Metallogenic mechanism of the Zhaiying Cryogenian marine manganese-bearing formation in South China
-
摘要: 寨英海相碳酸盐型锰矿床是华南地区南华裂谷盆地大塘坡组黑色页岩型海相含锰建造的重要组成部分。与盆地其它矿区大塘坡组锰矿石产状不同,寨英部分块状锰矿石含有独特的气泡构造。为探讨寨英海相含锰建造的成因机制,本文通过对寨英锰矿区野外地质调查取样,利用岩石学和地球化学方法对气泡状锰矿石、块状锰矿石及围岩黑色页岩全岩样品的主量元素含量、微量元素含量、有机碳同位素和碳酸盐碳稳定同位素组成等开展了研究。主要结果如下:1)寨英锰矿石呈轻微的“帽式”稀土元素PAAS标准化配分模式。锰矿石明显的正Ce异常和氧化还原敏感元素U、V亏损的特征,表明锰矿沉积环境为氧化状态,锰最初以氧化物沉淀,与现代大洋海底水成型锰结核(壳)沉淀机制类似。围岩黑色页岩缺乏明显的正Ce异常并含有较多黄铁矿,指示其沉积环境为缺氧状态。2)锰矿石富集轻碳同位素δ13Ccarb(−10.60~−8.53‰,平均−9.45‰),同地史时期大多数黑色页岩型海相碳酸锰矿床成矿过程类似,即锰氧化物作为电子受体氧化有机质为碳酸锰沉淀提供了主要碳源HCO3−,且可能由于更多有机质参与了成矿,寨英较其它矿区大塘坡组锰矿石δ13Ccarb(−8~−6‰)偏负。3)锰矿石正Eu异常及含有较少陆源碎屑主要构成元素(Al、Ti)的特征,表明锰质主要来源于热液。文章表明,寨英与南华裂谷盆地其它矿区大塘坡组锰矿石具有非常相似的沉积和成矿过程。Abstract: The Zhaiying carbonate-type Mn deposit belongs to the black shale hosted marine manganese(Mn)-bearing formations within the Datangpo Formation in the Nanhua Rift Basin in South China. Unlike other Mn deposits of the Datangpo Formation, parts of the Mn ores in the Zhaiying deposit bear unique bubble structures. To elucidate the metallogenic mechanism of the Zhaiying marine Mn-bearing formation, in this study, petrographic and whole-rock geochemical analyses, including measurements of major and trace elements, organic carbon isotopes, and carbonate carbon stable isotopes, were conducted using the bubble and massive Mn ores as well as host rocks (black shales). The main results are as follows: 1) The PAAS-normalized rare-earth element pattern of the Zhaiying Mn ores exhibits a “hat-shaped” plot. The Mn ores exhibit obvious positive Ce anomalies and are depleted in U and V, implying that the primary depositional environment of the Mn ores was oxidative. Primary Mn oxidizing precipitation has a mechanism similar to marine hydrogenous Mn–Fe nodules and crusts. However, the obvious absence of Ce anomalies and enrichment of pyrites in the host rocks indicate an anoxic depositional environment. 2) The Mn ores are enriched in light δ13Ccarb (−8.53‰ to −10.60‰, averaging at −9.45‰), similar to those belonging to major carbonate-type Mn deposits during geological time. This indicates that primary Mn oxides, as electron acceptors, oxidized organic matter to provide HCO3− for Mn carbonate formation. Moreover, the Zhaiying Mn ores have more negative δ13Ccarb values than other Mn deposits (δ13Ccarb: −8‰ to −6‰) of the Datangpo Formation owing to the greater contribution of carbon from organic matter. 3) The Mn ores have positive Eu anomalies and minor amounts of terrigenous detrital elements (Al, Ti), indicating that the Mn source was hydrothermal. In summary, the results show that the Zhaiying Mn deposit has deposition and mineralizing processes similar to other Mn deposits of the Datangpo Formation in the Nanhua Rift Basin.
-
图 2 (a)南华裂谷盆地(I级)中武陵次级裂谷盆地(II级)海相含锰建造的分布位置;(b)寨英海相含锰建造地层剖面特征以及锰矿石和围岩地层位置。(修改自文献[18, 19])
Fig. 2 (a) The location map of sedimentary Mn-bearing formations in Wuling Rift Basin (level II) in Nanhua Rift Basin (level I); (b) The stratigraphic profile and lithology of the Zhaiying Mn mine and the positions of Mn ores and host rocks. (adapted from references [18] and [19])
图 5 寨英矿区大塘坡组气泡状锰矿石、块状锰矿石及围岩黑色页岩部分主量元素与锰元素的相对含量(红色实心圆圈代表气泡状锰矿石、蓝色方块代表块状锰矿石、黑色三角代表黑色页岩。以下图中寨英矿区样品的数据标记均与本图相同。)
Fig. 5 Relative contents of several major elements and Mn content for bubble, massive Mn ores and host rocks (black shales) of Zhaiying Mine. (Note: The red circle represents bubble Mn ores, the bule square represents massive Mn ores, and the black triangle represents host rocks in this and the following figures)
图 6 寨英矿区气泡状锰矿石、块状锰矿石及围岩微量和稀土元素PAAS标准化配分曲线(注:阴影部分为南华裂谷盆地其它矿区大塘坡组锰矿石及围岩黑色页岩微量和稀土元素PAAS标准化配分曲线,其数据来源于文献[19, 24])
Fig. 6 The PAAS-normalized trace elements and REY patterns of bubble, massive Mn ores and host rocks of Zhaiying Mine (The shadow areas indicate the PAAS-normalized trace elements and REY patterns of Mn ores and host rocks from the Datangpo Formation of other Mn mines in the Nanhua Rift Basin. Data is from references [19] and [24]).
