留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

规则波作用下不同类型植被消波特性试验研究

严开 沈章熠 陈洪洲 沈良朵 王祥宇 卞宏伟

严开,沈章熠,陈洪洲,等. 规则波作用下不同类型植被消波特性试验研究[J]. 海洋学报,2026,48(x):1–12
引用本文: 严开,沈章熠,陈洪洲,等. 规则波作用下不同类型植被消波特性试验研究[J]. 海洋学报,2026,48(x):1–12
Yan Kai,Shen Zhangyi,Chen Hongzhou, et al. Experimental study on hydrodynamic characteristics of different types of vegetation under regular waves[J]. Haiyang Xuebao,2026, 48(x):1–12
Citation: Yan Kai,Shen Zhangyi,Chen Hongzhou, et al. Experimental study on hydrodynamic characteristics of different types of vegetation under regular waves[J]. Haiyang Xuebao,2026, 48(x):1–12

规则波作用下不同类型植被消波特性试验研究

基金项目: 浙江省自然科学基金联合基金资助项目(LGEY25E090003);国家自然科学基金资助项目(42376205)。
详细信息
    作者简介:

    严开(1985—),男,湖北随州人,讲师,博士,主要从事海岸水动力研究。E-mail:ahhfyankai@163.com

    通讯作者:

    沈良朵(1982—),男,安徽安庆人,副教授,博士,主要从事海岸水动力研究。E-mail:slduo@163.com

Experimental study on hydrodynamic characteristics of different types of vegetation under regular waves

  • 摘要: 为探究规则波作用下刚性、柔性以及刚柔组合型植被消波特性差异,利用实验室水槽开展了一系列物理模型试验,定量分析了刚性、柔性及刚柔组合型植被对波浪的衰减作用,确定不同类型植被拖曳力系数CD与雷诺数Re、邱卡数KC和厄塞尔数Ur的关系。研究表明,三种植被配置均能引起波高沿程递减;随着入射波周期或植被淹没度的增加,各植被类型的消波效果均减弱;在波高影响方面,刚性植被的消波效果随波高增大持续显著增强,柔性植被则呈现先增强后减弱的非线性趋势,而刚柔组合型植被兼具两者优势,其消波效果亦随波高增大而增强。此外,三种植被的CD可采用统一的理论公式表达,其主要差异在于反映植被摆动对波高衰减的影响因子γ不同。CDReKC以及Ur之间均存在显著统计关系,并可用统一经验公式描述。本研究结果可为海岸生态防护工程中植被的优化配置提供理论依据与设计参考。
  • 图  1  试验布置图

    Fig.  1  Experimental layout diagram

    图  2  试验中的植被模型,A:刚性;B:刚柔组合;C:柔性

    Fig.  2  Vegetation models in the experiment, A: Rigid; B: rigid–flexible composite vegetation; C: Flexible

    图  3  试验中植被排布方式、株距与行距,实心绿圈代表刚性圆杆,空心蓝圈代表柔性植株

    Fig.  3  The experimental arrangement of vegetation, plant spacing, and row spacing are shown, with solid green circles representing rigid circular rods and hollow blue circles representing flexible plants.

    图  4  入射波高对不同组合植被消波影响(T=1.2 s, h=0.30 m)

    Fig.  4  Effect of incident wave height on wave dissipation of vegetation combinations (T=1.2 s, h=0.30 m)

    图  5  入射波周期对不同组合植被消波影响(H=0.06 m, h=0.30)

    Fig.  5  Effect of incident wave period on wave dissipation of different vegetation combinations (H=0.06 m, h=0.30)

    图  6  水深对不同类型植被消波影响(H=0.05m, T=1.2s)

    Fig.  6  Effect of water depth on wave dissipation of different types of vegetation (H=0.05m, T=1.2s)

    图  7  淹没度和相对波高对不同类型植被的消波影响

    Fig.  7  Effect of submergence degree and relative wave height on wave dissipation of different types of vegetation

    图  8  刚柔组合型植被模型两种拟合方案对比

    Fig.  8  Comparison of two fitting schemes of rigid-flexible combined vegetation model

    图  9  CDH0k的非线性回归拟合

    Fig.  9  Nonlinear regression fitting of CD and H0k

    图  10  拖曳力系数CDKC、Ur、Re的关系

    Fig.  10  Relationships between drag coefficient CD and KC, Ur, Re

    表  1  植被模型参数

    Tab.  1  Vegetation model parameters

    模型编号树型长度/m植被高度hv /cm密度/(株/m2)排布方式
    M1刚性150400交错
    M2柔+刚0.5+0.526+50761+400方形+交错
    M3柔性126761方形
    下载: 导出CSV

