留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

夏季南海中西部上升流海域趋光性中上层鱼类群落特征研究

于杰 唐振朝 陈作志 陈国宝

于杰,唐振朝,陈作志,等. 夏季南海中西部上升流海域趋光性中上层鱼类群落特征研究[J]. 海洋学报,2025,47(x):1–12
引用本文: 于杰,唐振朝,陈作志,等. 夏季南海中西部上升流海域趋光性中上层鱼类群落特征研究[J]. 海洋学报,2025,47(x):1–12
Yu Jie,Tang Zhenzhao,Chen Zuozhi, et al. Community characteristics of phototropic pelagic fish in the West-central South China Sea upwelling region during the summer[J]. Haiyang Xuebao,2025, 47(x):1–12
Citation: Yu Jie,Tang Zhenzhao,Chen Zuozhi, et al. Community characteristics of phototropic pelagic fish in the West-central South China Sea upwelling region during the summer[J]. Haiyang Xuebao,2025, 47(x):1–12

夏季南海中西部上升流海域趋光性中上层鱼类群落特征研究

基金项目: 农业农村部财政专项 (NFZX2021, NFZX2018)。
详细信息
    作者简介:

    于杰:作者简介:于 杰 (1980—),女,黑龙江省绥滨县,副研究员,研究方向为海洋渔业与海洋遥感。E-mail:yujiescs@aliyun.com

    通讯作者:

    唐振朝,副研究员,研究方向为海洋渔业与海洋动力学。E-mail: tangzhenzhao@scsfri.ac.cn

Community characteristics of phototropic pelagic fish in the West-central South China Sea upwelling region during the summer

  • 摘要: 为了解南海中西部上升流海域鱼类群落特征,利用2014年夏季灯光罩网渔业资源调查数据,对趋光性中上层鱼类群落的种类组成、生物多样性和群落结构进行研究。上升流核心区有鱼类13种,隶属于3目8科11属,优势种为鳞首方头鲳Cubiceps squamiceps;周边海域采集鱼类11种,隶属于2目8科10属,优势种为扁舵鲣Auxis thazard和大眼金枪鱼Thunnus obesus。鱼类多样性指数、丰富度指数和均匀度指数均为上升流核心区低于周边海域。上升流核心区平均渔获率为45.9 kg/h,是周边海域的1.63倍。鱼类种类数最大值出现在上升流核心区的FT1断面,与叶绿素a浓度最大值所处断面一致,但渔获率最大值出现在叶绿素a浓度次高的FT2断面。多元方差分析表明上升流核心区和周边海域鱼类群落具有边缘显著差异,主要分歧种为鳞首方头鲳、扁舵鲣、长体圆鲹Decapterus macrosoma、大眼金枪鱼和圆舵鲣Auxis rochei。相关性分析显示,海表叶绿素a浓度是影响研究海域鱼类丰度空间分布最重要的环境因子。
  • 图  1  调查站位示意图

    注:ET1-ET5:环境要素调查断面1−5;FT1-FT5:鱼类调查断面1−5。

    Fig.  1  Location of survey stations

    Note: ET1-ET5: Environmental elements survey sections 1−5; FT1-FT5: Fish survey sections 1−5.

    图  2  环境站位聚类分析结果

    Fig.  2  Cluster analysis result of environmental stations

    图  3  上升流核心区和上升流周边海域的环境要素随水深的变化

    注:UCR:上升流核心区;UPR:上升流周边海域。

    Fig.  3  Variation of environmental elements with water depth in the upwelling core region and upwelling periphery region

    Note: UCR: Upwelling core region; UPR: Upwelling periphery region.

    图  4  五个剖面环境要素随水深的变化

    注:FT1:断面1;FT2:断面2;FT3:断面3;FT4:断面4;FT5:断面5。

    Fig.  4  Variation of environmental elements with water depth for the five transects

    Note: FT1: Environment transect 1; FT2: Environment transect 2; FT3: Environment transect 3; FT4: Environment transect 4; FT5: Environment transect 5.

    图  5  (a)上升流核心区和上升流周边海域的各科鱼种数量 (b)五个断面各科鱼种数量

    注:UCR:上升流核心区;UPR:上升流周边海域;FT1:断面1;FT2:断面2;FT3:断面3;FT4:断面4;FT5 :断面5。

    Fig.  5  (a) Number of fish species of each family in the upwelling core region and upwelling periphery region (b) Number of fish species of each family at five transects

    Note:UCR: Upwelling core region; UPR: Upwelling periphery region; FT1: Fishing transect 1; FT2: Fishing transect 2; FT3: Fishing transect 3; FT4: Fishing transect 4; FT5: Fishing transect 5.

