留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄原胶影响下泥沙起动特性对水体磷浓度的影响

尧印鹏 许春阳 陈永平 周春艳

尧印鹏,许春阳,陈永平,等. 黄原胶影响下泥沙起动特性对水体磷浓度的影响[J]. 海洋学报,2025,47(x):1–10
引用本文: 尧印鹏,许春阳,陈永平,等. 黄原胶影响下泥沙起动特性对水体磷浓度的影响[J]. 海洋学报,2025,47(x):1–10
YAO Yinpeng,XU Chunyang,CHEN Yongping, et al. The effect of sediment incipient motion characteristics on phosphorus concentration in water under the influence of xanthan[J]. Haiyang Xuebao,2025, 47(x):1–10
Citation: YAO Yinpeng,XU Chunyang,CHEN Yongping, et al. The effect of sediment incipient motion characteristics on phosphorus concentration in water under the influence of xanthan[J]. Haiyang Xuebao,2025, 47(x):1–10

黄原胶影响下泥沙起动特性对水体磷浓度的影响

基金项目: 国家重点研发计划资助(2023YFC3008100);国家自然科学基金项目(42376171);中央高校基本科研业务费专项资金资助(B230201047)。
详细信息
    作者简介:

    尧印鹏(1999—),男,江西抚州人。E-mail:yp.yao@hhu.edu.cn

    通讯作者:

    许春阳。E-mail:cyxu@hhu.edu.cn

  • 中图分类号: XX

The effect of sediment incipient motion characteristics on phosphorus concentration in water under the influence of xanthan

  • 摘要: 泥沙所运载磷的是水域环境中重要的营养因子和生态因子,受沿海潮滩复杂水动力及泥沙表面所附着各类有机物的多重影响,潮滩泥沙具有复杂的运动过程,故探究有机质对泥沙运动和对磷的吸附过程的影响,可为沿海潮滩及近岸水域中磷的预测提供理论支撑。为研究有机质和泥沙起动特性对水体磷浓度的影响,选取黄原胶,通过泥沙起动-再悬浮-吸附实验和恒温振荡实验,探究了变化水流条件下,黄原胶对泥沙运动过程和泥沙吸附磷过程的影响。研究结果表明:1)黄原胶对床沙的起动过程具有明显的抑制作用,使床沙对起动切应力的抵抗能力提升约两倍;2)泥沙起动特性是影响床沙对水体中磷吸附作用的直接因素之一,当床沙开始大量起动后,水体中的磷浓度才开始出现明显变化;3)黄原胶本身对磷吸附作用几乎无影响,但可通过抑制床沙的起动过程进而抑制床沙对水体中磷的吸附作用。
  • 图  1  试验泥沙级配曲线

    Fig.  1  aaa

    图  2  泥沙起动实验装置(a)和水动力测量试验拍摄示意图(b)、(c)

    Fig.  2  Experimental device of sediment incipience (a) and schematics of hydrodynamic measurement (b), (c)

    图  3  激光剖面相对位置示意图(a)、PIV计算过程示意图(b)和水动力测量结果(c)

    Fig.  3  The relative position of laser profile (a), schematic diagram for the velocity calculation using PIV method (b) and the results of hydrodynamics (c).

    图  4  实验过程中无黄原胶床沙对磷的总吸附量和相应变化率

    Fig.  4  The total adsorption capacity and the change rate of phosphorus by non-XG bed sediment

    图  5  实验过程中无黄原胶组悬沙浓度变化和相应变化率

    Fig.  5  The suspended sediment concentration and the change rate by non- XG group

    图  6  实验过程中含黄原胶床沙对磷的总吸附量和相应变化率

    Fig.  6  The total adsorption capacity and the change rate of phosphorus by XG bed sediment

    图  7  实验过程中含黄原胶组悬沙浓度变化和相应变化率

    Fig.  7  The suspended sediment concentration and the change rate by XG group

    图  8  泥沙吸附磷的等温吸附曲线(a)和各黄原胶浓度下对泥沙吸附磷的影响(b)

    Fig.  8  Langmuir adsorption isotherms of S1-0 and S1-200 (a) and effects of various xanthan concentrations on sediment adsorption (b)

