distinct regions of the Southern Ocean[J]. Science of the Total Environment, 2019, 691: 736−748. doi: 10.1016/j.scitotenv.2019.06.524
    [72] Prieto L, Cowen J P. Transparent exopolymer particles in a deep-sea hydrothermal system: Guaymas Basin, Gulf of California[J]. Marine Biology, 2007, 150(6): 1093−1101. doi: 10.1007/s00227-006-0430-1
    [73] Takeuchi M, Doubell M J, Jackson G A, et al. Turbulence mediates marine aggregate formation and destruction in the upper ocean[J]. Scientific Reports, 2019, 9(1): 16280. doi: 10.1038/s41598-019-52470-5
    [74] Jennings M K, Passow U, Wozniak A S, et al. Distribution of transparent exopolymer particles (TEP) across an organic carbon gradient in the western North Atlantic Ocean[J]. Marine Chemistry, 2017, 190: 1−12. doi: 10.1016/j.marchem.2017.01.002
    [75] Bhaskar P V, Bhosle N B. Dynamics of transparent exopolymeric particles (TEP) and particle-associated carbohydrates in the Dona Paula bay, west coast of India[J]. Journal of Earth System Science, 2006, 115(4): 403−413. doi: 10.1007/BF02702869
    [76] Wen Lilian, Li Xuegang, Song Jinming, et al. Transparent exopolymer particle (TEP) and its impact on marine carbon transport along the East China Sea coast[J]. Ecological Indicators, 2022, 137: 108791. doi: 10.1016/j.ecolind.2022.108791
    [77] Engel A, Passow U. Carbon and nitrogen content of transparent exopolymer particles (TEP) in relation to their Alcian Blue adsorption[J]. Marine Ecology Progress Series, 2001, 219: 1−10. doi: 10.3354/meps219001
    [78] Guo Shujin, Wu Ying, Zhu Mingliang, et al. Concentrations of transparent exopolymer particles (TEPs) and their role in the carbon export in the South China Sea and western tropical North Pacific[J]. Marine Environmental Research, 2022, 179: 105699. doi: 10.1016/j.marenvres.2022.105699
    [79] Robinson T B, Giebel H A, Wurl O. Riding the plumes: characterizing bubble scavenging conditions for the enrichment of the sea-surface microlayer by transparent exopolymer particles[J]. Atmosphere, 2019, 10(8): 454. doi: 10.3390/atmos10080454
    [80] Sugai Y, Tsuchiya K, Shimode S, et al. Seasonal variations in microbial abundance and transparent exopolymer particle concentration in the sea surface microlayer of temperate coastal waters[J]. Aquatic Microbial Ecology, 2018, 81(3): 201−211. doi: 10.3354/ame01869
    [81] Engel A, Galgani L. The organic sea-surface microlayer in the upwelling region off the coast of Peru and potential implications for air–sea exchange processes[J]. Biogeosciences, 2016, 13(4): 989−1007. doi: 10.5194/bg-13-989-2016
    [82] Thornton D C O, Brooks S D, Chen Jie. Protein and carbohydrate exopolymer particles in the sea surface microlayer (SML)[J]. Frontiers in Marine Science, 2016, 3: 135.
    [83] van Pinxteren M, Robinson T B, Zeppenfeld S, et al. High number concentrations of transparent exopolymer particles in ambient aerosol particles and cloud water – a case study at the tropical Atlantic Ocean[J]. Atmospheric Chemistry and Physics, 2022, 22(8): 5725−5742. doi: 10.5194/acp-22-5725-2022
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  11
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-27
  • 修回日期:  2025-06-18
  • 网络出版日期:  2025-07-01

目录

    /

    返回文章
    返回