    表  2  试验工况

    Tab.  2  Experimental conditions

    组次试验水深h/cm入射波波高H/cm入射波周期T/s
    12051.2
    22551.2
    3304/5/6/7/81.2
    43060.8/1.0/1.2/1.4/1.6
    53551.2
    64051.2
    下载: 导出CSV

    表  3  CDKCUrRe关系综述

    Tab.  3  Review on the relationships between CD and KC, Ur, or Re

    研究波浪条件植被类型公式
    Veelen等[31]规则波刚性CD = (81/KC)0.36 (53 ≤ KC ≤ 133)R2=0.54
    柔性CD = 0.26+(43/KC)5.3 (53 ≤ KC ≤ 133)R2=0.54
    Reis等[32]规则波刚性CD = 0.83+(14.8/KC)1.24 (13 ≤ KC ≤ 68)R2=0.71
    CD = 0.79+(1014/Re)1.14 (895 ≤ Re3615)R2=0.69
    柔性CD = 1.11+(22.4/KC)4.1 (22 ≤ KC ≤ 60)R2=0.56
    CD = (5265/Re)0.33 (1520Re3025)R2=0.25
    Gong等[18]规则波柔性CD = 0.163+(4.37/KC)2.07 (12 ≤ KC ≤ 45)R2=0.65
    CD = 0.095+ (1516/Re)1.74 (850 ≤ Re9800)R2=0.66
    目前的研究规则波刚性CD = 5/KC0.9+1 (10 ≤ KC ≤ 24)R2=0.73
    CD = 19.8/Ur 2.3+1.1 (2 ≤ Ur ≤ 14)R2=0.76
    CD = 4556/Re-0.6 (1800Re3400)R2=0.75
    刚柔组合CD = 9/KC0.9+0.5 (14 ≤ KC ≤ 53)R2=0.76
    CD = 10.7/Ur 2.3+0.8 (2 ≤ Ur ≤ 14)R2=0.92
    CD = 2800/Re-0.35 (1650Re3300)R2=0.83
    柔性CD = 8.6/KC0.9+0.1 (18 ≤ KC ≤ 56)R2=0.82
    CD = 9.8/Ur2.8+0.4 (2 ≤ Ur ≤ 14)R2=0.88
    CD = 1500/Re-0.15 (1800Re3150)R2=0.79
    下载: 导出CSV
  • [1] 陈杰, 赵静, 蒋昌波, 等. 非淹没刚性植物对规则波传播变形影响实验研究[J]. 海洋通报, 2017, 36(2): 222−229. doi: 10.11840/j.issn.1001-6392.2017.02.014

    Chen Jie, Zhao Jing, Jiang Changbo, et al. Laboratory investigation on the effects of emergent rigid vegetation on the regular wave transformation[J]. Marine Science Bulletin, 2017, 36(2): 222−229. doi: 10.11840/j.issn.1001-6392.2017.02.014
    [2] 张明亮, 张洪兴, 徐红印, 等. 规则波和不规则波在刚性植物区波能衰减的试验研究[J]. 大连海洋大学学报, 2017, 32(3): 369−372.

    Zhang Mingliang, Zhang Hongxing, Xu Hongyin, et al. Energy attenuation of regular and irregular waves in rigid vegetated waters[J]. Journal of Dalian Ocean University, 2017, 32(3): 369−372.
    [3] 姚宇, 杜睿超, 袁万成, 等. 斜坡非淹没刚性植被影响下孤立波爬高的研究[J]. 水动力学研究与进展, 2015, 30(5): 506−515. doi: 10.16076/j.cnki.cjhd.2015.05.004

    Yao Yu, Du Ruichao, Yuan Wancheng, et al. Investigation of solitary wave runup on a slope under the effect of emergent, rigid vegetation[J]. Journal of Hydrodynamics, 2015, 30(5): 506−515. doi: 10.16076/j.cnki.cjhd.2015.05.004
    [4] 白玉川, 杨建民, 胡嵋, 等. 植物消浪护岸模型实验研究[J]. 海洋工程, 2005, 23(3): 65−69.