图 7 (a)气泡状锰矿石含锰矿物及气泡构造的背散射电子图像;(b)气泡构造环边的二次电子图像;(c)块状锰矿石含锰矿物的背散射电子图像;(d)黑色页岩的背散射电子图像
Fig. 7 (a) A back scattered electron (BSE) image of Mn-bearing minerals and the bubble structure; (b) A secondary electron (SE) image of the rim of a bubble structure; (c) A BSE image of Mn-bearing minerals of a massive Mn ore; (d) A BSE image of a black shale sample.
图 8 (a)寨英矿区气泡状、块状锰矿石及围岩黑色页岩的Ce特征及其与Mn含量相关性。(b)海底典型冷泉碳酸盐岩稀土元素PAAS标准化配分曲线。其数据来源于文献:南海北部陆坡[31];东海冲绳海槽[32];墨西哥湾布什山[33];南海琼东南盆地[34]。
Fig. 8 (a) The Ce (a) anomalies and the correlations vs. Mn contents for bubble, massive Mn ores and host rocks collected from the Zhaiying Mn Mine. (b) REY patterns of several typical marine cold-seep carbonates. Data are from references: Continental slope of the northern South China Sea[31]; East China Sea[32]; Bush Hill, Gulf of Mexico[33]; Qiongdongnan Basin, South China[34].
图 9 寨英矿区气泡状、块状锰矿石样品投射在Bau等[26]提出的现代大洋海底水成、成岩和热液型铁锰沉积基于稀土元素的识别图谱(注:虚线是其它矿区大塘坡组锰矿石投射范围,数据来源于文献[19]。SN表示样品稀土元素经澳大利亚后太古代页岩PAAS标准化。)。
Fig. 9 The distribution of bubble and massive Mn ores on the discrimination diagrams for hydrogenetic, diagenetic, and hydrothermal Mn-Fe deposits in modern marine proposed by Bau et al. [26]. (The dash areas indicate the related data of Mn ores from the Datangpo Formation of other Mn mines in the Nanhua Rift Basin. Data are from reference [19]. SN represents the rare earth element contents of the samples were normalized against that of Post-Archaean Australian Average Shale (PAAS).)
图 11 (a)基于δ13C和δD特征的不同成因甲烷的分类图谱(修改自文献[65])。(b)寨英矿区气泡状、块状锰矿石和围岩的Eu特征及其与Mn含量相关性。
Fig. 11 (a) A diagram for classification of bacterial and thermogenic methane by the combination of δ13C and δD information (adapted from [65]). (b) The Eu features and its correlation with Mn contents for bubble, massive Mn ores and host rocks collected from the Zhaiying Mn Mine.
表 1 寨英矿区大塘坡组气泡状锰矿石、块状锰矿石和黑色页岩样品的主量元素含量(wt.%)
Tab. 1 Major element contents of bubble, massive Mn ores and black shales collected from the Datangpo Formation of Zhaiying Mn mine (wt.%)
样品号 岩石类型 TMn TFe P CaO MgO Na2O Al2O3 SiO2 TiO2 K2O S Fe/Mn Al/(Al+Fe+Mn) B-1 气泡状锰矿石 28.33 1.40 0.069 9.91 4.53 0.056 1.48 6.05 0.176 0.403 0.123 0.0494 0.0256 B-2 气泡状锰矿石 26.71 1.14 0.639 9.04 4.01 0.063 1.28 12.83 0.169 0.221 0.187 0.0427 0.0237 B-3 气泡状锰矿石 28.14 1.27 0.227 8.26 4.32 0.064 1.17 11.15 0.155 0.206 0.197 0.0451 0.0206 B-4 气泡状锰矿石 28.19 1.52 0.084 7.42 4.00 0.073 2.48 11.13 0.164 0.530 0.191 0.0539 0.0423 B-5 气泡状锰矿石 28.44 1.55 0.071 9.90 4.79 0.060 1.52 5.88 0.143 0.404 0.113 0.0545 0.0261 B-6 气泡状锰矿石 27.01 1.30 0.070 11.22 4.62 0.057 1.47 6.84 0.167 0.419 0.125 0.0481 0.0267 B-7 气泡状锰矿石 28.26 1.29 0.083 6.89 3.70 0.065 2.56 10.60 0.180 0.676 0.137 0.0456 0.0439 B-8 气泡状锰矿石 28.34 1.42 0.067 9.66 4.33 0.064 1.62 7.12 0.160 0.415 0.119 0.0501 0.0280 B-9 气泡状锰矿石 27.96 1.39 0.068 10.60 4.41 0.065 1.39 7.07 0.103 0.338 0.122 0.0497 0.0245 B-10 气泡状锰矿石 30.21 1.53 0.094 7.34 3.94 0.064 2.26 7.72 0.173 0.549 0.144 0.0506 0.0363 B-11 气泡状锰矿石 27.73 1.35 0.067 10.36 4.35 0.058 1.61 6.97 0.170 0.423 0.106 0.0487 0.0284 B-12 气泡状锰矿石 27.81 1.39 0.070 11.08 4.51 0.057 1.33 5.95 0.145 0.354 0.108 0.0500 0.0235 M-1 块状锰矿石 27.55 1.62 0.113 5.89 4.68 0.068 3.00 11.82 0.197 0.742 0.334 0.0588 0.0516 M-2 块状锰矿石 30.32 1.58 0.080 9.49 3.77 0.051 1.53 5.78 0.109 0.508 0.149 0.0521 0.0248 M-3 块状锰矿石 20.70 2.02 0.234 10.47 3.20 0.063 4.66 16.78 0.277 1.210 1.15 0.0976 0.0979 M-4 块状锰矿石 29.02 1.16 0.080 9.44 4.43 0.054 0.88 4.76 0.162 0.254 0.090 0.0400 0.0152 M-5 块状锰矿石 28.86 1.45 0.097 6.74 5.14 0.057 1.11 6.43 0.209 0.321 0.218 0.0502 0.0190 C-2 块状锰矿石 17.45 4.05 0.176 6.86 2.45 0.061 6.21 23.38 0.377 1.589 1.81 0.2321 0.1327 C-1 黑色页岩 1.11 4.09 0.069 1.55 1.22 1.88 15.24 58.20 0.755 3.80 3.04 3.69 0.6080 C-3 黑色页岩 0.130 4.84 