    图  9  泥沙(SSC>1.0g/L)对磷的单位吸附量(a)和局部放大图(b)

    Fig.  9  Unit adsorption capacity (a) and partial enlarged plot (b) of phosphorus on sediment (SSC > 1.0g/L)

    表  1  泥沙组分表

    Tab.  1  Components of experimental sediment

    D10/μmD50/μmD90/μm黏土/%粉砂/%砂粒/%磷解吸量/mg/g
    14.7939.7473.842.3079.2118.490.000
    下载: 导出CSV

    表  2  水动力测量参数设置表

    Tab.  2  Parameters setup for hydrodynamic measurement

    水动力等级 转速/rpm 周期/s 垂向剖面距边壁位置/cm 水平剖面距床底位置/cm 拍摄帧率/fps
    1 42 0.714 5、10、15、20、25、30、35、
    40、45、50、51、57
    10 1000
    2 78 0.384
    3 104 0.288
    4 128 0.234
    5 156 0.192
    6 178 0.169
    7 196 0.153
    下载: 导出CSV

    表  3  水动力测量参数设置表

    Tab.  3  Parameters setup for hydrodynamic measurement

    编号 磷浓度
    mg/L
    泥沙浓度
    g·L−1
    黄原胶含量
    μg/g
    编号 磷浓度
    mg/L
    泥沙浓度
    g·L−1
    黄原胶含量
    μg/g
    S1-0 0.5、1、2、3、
    4、5、6
    1 0 S10-0 2 10 0
    S1-200 200 S10-200 2 10 200
    S1-1000 2 1 1000 S10-1000 2 10 1000
    S1-2000 2 1 2000 S10-2000 2 10 2000
    下载: 导出CSV

    表  4  实验结果数据表

    Tab.  4  Experimental results

    时间
    min
    水动力
    等级
    切应力
    Pa
    不含黄原胶组次含黄原胶组次
    总吸附量变化速率
    平均值mg/20 min
    悬沙浓度变化速率
    平均值g/(20 min·L)
    总吸附量变化速率
    平均值mg/20 min
    悬沙浓度变化速率
    平均值g/(20 min·L)
    0~120 min一级0.00230.0300.0000.016−0.062
    120~240 min二级0.00500.008−0.0750.0270.040
    240~3600 min三级0.02050.0960.577−0.0030.125
    360~480 min四级0.03560.3552.6020.0740.060
    480~600 min五级0.07590.9507.6670.0140.775
    600~720 min六级0.16850.3361.6651.0196.657
    720~840 min七级0.31190.1610.2980.5823.422
    下载: 导出CSV
  • [1] 关文海, 骆国辉, 王攀菲, 等. 嘉陵江总磷通量变化及空间来源解析[J]. 中国环境科学, 2024, 44(3): 1448−1456. doi: 10.3969/j.issn.1000-6923.2024.03.027

    Guan Wenhai, Luo Guohui, Wang Panfei, et al. Variation of TP flux in Jialing River and spatial source apportionment[J]. China Environmental Science, 2024, 44(3): 1448−1456. doi: 10.3969/j.issn.1000-6923.2024.03.027
    [2] 褚晓琳, 张皓玥. 基于生态系统的海岸带综合管理研究——以广东省湛江市为例[J]. 海洋湖沼通报, 2023, 45(6): 171−179.

    Chu Xiaolin, Zhang Haoyue. Ecosystem-based integrated coastal zone management: a case study of Zhanjiang City, Guangdong Province[J]. Transactions of Oceanology and Limnology, 2023, 45(6): 171−179.
    [3] Barbier E B, Hacker S D, Kennedy C, et al. The value of estuarine and coastal ecosystem services[J]. Ecological Monographs, 2011, 81(2): 169−193. doi: 10.1890/10-1510.1
    [4] 陈杰. 中国潮间带滩涂沉积物碳氮磷的埋藏特征[D]. 上海: 华东师范大学, 2021.