    Bai Yuchuan, Yang Jianmin, Hu Mei, et al. Model test of vegetation on the bank to attenuate waves and protect embankments[J]. The Ocean Engineering, 2005, 23(3): 65−69.
    [5] 吉红香, 黄本胜, 邱秀云, 等. 滩地植物对波浪变形及消浪效果影响试验研究[J]. 广东水利水电, 2008(8): 14−18. doi: 10.3969/j.issn.1008-0112.2008.08.005

    Ji Hongxiang, Huang Bensheng, Qiu Xiuyun, et al. Experimental study of the influence of vegetation planting on waves deformation and wave absorbing effect[J]. Guangdong Water Resources and Hydropower, 2008(8): 14−18. doi: 10.3969/j.issn.1008-0112.2008.08.005
    [6] Huang Zhenhua, Yao Yu, Sim S Y, et al. Interaction of solitary waves with emergent, rigid vegetation[J]. Ocean Engineering, 2011, 38(10): 1080−1088. doi: 10.1016/j.oceaneng.2011.03.003
    [7] Wang Yanxu, Yin Zegao, Liu Yong. Laboratory study on the drag coefficient for mangrove forests in regular waves[J]. Ocean Engineering, 2022, 255: 111522. doi: 10.1016/j.oceaneng.2022.111522
    [8] Dalrymple R A, Kirby J T, Hwang P A. Wave diffraction due to areas of energy dissipation[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1984, 110(1): 67−79. doi: 10.1061/(ASCE)0733-950X(1984)110:1(67)
    [9] 谭超, 黄本胜, 刘达, 等. 不同刚度植物杆群对规则波传播及紊动特性影响研究[J]. 海洋工程, 2016, 34(6): 38−45.

    Tan Chao, Huang Bensheng, Liu Da, et al. Preliminary study on effect of rod groups of different stiffness on regular wave propagation and turbulence characteristics[J]. The Ocean Engineering, 2016, 34(6): 38−45.
    [10] 杨琰青, 王雯, 顾中明, 等. 不同布置形态下刚性淹没植被对水流特性的影响[J]. 水资源与水工程学报, 2018, 29(5): 164−168. doi: 10.11705/j.issn.1672-643X.2018.05.26

    Yang Yanqing, Wang Wen, Gu Zhongming, et al. Influence of rigid submerged vegetation on flow characteristics under different vegetation layouts[J]. Journal of Water Resources and Water Engineering, 2018, 29(5): 164−168. doi: 10.11705/j.issn.1672-643X.2018.05.26
    [11] 何飞, 陈杰, 蒋昌波, 等. 考虑根茎叶影响的刚性植物消浪特性实验研究[J]. 水动力学研究与进展, 2017, 32(6): 770−778.

    He Fei, Chen Jie, Jiang Changbo, et al. Experimental investigation on wave attenuation under the effects of rigid vegetation with root, stem and crown[J]. Journal of Hydrodynamics, 2017, 32(6): 770−778.
    [12] Wu Weicheng, Cox D T. Effects of vertical variation in vegetation density on wave attenuation[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2016, 142(2): 04015020. doi: 10.1061/(ASCE)WW.1943-5460.0000326
    [13] Yin Zegao, Wang Yanxu, Liu Yong, et al. Wave attenuation by rigid emergent vegetation under combined wave and current flows[J]. Ocean Engineering, 2020, 213: 107632. doi: 10.1016/j.oceaneng.2020.107632
    [14] Kobayashi N, Raichle A W, Asano T. Wave attenuation by vegetation[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1993, 119(1): 30−48. doi: 10.1061/(ASCE)0733-950X(1993)119:1(30)
    [15] Sánchez-González J F, Sánchez-Rojas V, Memos C D. Wave attenuation due to Posidonia oceanica meadows[J]. Journal of Hydraulic Research, 2011, 49(4): 503−514. doi: 10.1080/00221686.2011.552464
    [16] Luhar M, Nepf H M. Wave-induced dynamics of flexible blades[J]. Journal of Fluids and Structures, 2016, 61: 20−41. doi: 10.1016/j.jfluidstructs.2015.11.007
    [17] 吴迪, 冯卫兵, 石麒琳. 柔性植物消浪及沿程阻流特性试验研究[J]. 人民黄河, 2014, 36(12): 79−81,84. doi: 10.3969/j.issn.1000-1379.2014.12.025

    Wu Di, Feng Weibing, Shi Qilin. A physical model study of the effect of the flexible vegetation on wave height attenuation and along the way of flow structure[J]. Yellow River, 2014, 36(12): 79−81,84. doi: 10.3969/j.issn.1000-1379.2014.12.025
    [18] Gong Shangpeng, Xu Sudong, Yin Kai, et al. Experimental study on wave attenuation and cross-shore profiles by submerged flexible vegetation[J]. Ocean Engineering, 2024, 307: 118218. doi: 10.1016/j.oceaneng.2024.118218
    [19] Liu Shuo, Xu Sudong, Yin Kai. Optimization of the drag coefficient in wave attenuation by submerged rigid and flexible vegetation based on experimental and numerical studies[J]. Ocean Engineering, 2023, 285(Pt 2): 115382.
    [20] 任姗, 冯民权. 含柔性植被明渠水流水力特性的试验研究[J]. 水资源与水工程学报, 2020, 31(3): 186−192,199. doi: 10.11705/j.issn.1672-643X.2020.03.27