0.063 0.37 0.84 2.50 15.72 59.86 0.719 3.58 2.23 37.20 0.6260 C-4 黑色页岩 0.152 5.53 0.122 0.50 1.17 1.81 21.12 47.61 0.949 5.76 1.02 36.40 0.6631 C-5 黑色页岩 0.275 4.12 0.084 0.61 0.94 2.78 16.23 59.09 0.738 3.69 2.46 14.98 0.6616 C-6 黑色页岩 0.636 3.54 0.065 0.95 1.02 2.22 14.44 63.38 0.615 3.28 3.14 5.57 0.6467 C-7 黑色页岩 0.193 5.29 0.116 0.54 1.07 1.90 19.44 50.80 0.929 5.12 1.36 27.42 0.6525 C-8 黑色页岩 0.161 4.16 0.115 0.51 0.91 2.88 15.99 58.34 0.802 3.40 1.13 25.83 0.6619 C-9 黑色页岩 2.47 3.60 0.101 1.85 1.22 2.54 14.60 57.13 0.694 3.18 2.34 1.46 0.5604 表 2 寨英矿区大塘坡组气泡状锰矿石、块状锰矿石和黑色页岩样品的微量元素含量(ppm)
Tab. 2 Trace element contents of bubble, massive Mn ores and black shales collected from the Datangpo Formation of Zhaiying Mn mine (ppm)
样品号 岩石类型 V Cr Co Ni Cu Zn Rb Sr Zr Mo Ba Pb Th U B-1 气泡状锰矿石 47.2 5.79 6.16 5.78 3.76 28.2 15.6 404 22.6 1.31 187 1.43 1.67 0.605 B-2 气泡状锰矿石 39.0 7.73 11.3 7.91 6.75 29.5 9.06 404 79.7 0.347 149 0.914 1.54 0.784 B-3 气泡状锰矿石 38.5 8.11 13.1 8.80 7.28 46.8 8.42 370 54.2 0.35 156 0.988 1.57 0.823 B-4 气泡状锰矿石 52.8 8.82 8.59 6.55 8.00 33.6 19.8 346 35.1 0.408 182 1.96 2.73 0.822 B-5 气泡状锰矿石 48.3 5.77 6.15 5.68 3.77 25.2 15.2 430 21.6 0.53 188 1.39 1.76 0.378 B-6 气泡状锰矿石 55.2 6.95 6.12 6.49 4.14 57.8 15.9 441 25.3 0.27 158 1.01 1.85 0.374 B-7 气泡状锰矿石 60.4 8.03 6.88 9.34 6.96 33.3 24.8 319 31.2 0.798 211 1.27 2.16 0.56 B-8 气泡状锰矿石 48.1 6.00 6.25 5.73 3.82 21.7 16.3 423 24.3 0.836 192 1.50 1.85 0.327 B-9 气泡状锰矿石 42.2 5.48 5.63 5.35 4.12 24.3 13.3 456 20.5 0.197 168 1.16 1.61 0.354 B-10 气泡状锰矿石 48.9 9.2 6.52 6.98 5.37 26.2 20.6 310 30.4 1.30 221 1.14 2.30 0.578 B-11 气泡状锰矿石 50.5 7.00 5.80 5.72 3.78 20.6 16.3 426 23.4 0.251 186 1.10 1.75 0.347 B-12 气泡状锰矿石 43.1 4.93 5.76 5.47 3.75 30.4 13.8 449 19.1 0.17 167 1.36 1.52 0.259 M-1 块状锰矿石 46.3 10.5 18.2 15.9 17.10 30.3 28.5 265 55.0 0.57 280 7.39 3.37 0.663 M-2 块状锰矿石 43.1 7.62 7.83 8.78 3.810 17.2 19.1 688 25.5 0.287 199 0.738 1.68 0.699 M-3 块状锰矿石 62.0 16.2 36.4 30.4 39.20 46.4 44.5 333 86.1 1.25 339 16.00 5.07 1.25 M-4 块状锰矿石 36.5 5.28 8.20 12.3 4.00 34.5 10.3 348 20.6 0.641 199 0.439 1.27 0.297 M-5 块状锰矿石 50.1 6.28 30.1 35.2 11.20 39.5 13.5 315 25.6 1.94 204 2.60 1.54 1.92 C-2 块状锰矿石 81.5 24.2 44.4 76.7 86.10 92.0 57.4 266 118 3.11 466 30.40 7.41 1.74 C-1 黑色页岩 180 49.6 27.8 82.6 89.7 110 147 142 246 17 864 28.1 13.0 3.08 C-3 黑色页岩 194 54.1 48.1 107 134 145 143 118 266 27 805 35.7 16.5 3.91 C-4 黑色页岩 301 68.8 62.7 121 155 96.1 214 110 323 74.3 1170 40.3 19.1 4.20 C-5 黑色页岩 189 48.4 42.5 94.5 127 97.1 138 97 245 39.0 821 35.8 13.9 3.25 C-6 黑色页岩 155 41.2 34.5 63.0 78.1 96.3 128 103 204 29.8 739 28.0 13.4 3.23 C-7 黑色页岩 261 61.6 51.5 109 152 84.3 156 92 367 24.3 967 30.4 16.2 3.41 C-8 黑色页岩 234 56.1 48.1 95.0 116 123 145 118 283 29.2 697 27.6 16.5 3.87 C-9 黑色页岩 188 48.1 46.0 72.4 101 125 118 132 132 52.7 678 27.7 12.7 2.83 表 3 寨英矿区大塘坡组气泡状锰矿石、块状锰矿石和黑色页岩样品的稀土元素含量(ppm)
Tab. 3 Rare earth element contents of bubble, massive Mn ores and black shales collected from the Datangpo Formation of Zhaiying Mn mine (ppm)
样品号 岩石类型 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y Ce/Ce* Eu/Eu* B-1 气泡状锰矿石 16.1 50.6 4.01 16.4 3.43 1.02 3.47 0.583 3.57 0.746 2.13 0.317 1.78 0.251 19.9 1.4520 1.3862 B-2 气泡状锰矿石 20.2 66.4 5.87 24.6 4.93 1.55 4.70 0.734 4.20 0.838 2.31 0.335 1.87 0.271 23.3 1.3978 1.5132 B-3 气泡状锰矿石 18.9 58.0 4.85 19.6 3.99 1.22 3.85 0.633 3.68 0.757 2.12 0.314 1.75 0.248 21.4 1.3958 1.4622 B-4 气泡状锰矿石 19.7 59.0 4.77 19.0 3.95 1.03 3.76 0.63 3.71 0.776 2.22 0.334 1.9 0.265 21.3 1.4039 1.2560 B-5 气泡状锰矿石 18.7 58.1 4.42 17.6 3.57 1.07 3.54 0.598 3.59 0.755 2.16 0.324 1.82 0.257 20.3 1.4744 1.4124 B-6 气泡状锰矿石 20.3 60.1 4.79 19.0 3.87 1.11 3.80 0.628 3.71 0.771 2.18 0.328 1.85 0.260 21.0 1.4062 1.3588 B-7 气泡状锰矿石 15.8 47.8 4.07 16.8 3.72 0.993 3.74 0.641 3.87 0.800 2.28 