    Chen Jie. The characteristics of carbon, nitrogen and phosphorus burial in Chinese intertidal wetlands[D]. Shanghai: East China Normal University, 2021.
    [5] Yan Hong, Dai Zhijun, Li Jiufa, et al. Distributions of sediments of the tidal flats in response to dynamic actions, Yangtze (Changjiang) Estuary[J]. Journal of Geographical Sciences, 2011, 21(4): 719−732. doi: 10.1007/s11442-011-0875-0
    [6] 尧印鹏, 许春阳, 陈永平, 等. 泥沙级配与成分对磷吸附作用影响试验研究[J]. 泥沙研究, 2023, 48(6): 1−8.

    Yao Yinpeng, Xu Chunyang, Chen Yongping, et al. Experimental study on the effect of sediment gradation and component on phosphorus adsorption[J]. Journal of Sediment Research, 2023, 48(6): 1−8.
    [7] Cheng Xiaolong, Huang Yanan, Li Ran, et al. Impacts of water temperature on phosphorus release of sediments under flowing overlying water[J]. Journal of Contaminant Hydrology, 2020, 235: 103717. doi: 10.1016/j.jconhyd.2020.103717
    [8] Zhu Xian, Chen Yongping, Xu Chunyang, et al. The influence of turbulence on sediment phosphorus sorption[J]. Ecotoxicology and Environmental Safety, 2023, 258: 114955. doi: 10.1016/j.ecoenv.2023.114955
    [9] Nayak S, Takemi T. Statistical analysis of the characteristics of typhoons approaching Japan from 2006 to 2019[J]. Geomatics, Natural Hazards and Risk, 2023, 14(1): 2208722. doi: 10.1080/19475705.2023.2208722
    [10] 王一心, 潘毅, 周凤妍, 等. 江苏海域台风浪波高时空分布特性研究[J]. 海洋预报, 2023, 40(5): 23−34.

    Wang Yixin, Pan Yi, Zhou Fengyan, et al. Study on the spatial and temporal distribution characteristics of typhoon wave height in Jiangsu coastal sea[J]. Marine Forecasts, 2023, 40(5): 23−34.
    [11] Xu Guohui, Sun Zhenhong, Fang Wenyan, et al. Release of phosphorus from sediments under wave-induced liquefaction[J]. Water Research, 2018, 144: 503−511. doi: 10.1016/j.watres.2018.07.038
    [12] 孙小静, 秦伯强, 朱广伟, 等. 持续水动力作用下湖泊底泥胶体态氮、磷的释放[J]. 环境科学, 2007, 28(6): 1223−1229. doi: 10.3321/j.issn:0250-3301.2007.06.010

    Sun Xiaojing, Qin Boqiang, Zhu Guangwei, et al. Release of colloidal N and P from sediment of lake caused by continuing hydrodynamic disturbance[J]. Environmental Science, 2007, 28(6): 1223−1229. doi: 10.3321/j.issn:0250-3301.2007.06.010
    [13] Wang Changhui, Wei Zhao, Shen Xinyi, et al. Particle size-related vertical redistribution of phosphorus (P)-inactivating materials induced by resuspension shaped P immobilization in lake sediment profile[J]. Water Research, 2022, 213: 118150. doi: 10.1016/j.watres.2022.118150
    [14] Xiao Yang, Cheng Haoke, Yu Weiwei, et al. Effects of water flow on the uptake of phosphorus by sediments: an experimental investigation[J]. Journal of Hydrodynamics, 2016, 28(2): 329−332. doi: 10.1016/S1001-6058(16)60636-4
    [15] 龚政, 文天翼, 靳闯, 等. 江苏中部潮滩湿地土壤有机碳分布特征及影响因子[J]. 应用生态学报, 2023, 34(11): 2978−2984.

    Gong Zheng, Wen Tianyi, Jin Chuang, et al. Distribution characteristics and influencing factors of soil organic carbon in tidal flat wetland of central Jiangsu, China[J]. Chinese Journal of Applied Ecology, 2023, 34(11): 2978−2984.
    [16] Donlan R M. Biofilms: microbial life on surfaces[J]. Emerging Infectious Diseases, 2002, 8(9): 881−890. doi: 10.3201/eid0809.020063
    [17] 陈益山. 细颗粒泥沙生物膜生长及对吸附与解吸影响的实验研究[D]. 北京: 清华大学, 2017.