    Ren Shan, Feng Minquan. Experimental study on hydraulic characteristics of open channel with flexible vegetation[J]. Journal of Water Resources and Water Engineering, 2020, 31(3): 186−192,199. doi: 10.11705/j.issn.1672-643X.2020.03.27
    [21] 周悦, 董增川, 曹海锦, 等. 刚柔组合型植被消浪特性的试验研究[J]. 水力发电学报, 2019, 38(3): 32−39.

    Zhou Yue, Dong Zengchuan, Cao Haijin, et al. Experimental study on wave attenuation characteristics of rigid-flexible combined wavebreak forests[J]. Journal of Hydroelectric Engineering, 2019, 38(3): 32−39.
    [22] Ren Jie, Dong Zengchuan, Jin Dawei, et al. Wave-attenuation characteristics of combined-vegetation wave break forests for big rivers with large flood water level changes[J]. Water Science and Technology, 2021, 83(4): 831−840. doi: 10.2166/wst.2021.011
    [23] 张茂章, 宋正明. 不同林相结构防浪林的消波性能计算[J]. 水利水电科技进展, 2013, 33(6): 40−43.

    Zhang Maozhang, Song Zhengming. Calculation on wave dissipation performance for different wave break forest structures[J]. Advances in Science and Technology of Water Resources, 2013, 33(6): 40−43.
    [24] 王永胜, 周曾, 刘治宇, 等. 考虑刚柔组合的海岸复合型植被消波特性研究[J]. 海洋工程, 2024, 42(4): 110−118. doi: 10.16483/j.issn.1005-9865.2024.04.011

    Wang Yongsheng, Zhou Zeng, Liu Zhiyu, et al. Research on wave dissipation characteristics of coastal composite vegetation considering rigid-flexible combination[J]. The Ocean Engineering, 2024, 42(4): 110−118. doi: 10.16483/j.issn.1005-9865.2024.04.011
    [25] Zhang Xiaofeng, Chua V P, Cheong H F. Hydrodynamics in mangrove prop roots and their physical properties[J]. Journal of Hydro-Environment Research, 2015, 9(2): 281−294. doi: 10.1016/j.jher.2014.07.010
    [26] Zeller R B, Weitzman J S, Abbett M E, et al. Improved parameterization of seagrass blade dynamics and wave attenuation based on numerical and laboratory experiments[J]. Limnology and Oceanography, 2014, 59(1): 251−266. doi: 10.4319/lo.2014.59.1.0251
    [27] Luhar M, Nepf H M. Flow-induced reconfiguration of buoyant and flexible aquatic vegetation[J]. Limnology and Oceanography, 2011, 56(6): 2003−2017. doi: 10.4319/lo.2011.56.6.2003
    [28] Maza M, Lara J L, Losada I J. Tsunami wave interaction with mangrove forests: a 3-D numerical approach[J]. Coastal Engineering, 2015, 98: 33−54. doi: 10.1016/j.coastaleng.2015.01.002
    [29] Sarpkaya T. Forces on cylinders and spheres in a sinusoidally oscillating fluid[J]. Journal of Applied Mechanics, 1975, 42(1): 32−37. doi: 10.1115/1.3423549
    [30] Sarpkaya T. Force on a circular cylinder in viscous oscillatory flow at low Keulegan—Carpenter numbers[J]. Journal of Fluid Mechanics, 1986, 165: 61−71. doi: 10.1017/S0022112086002999
    [31] van Veelen T J, Fairchild T P, Reeve D E, et al. Experimental study on vegetation flexibility as control parameter for wave damping and velocity structure[J]. Coastal Engineering, 2020, 157: 103648. doi: 10.1016/j.coastaleng.2020.103648
    [32] Reis R A, Fortes C J E M, Rodrigues J A, et al. Experimental study on drag coefficient of flexible vegetation under non-breaking waves[J]. Ocean Engineering, 2024, 296: 117002. doi: 10.1016/j.oceaneng.2024.117002
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  15
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-11-11
  • 修回日期:  2026-01-17
  • 网络出版日期:  2026-01-24

目录

    /

    返回文章
    返回