0.339 1.89 0.264 21.9 1.3733 1.2485 B-8 气泡状锰矿石 18.3 55.7 4.38 17.5 3.60 1.07 3.60 0.608 3.64 0.761 2.19 0.325 1.81 0.256 20.6 1.4352 1.3943 B-9 气泡状锰矿石 17.2 53.3 4.17 16.7 3.48 1.1 3.54 0.598 3.59 0.750 2.14 0.317 1.78 0.251 20.5 1.4517 1.4690 B-10 气泡状锰矿石 18.7 53.3 4.41 17.7 3.79 1.04 3.71 0.620 3.62 0.727 2.03 0.297 1.67 0.235 20.2 1.3541 1.3022 B-11 气泡状锰矿石 15.5 48.5 3.81 15.6 3.33 1.01 3.38 0.586 3.53 0.740 2.13 0.320 1.78 0.254 20.2 1.4555 1.4113 B-12 气泡状锰矿石 16.5 52.0 4.05 16.4 3.40 1.08 3.51 0.603 3.62 0.763 2.17 0.321 1.79 0.253 20.5 1.4670 1.4643 M-1 块状锰矿石 25.9 78.9 6.42 25.1 5.07 1.38 4.92 0.826 4.86 1.01 2.87 0.427 2.40 0.338 27.0 1.4109 1.2977 M-2 块状锰矿石 17.7 51.5 4.18 16.5 3.31 0.917 3.24 0.561 3.34 0.699 1.97 0.294 1.62 0.226 18.5 1.3814 1.3147 M-3 块状锰矿石 32.5 80.5 7.76 30.3 5.91 1.54 5.55 0.905 5.30 1.10 3.14 0.465 2.70 0.387 32.2 1.1694 1.2642 M-4 块状锰矿石 18.1 53.8 4.72 19.0 4.02 1.16 4.20 0.732 4.38 0.908 2.52 0.366 1.97 0.274 23.7 1.3405 1.3214 M-5 块状锰矿石 16.6 51.8 4.42 18.0 3.80 1.21 3.90 0.668 4.01 0.834 2.32 0.338 1.83 0.252 22.0 1.3918 1.4726 C-2 块状锰矿石 45.5 110.0 11.2 44.7 9.45 2.08 8.92 1.430 8.32 1.69 4.68 0.689 4.00 0.583 48.4 1.1237 1.0650 C-1 黑色页岩 41.3 86.4 9.32 34.1 5.83 1.02 5.39 0.925 5.73 1.23 3.60 0.566 3.70 0.599 35.6 1.0160 0.8558 C-3 黑色页岩 47.2 98.5 11.2 41.7 7.61 1.25 6.79 1.10 6.54 1.32 3.78 0.583 3.84 0.624 38.1 0.9884 0.8185 C-4 黑色页岩 50.9 111.0 12 44.3 7.62 1.25 6.71 1.13 6.96 1.49 4.40 0.696 4.62 0.758 42.7 1.0362 0.8229 C-5 黑色页岩 26.8 55.9 6.63 25.3 5.05 0.895 5.07 0.864 5.42 1.17 3.46 0.547 3.59 0.584 33.0 0.9670 0.8296 C-6 黑色页岩 53.0 116.0 12 43.0 6.68 1.25 5.35 0.869 5.10 1.07 3.17 0.497 3.24 0.518 30.9 1.0612 0.9843 C-7 黑色页岩 40.8 80.1 9.7 36.0 6.31 1.07 5.72 0.946 5.92 1.28 3.79 0.601 4.02 0.659 36.2 0.9289 0.8380 C-8 黑色页岩 42.3 88.5 9.87 36.7 6.87 1.25 6.33 1.02 6.21 1.29 3.77 0.591 3.98 0.649 37.9 0.9993 0.8916 C-9 黑色页岩 46.1 104.0 10.8 39.4 7.38 1.29 5.80 0.82 4.29 0.847 2.42 0.401 2.68 0.419 22.4 1.0753 0.9280 表 4 寨英矿区大塘坡组气泡状、块状锰矿石和黑色页岩全岩碳酸盐稳定碳和有机碳同位素组成
Tab. 4 Whole rock δ13Ccarb and δ13Corg values of bubble, massive Mn ores and black shales collected from the Datangpo Formation of Zhaiying Mn mine
样品号 岩石类型 碳酸盐稳定碳同位素
δ13Ccarb V-PDB (‰)有机碳同位素
δ13Corg V-PDB (‰)B1 气泡状锰矿石 -8.60 -33.56 B2 气泡状锰矿石 -9.02 -33.37 B3 气泡状锰矿石 -9.34 -33.76 B4 气泡状锰矿石 -10.28 -33.04 B5 气泡状锰矿石 -8.83 -32.08 B6 气泡状锰矿石 -9.29 -33.34 B7 气泡状锰矿石 -10.35 -33.86 B8 气泡状锰矿石 -8.80 -32.68 B9 气泡状锰矿石 -9.22 -33.49 B10 气泡状锰矿石 -10.60 -33.84 B11 气泡状锰矿石 -8.53 -32.86 B12 气泡状锰矿石 -9.21 -33.04 M-1 块状锰矿石 -9.76 -32.04 M-2 块状锰矿石 -10.58 -33.08 M-3 块状锰矿石 -9.20 -32.14 M-4 块状锰矿石 -9.60 -33.17 M-5 块状锰矿石 -10.00 -31.09 C-2 块状锰矿石 -8.86 -32.49 C-1 黑色页岩 -8.36 -33.65 C-3 黑色页岩 -8.48 -33.43 C-4 黑色页岩 -9.86 -33.04 C-5 黑色页岩 -9.23 -33.28 C-6 黑色页岩 -9.44 -34.04 C-7 黑色页岩 -8.77 -33.09 C-8 黑色页岩 -9.05 -32.76 C-9 黑色页岩 -6.99 -33.08 表 5 寨英矿区气泡状锰矿石微钻取样样品的碳酸盐稳定碳同位素组成
Tab. 5 δ13Ccarb values of microsamples collected at sampling points by microdrilling form a bubble Mn ore collected from the Datangpo Formation of Zhaiying Mn mine
样品号 样品类型 碳酸盐稳定碳同位素
δ13CV-PDB (‰)1 气泡状锰矿石 -11.60 2 气泡状锰矿石 -11.37 3 气泡状锰矿石 -11.76 4 气泡状锰矿石 -11.79 5 气泡状锰矿石 -10.99 6 气泡状锰矿石 -11.54 7 气泡状锰矿石 -11.44 8 气泡状锰矿石 -11.46 9 气泡状锰矿石 -11.47 10 气泡状锰矿石 -11.61 11 气泡状锰矿石 -12.09 12 气泡状锰矿石 -11.16 13 气泡状锰矿石 -11.13 14 气泡状锰矿石 -11.36 15 气泡状锰矿石 -11.28 -