    Chen yishan. Experiment on biofilm growth of cohesive sediment and effect on adsorption or desorption[D]. Beijing: Tsinghua University, 2017.
    [18] 龚政, 陈欣迪, 周曾, 等. 生物作用对海岸带泥沙运动的影响[J]. 科学通报, 2021, 66(1): 53−62. doi: 10.1360/TB-2020-0291

    Gong Zheng, Chen Xindi, Zhou Zeng, et al. The roles of biological factors in coastal sediment transport: a review[J]. Chinese Science Bulletin, 2021, 66(1): 53−62. doi: 10.1360/TB-2020-0291
    [19] Costerton J W, Cheng K J, Geesey G G, et al. Bacterial biofilms in nature and disease[J]. Annual Review of Microbiology, 1987, 41: 435−464. doi: 10.1146/annurev.mi.41.100187.002251
    [20] Flemming H C, Wingender J. The biofilm matrix[J]. Nature Reviews Microbiology, 2010, 8(9): 623−633. doi: 10.1038/nrmicro2415
    [21] Turner A, Hyde T L, Rawling M C. Transport and retention of hydrophobic organic micropollutants in estuaries: implications of the particle concentration effect[J]. Estuarine, Coastal and Shelf Science, 1999, 49(5): 733−746. doi: 10.1006/ecss.1999.0519
    [22] Pan G, Liss P S, Krom M D. Particle concentration effect and adsorption reversibility[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 151(1/2): 127−133.
    [23] Judge P K, Sundberg E, DeGroot D J, et al. Effects of biopolymers on the liquid limit and undrained shear strength of soft clays[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(8): 342. doi: 10.1007/s10064-022-02830-9
    [24] Kwon Y M, Moon J H, Cho G C, et al. Xanthan gum biopolymer-based soil treatment as a construction material to mitigate internal erosion of earthen embankment: a field-scale[J]. Construction and Building Materials, 2023, 389: 131716. doi: 10.1016/j.conbuildmat.2023.131716
    [25] Wang Qingren, Li Yuncong. Phosphorus adsorption and desorption behavior on sediments of different origins[J]. Journal of Soils and Sediments, 2010, 10(6): 1159−1173. doi: 10.1007/s11368-010-0211-9
    [26] 国家环境保护总局. GB 11893-1989, 水质 总磷的测定 钼酸铵分光光度法[S]. 北京: 中国标准出版社, 1991.

    GB 11893-1989, Water quality-Determination of total phosphorus-Ammonium molybdate spectrophotometric method[S]. Beijing: Standards Press of China, 1991. (查阅网上资料, 未找到本条文献作者翻译和年份, 请确认)
    [27] 中华人民共和国水利部. SL 42-2010, 河流泥沙颗粒分析规程[S]. 北京: 中国水利水电出版社, 2010.

    Ministry of Water Resources of the People’s Republic of China. SL 42-2010, Technical standard for determination of sediment particle size in open channels[S]. Beijing: China Water&Power Press, 2010.
    [28] Chen X D, Zhang C K, Paterson D M, et al. Hindered erosion: the biological mediation of noncohesive sediment behavior[J]. Water Resources Research, 2017, 53(6): 4787−4801. doi: 10.1002/2016WR020105
    [29] Soulsby R L. The bottom boundary layer of shelf seas[M]//Elsevier Oceanography Series. New York: Elsevier, 1983: 189-266.
    [30] Bordi F, Cametti C, Paradossi G. Counterion condensation in xanthan aqueous solutions in the semidilute and concentrated regime[J]. Berichte der Bunsengesellschaft für physikalische Chemie, 1996, 100(6): 881−884.
    [31] Wang Shiyu, Vogt R D, Carstensen J, et al. Riverine flux of dissolved phosphorus to the coastal sea may be overestimated, especially in estuaries of gated rivers: implications of phosphorus adsorption/desorption on suspended sediments[J]. Chemosphere, 2022, 287: 132206. doi: 10.1016/j.chemosphere.2021.132206
    [32] Pan Gang, Liss P S. Metastable-equilibrium adsorption theory: I. theoretical[J]. Journal of Colloid and Interface Science, 1998, 201(1): 71−76. doi: 10.1006/jcis.1998.5396
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  10
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-01
  • 修回日期:  2024-08-12
  • 网络出版日期:  2025-04-09

目录

    /

    返回文章
    返回