[1] Stumm W, Morgan J J. Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters[M]. 2nd ed. New York: John Wiley & Sons, 1981. [2] Aguilar C, Nealson K H. Biogeochemical cycling of manganese in Oneida Lake, New York: whole lake studies of manganese[J]. Journal of Great Lakes Research, 1998, 24(1): 93−104. doi: 10.1016/S0380-1330(98)70802-0 [3] Maynard J B. Manganiferous sediments, rocks, and ores[J]. Treatise on Geochemistry, 2003, 7: 289−308. [4] Roy S. Sedimentary manganese metallogenesis in response to the evolution of the Earth system[J]. Earth-Science Reviews, 2006, 77(4): 273−305. doi: 10.1016/j.earscirev.2006.03.004 [5] 张水昌, 王华建, 王晓梅, 等. 中元古代增氧事件[J]. 中国科学: 地球科学, 2022, 52(1): 26−52.Zhang Shuichang, Wang Huajian, Wang Xiaomei, et al. The mesoproterozoic oxygenation event[J]. Science China Earth Sciences, 2021, 64(12): 2043−2068. [6] Sleep N H. Oxygenating the atmosphere[J]. Nature, 2001, 410(6826): 317−318. [7] Lyons T W, Reinhard C T, Planavsky N J. The rise of oxygen in Earth's early ocean and atmosphere[J]. Nature, 2014, 506(7488): 307−315. doi: 10.1038/nature13068 [8] Maynard J B. The chemistry of manganese ores through time: a signal of increasing diversity of earth-surface environments[J]. Economic Geology, 2010, 105(3): 535−552. doi: 10.2113/gsecongeo.105.3.535 [9] Och L M, Shields-Zhou G A. The Neoproterozoic oxygenation event: environmental perturbations and biogeochemical cycling[J]. Earth-Science Reviews, 2012, 110(1/4): 26−57. [10] Myrow P M, Lamb M P, Ewing R C. Rapid sea level rise in the aftermath of a Neoproterozoic snowball Earth[J]. Science, 2018, 360(6389): 649−651. doi: 10.1126/science.aap8612 [11] 周琦, 杜远生. 华南古天然气渗漏沉积型锰矿[M]. 北京: 科学出版社, 2019: 1−311.Zhou Qi, Du Yuansheng. Huanan Ancient Natural Gas Seepage Sedimentary-Type Manganese Metallogenesis[M]. Beijing: Science Press, 2019: 1−311. (查阅网上资料, 未找到对应的英文翻译, 请确认) [12] 周琦, 杜远生, 袁良军, 等. 黔湘渝毗邻区南华纪武陵裂谷盆地结构及其对锰矿的控制作用[J]. 地球科学, 2016, 41(2): 177−188.Zhou Qi, Du Yuansheng, Yuan Liangjun, et al. The structure of the Wuling Rift Basin and its control on the manganese deposit during the Nanhua Period in Guizhou-Hunan-Chongqing border area, South China[J]. Earth Science, 2016, 41(2): 177−188. [13] 叶云涛, 王华建, 翟俪娜, 等. 新元古代重大地质事件及其与生物演化的耦合关系[J]. 沉积学报, 2017, 35(2): 203−216.Ye Yuntao, Wang Huajian, Zhai Lina, et al. Geological events and their biological responses during the Neoproterozoic Era[J]. Acta Sedimentologica Sinica, 2017, 35(2): 203−216. [14] 杨瑞东, 欧阳自远, 朱立军, 等. 早震旦世大塘坡期锰矿成因新认识[J]. 矿物学报, 2002, 22(4): 329−334. doi: 10.3321/j.issn:1000-4734.2002.04.006Yang Ruidong, Ouyang Ziyuan, Zhu Lijun, et al. A new understanding of manganese carbonate deposits in early Sinian Datangpo stage[J]. Acta Mineralogica Sinica, 2002, 22(4): 329−334. doi: 10.3321/j.issn:1000-4734.2002.04.006 [15] 赵东旭. 震旦纪大塘坡期锰矿的内碎屑结构和重力流沉积[J]. 地质科学, 1990(2): 149−157.Zhao Dongxu. Intraclastic structures and gravity flow sedim-entation of rhodochrosite ore in Sinian Datangpo Formation[J]. Scientia Geologica Sinica, 1990(2): 149−157. [16] 刘巽锋, 胡肇荣, 曾励训, 等. 贵州震旦纪锰矿沉积相特征及其成因探讨[J]. 沉积学报, 1983, 1(4): 106−116.Liu Xunfeng, Hu Zhaorong, Zeng Lixun, et al. Origin and characteristics of sedimentary facies of Sinian manganese deposits in Guizhou[J]. Acta Sedimentologica Sinica, 1983, 1(4): 106−116. [17] 王自强, 高林志, 丁孝忠, 等. “江南造山带”变质基底形成的构造环境及演化特征[J]. 地质论评, 2012, 58(3): 401−413. doi: 10.3969/j.issn.0371-5736.2012.03.001Wang Ziqiang, Gao Linzhi, Ding Xiaozhong, et al. Tectonic environment of the metamorphosed basement in the Jiangnan Orogen and its evolutional features[J]. Geological Review, 2012, 58(3): 401−413. doi: 10.3969/j.issn.0371-5736.2012.03.001 [18] Yu Wenchao, Algeo T J, Du Yuansheng, et al. Genesis of Cryogenian Datangpo manganese deposit: hydrothermal influence and episodic post-glacial ventilation of Nanhua Basin, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 459: 321−337. doi: 10.1016/j.palaeo.2016.05.023 [19] Liu Liping, Chu Fengyou. Geochemistry of Cryogenian Datangpo manganese deposits in the southeastern Yangtze Platform of South China: implications for the origin of metallogenesis and depositional environment[J]. International Geology Review, 2024, 66(8): 1535−1559. doi: 10.1080/00206814.2023.2243625 [20] 周琦, 杜远生. 古天然气渗漏与锰矿成矿: 以黔东地区南华纪“大塘坡式”锰矿为例[M]. 北京: 地质出版社, 2012: 71−75.Zhou Qi, Du Yuansheng. Huanan Ancient Natural Gas Seepage Sedimentary-Type Manganese Metallogenesis[M]. Beijing: Geological Publishing House, 2012: 71−75. (查阅网上资料, 未找到对应的英文翻译, 请确认) [21] Li Zhengxiang, Bogdanova S V, Collins A S, et al. Assembly, configuration, and break-up history of Rodinia: a synthesis[J]. Precambrian Research, 2008, 160(1/2): 179−210. [22] Yu Wenchao, Polgári M, Gyollai I, et al. Microbial metallogenesis of Cryogenian manganese ore deposits in South China[J]. Precambrian Research, 2019, 322: 122−135. doi: 10.1016/j.precamres.2019.01.004 [23] Wang Dan, Zhu Xiangkun, Zhao Nina, et al. Timing of the termination of Sturtian glaciation: SIMS U-Pb zircon dating from South China[J]. Journal of Asian Earth Sciences, 2019, 177: 287−294. doi: 10.1016/j.jseaes.2019.03.015 [24] Liu Liping, Jiang Zuzhou, Chu Fengyou. Sedimentary Mn metallogenesis and coupling among major geo-environmental events during the sturtian glacial–interglacial transition[J]. Minerals, 2023, 13(6): 712. doi: 10.3390/min13060712 [25] Bau M, Koschinsky A. Oxidative scavenging of cerium on hydrous Fe oxide: evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts[J]. Geochemical Journal, 2009, 43(1): 37−47. doi: 10.2343/geochemj.1.0005 [26] Bau M, Schmidt K, Koschinsky A, et al. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium[J]. Chemical Geology, 2014, 381: 1−9. doi: 10.1016/j.chemgeo.2014.05.004 [27] Zhang Banglu, Wang Changle, Robbins L J, et al. Petrography and geochemistry of the carboniferous ortokarnash manganese deposit in the western Kunlun mountains, Xinjiang Province, China: implications for the depositional environment and the origin of mineralization[J]. Economic Geology, 2020, 115(7): 1559−1588. doi: 10.5382/econgeo.4729 [28] Okita P M, Shanks III W C. Origin of stratiform sediment-hosted manganese carbonate ore deposits: examples from Molango, Mexico, and TaoJiang, China[J]. Chemical Geology, 1992, 99(1/3): 139−163. [29] Cabral A R, Zeh A, Vianna N C, et al. Molybdenum-isotope signals and cerium anomalies in palaeoproterozoic manganese ore survive high-grade metamorphism[J]. Scientific Reports, 2019, 9(1): 4570. doi: 10.1038/s41598-019-40998-5 [30] Chisonga B C, Gutzmer J, Beukes N J, et al. Nature and origin of the protolith succession to the Paleoproterozoic Serra do Navio manganese deposit, Amapa Province, Brazil[J]. Ore Geology Reviews, 2012, 47: 59−76. doi: 10.1016/j.oregeorev.2011.06.006 [31] Feng Dong, Chen Duofu. Authigenic carbonates from an active cold seep of the northern South China Sea: new insights into fluid sources and past seepage activity[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 122: 74−83. doi: 10.1016/j.dsr2.2015.02.003 [32] Yang Kehong, Zhu Zhimin, Dong Yanhui, et al. Petrology and geochemistry of cold seep carbonates from the northern Okinawa Trough, East China Sea: implications to early diagenesis[J]. Journal of Oceanology and Limnology, 2022, 40(4): 1388−1403. doi: 10.1007/s00343-021-1148-0 [33] 冯东. 冷泉碳酸盐岩沉积岩石学及地球化学: 几个典型冷泉渗漏区域的对比研究[D]. 广州: 中国科学院广州地球化学研究所, 2008.Feng Dong. Petrographic and geochemical characterization of cold seep carbonates: a comparative study of several typical hydrocarbon seep environments[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2008. [34] Wei Jiangong, Wu Tingting, Zhang Wei, et al. Deeply buried authigenic carbonates in the Qiongdongnan Basin, South China Sea: implications for ancient cold seep activities[J]. Minerals, 2020, 10(12): 1135. doi: 10.3390/min10121135 [35] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update[J]. Chemical Geology, 2006, 232(1/2): 12−32. [36] Bostick B C, Fendorf S, Helz G R. Differential adsorption of molybdate and tetrathiomolybdate on pyrite (FeS2)[J]. Environmental Science & Technology, 2003, 37(2): 285−291. [37] Giddings J A, Wallace M W. Sedimentology and C-isotope geochemistry of the ‘Sturtian’ cap carbonate, South Australia[J]. Sedimentary Geology, 2009, 216(1/2): 1−14. [38] Johnston D T. Multiple sulfur isotopes and the evolution of Earth's surface sulfur cycle[J]. Earth-Science Reviews, 2011, 106(1/2): 161−183. [39] Loyd S J, Marenco P J, Hagadorn J W, et al. Sustained low marine sulfate concentrations from the Neoproterozoic to the Cambrian: insights from carbonates of northwestern Mexico and eastern California[J]. Earth and Planetary Science Letters, 2012, 339-340: 79−94. doi: 10.1016/j.jpgl.2012.05.032 [40] Zhang Feifei, Zhu Xiangkun, Yan Bin, et al. Oxygenation of a Cryogenian ocean (Nanhua Basin, South China) revealed by pyrite Fe isotope compositions[J]. Earth and Planetary Science Letters, 2015, 429: 11−19. doi: 10.1016/j.jpgl.2015.07.021 [41] Wei Wei, Wang Dan, Li Da, et al. The marine redox change and nitrogen cycle in the Early Cryogenian interglacial time: evidence from nitrogen isotopes and Mo contents of the basal Datangpo Formation, northeastern Guizhou, South China[J]. Journal of Earth Science, 2016, 27(2): 233−241. doi: 10.1007/s12583-015-0657-1 [42] Xu Lingang, Frank A B, Lehmann B, et al. Subtle Cr isotope signals track the variably anoxic Cryogenian interglacial period with voluminous manganese accumulation and decrease in biodiversity[J]. Scientific Reports, 2019, 9(1): 15056. doi: 10.1038/s41598-019-51495-0 [43] Hohl S V, Jiang S Y, Viehmann S, et al. Trace metal and Cd isotope systematics of the basal Datangpo Formation, Yangtze Platform (South China) indicate restrained (bio) geochemical metal cycling in Cryogenian seawater[J]. Geosciences, 2020, 10(1): 36. doi: 10.3390/geosciences10010036 [44] Ai Jiayi, Zhong Ningning, Zhang Tonggang, et al. Oceanic water chemistry evolution and its implications for post-glacial black shale formation: insights from the Cryogenian Datangpo Formation, South China[J]. Chemical Geology, 2021, 566: 120083. doi: 10.1016/j.chemgeo.2021.120083 [45] 刘莉萍, 吴文昌, 江祖州, 等. 扬子东南缘“湘潭式”锰矿的地球化学特征及成矿机制[J]. 地球化学, 2022, 51(6): 696−715.Liu Liping, Wu Wenchang, Jiang Zuzhou, et al. Genesis of Cryogenian Xiangtan-type manganese deposits in Hunan Province, China: constraints from geochemical evidence[J]. Geochimica, 2022, 51(6): 696−715. [46] 齐靓, 余文超, 杜远生, 等. 黔东南华纪铁丝坳期-大塘坡期古气候的演变: 来自CIA的证据[J]. 地质科技情报, 2015, 34(6): 47−57.Qi Liang, Yu Wenchao, Du Yuansheng, et al. Paleoclimate evolution of the Cryogenian Tiesi’ao formation-Datangpo formation in eastern Guizhou Province: evidence from the chemical index of alteration[J]. Geological Science and Technology Information, 2015, 34(6): 47−57. [47] Wang Ping, Du Yuansheng, Yu Wenchao, et al. The chemical index of alteration (CIA) as a proxy for climate change during glacial-interglacial transitions in Earth history[J]. Earth-Science Reviews, 2020, 201: 103032. doi: 10.1016/j.earscirev.2019.103032 [48] Le Heron D P, Busfield M E, Kettler C. Ice-rafted dropstones in “postglacial” Cryogenian cap carbonates[J]. Geology, 2021, 49(3): 263−267. doi: 10.1130/G48208.1 [49] Calvert S E, Price N B. Diffusion and reaction profiles of dissolved manganese in the pore waters of marine sediments[J]. Earth and Planetary Science Letters, 1972, 16(2): 245−249. doi: 10.1016/0012-821X(72)90197-5 [50] 赵其渊. 海洋地球化学[M]. 北京: 地质出版社, 1989: 118−120.Zhao Qiyuan. Marine Geochemistry[M]. Beijing: Geological Publishing House, 1989: 118−120. (查阅网上资料, 未找到对应的英文翻译, 请确认) [51] Sasmaz A, Zagnitko V M, Sasmaz B. Major, trace and rare earth element (REE) geochemistry of the Oligocene stratiform manganese oxide-hydroxide deposits in the Nikopol, Ukraine[J]. Ore Geology Reviews, 2020, 126: 103772. doi: 10.1016/j.oregeorev.2020.103772 [52] Van Cappellen P, Viollier E, Roychoudhury A, et al. Biogeochemical cycles of manganese and iron at the Oxic-anoxic transition of a stratified marine basin (orca basin, gulf of Mexico)[J]. Environmental Science & Technology, 1998, 32(19): 2931−2939. [53] Dekov V M, Maynard J B, Kamenov G D, et al. Origin of the Oligocene manganese deposit at Obrochishte (Bulgaria): insights from C, O, Fe, Sr, Nd, and Pb isotopes[J]. Ore Geology Reviews, 2020, 122: 103550. doi: 10.1016/j.oregeorev.2020.103550 [54] Herndon E M, Havig J R, Singer D M, et al. Manganese and iron geochemistry in sediments underlying the redox-stratified Fayetteville Green Lake[J]. Geochimica et Cosmochimica Acta, 2018, 231: 50−63. doi: 10.1016/j.gca.2018.04.013 [55] Wittkop C, Swanner E D, Grengs A, et al. Evaluating a primary carbonate pathway for manganese enrichments in reducing environments[J]. Earth and Planetary Science Letters, 2020, 538: 116201. doi: 10.1016/j.jpgl.2020.116201 [56] Wankel S D, Adams M M, Johnston D T, et al. Anaerobic methane oxidation in metalliferous hydrothermal sediments: influence on carbon flux and decoupling from sulfate reduction[J]. Environmental Microbiology, 2012, 14(10): 2726−2740. doi: 10.1111/j.1462-2920.2012.02825.x [57] Egger M, Rasigraf O, Sapart C J, et al. Iron-mediated anaerobic oxidation of methane in brackish coastal sediments[J]. Environmental Science & Technology, 2015, 49(1): 277−283. [58] Peng Xiaotong, Guo Zixiao, Chen Shun, et al. Formation of carbonate pipes in the northern Okinawa Trough linked to strong sulfate exhaustion and iron supply[J]. Geochimica et Cosmochimica Acta, 2017, 205: 1−13. doi: 10.1016/j.gca.2017.02.010 [59] Sun Zhilei, Wu Nengyou, Cao Hong, et al. Hydrothermal metal supplies enhance the benthic methane filter in oceans: an example from the Okinawa Trough[J]. Chemical Geology, 2019, 525: 190−209. doi: 10.1016/j.chemgeo.2019.07.025 [60] Hein J R, Koski R A. Bacterially mediated diagenetic origin for chert-hosted manganese deposits in the Franciscan Complex, California Coast Ranges[J]. Geology, 1987, 15(8): 722−726. doi: 10.1130/0091-7613(1987)15<722:BMDOFC>2.0.CO;2 [61] Liu Liping, Ryu B, Sun Zhilei, et al. Monitoring and research on environmental impacts related to marine natural gas hydrates: review and future perspective[J]. Journal of Natural Gas Science and Engineering, 2019, 65: 82−107. doi: 10.1016/j.jngse.2019.02.007 [62] 冯先翠. 中挪威海Nyegga麻坑区冷泉碳酸盐岩的研究[D]. 广州: 中国科学院广州地球化学研究所, 2015.Feng Xiancui. Study of Cold-seep carbonates from the Nyegga pockmark field, offshore mid-Norway[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2015. [63] Feng Dong, Chen Duofu, Qi Liang, et al. Petrographic and geochemical characterization of seep carbonate from Alaminos Canyon, Gulf of Mexico[J]. Chinese Science Bulletin, 2008, 53(11): 1716−1724. doi: 10.1007/s11434-008-0157-0 [64] Liang Qianyong, Hu Yu, Feng Dong, et al. Authigenic carbonates from newly discovered active cold seeps on the northwestern slope of the South China Sea: constraints on fluid sources, formation environments, and seepage dynamics[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2017, 124: 31−41. doi: 10.1016/j.dsr.2017.04.015 [65] Whiticar M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane[J]. Chemical Geology, 1999, 161(1/3): 291−314. [66] Olivarez A M, Owen R M. The europium anomaly of seawater: implications for fluvial versus hydrothermal REE inputs to the oceans[J]. Chemical Geology, 1991, 92(4): 317−328. doi: 10.1016/0009-2541(91)90076-4 [67] Sverjensky D A. Europium redox equilibria in aqueous solution[J]. Earth and Planetary Science Letters, 1984, 67(1): 70−78. doi: 10.1016/0012-821X(84)90039-6 -