    图  6  上升流核心区、周边海域及FT1-FT5断面的渔获组成

    注:UCR:上升流核心区;UPR:上升流周边海域;FT1:断面1;FT2:断面2;FT3:断面3;FT4:断面4;FT5 :断面5;XLIN:凹纹鳞鲀;UHEL:白舌尾甲鲹;ATHA:扁舵鲣;TOBE:大眼金枪鱼;MYCT:灯笼鱼科;SPAR:鲷科;DMAR:蓝圆鲹;CSQU:鳞首方头鲳;GSEX:六带线纹鱼;CFER:平线若鲹;CHIP:鲯鳅;BHIL:日本乌鲂;GSER:蛇鲭;TETR:鲀科;AROC:圆舵鲣;DMAC:长体圆鲹;NDUC:舟鰤。

    Fig.  6  Composition of species in upwelling core region, upwelling periphery region, and transects from FT1 to FT5

    Note:UCR: Upwelling core region; UPR: Upwelling periphery region; FT1: Fishing transect 1; FT2: Fishing transect 2; FT3: Fishing transect 3; FT4: Fishing transect 4; FT5: Fishing transect 5; XLIN: Xanthichthys lineopunctatus; UHEL: Uraspis helvola; ATHA: Auxis thazard; TOBE: Thunnus obesus; MYCT: Myctophidae; SPAR: Sparidae; DMAR: Decapterus maruadsi; CSQU: Cubiceps squamiceps; GSEX: Grammistes sexlineatus; CFER: Carangoides ferdau; CHIP: Coryphaena hippurus; BHIL: Brama japonica Hilgendorf; GSER: Gempylus serpens; TETR: Tetraodontidae; AROC: Auxis rochei; DMAC: Decapterus macrosoma; NDUC: Naucrates ductor.

    图  7  研究区鱼类丰度与海表环境要素的Spearman相关性分析结果

    注:ABUN:丰度;CHLA:海表叶绿素a浓度;SLA:海面高度异常;SSC:海表流;SST:海表温度。

    Fig.  7  Results of Spearman correlation analysis between fish abundance and sea surface environmental elements in the study region

    Note:ABUN: Abundance; CHLA: Sea surface chlorophyll-a concentration; SLA: Sea surface anomaly; SSC: Sea surface current; SST: Sea surface temperature.

    表  1  上升流核心区和上升流周边海域的环境要素变化

    Tab.  1  Changes in environmental elements in the upwelling core region and upwelling periphery region

    环境要素
    Environment
    elements
    上升流核心区
    Upwelling core
    region
    上升流周边海域
    Upwelling periphery
    region
    Significance
    平均值 (最小值~
    最大值)Mean
    (Minimum-Maximum)
    平均值 (最小值~
    最大值)Mean
    (Minimum-Maximum)
    水温
    Temperature/
    (℃)
    22.50(20.39~23.90)25.85(24.95~26.49)**
    盐度
    Salinity
    33.13(32.86~33.41)32.61(32.47~32.69)**
    叶绿素a
    Chlorophyll-a/
    (mg·m−3)
    0.79(0.44~1.27)0.53(0.45~0.61)n.s.
    下载: 导出CSV

    表  2  上升流核心区、周边海域及FT1~FT5断面的鱼类种类数

    Tab.  2  Number of fish species in upwelling core region, upwelling periphery region, and transects from FT1 to FT5

    区域Region目Order科Family属Genus种Species
    UCR381113
    UPR281011
    FT11579
    FT22568
    FT32556
    FT41356
    FT5281011
      注:UCR:上升流核心区;UPR:上升流周边海域;FT1:断面1;FT2:断面2;FT3:断面3;FT4:断面4;FT5 :断面5。
      Note:UCR: Upwelling core region; UPR: Upwelling periphery region; FT1: Fishing transect 1; FT2: Fishing transect 2; FT3: Fishing transect 3; FT4: Fishing transect 4; FT5: Fishing transect 5.
    下载: 导出CSV

    表  3  上升流核心区和周边海域及FT1-FT5断面的渔获率、多样性指数和优势种变化

    Tab.  3  Changes in catch rate, diversity indexes, and dominant species in upwelling core region, upwelling periphery region, and transects from FT1 to FT5

    区域 Region渔获率Catch rate/(kg/h)多样性指数 Diversity index均匀度指数 Evenness index丰富度指数 Richness index优势种Dominate species
    UCR45.90.920.250.99鳞首方头鲳Cubiceps squamiceps
    UPR28.11.920.561.21扁舵鲣Auxis thazard、大眼金枪鱼Thunnus obesus
    FT115.82.250.711.21日本乌鲂Brama japonica、扁舵鲣Auxis thazard、大眼金枪鱼Thunnus obesus、长体圆鲹Decapterus macrosoma
    FT2111.90.510.170.58鳞首方头鲳Cubiceps squamiceps
    FT310.21.30.50.6圆舵鲣Auxis rochei、鳞首方头鲳Cubiceps squamiceps
    FT4531.380.540.63扁舵鲣Auxis thazard、大眼金枪鱼Thunnus obesus
    FT532.460.711.64扁舵鲣Auxis thazard、蓝圆鲹Decapterus maruadsi、长体圆鲹Decapterus macrosoma
      注:UCR:上升流核心区;UPR:上升流周边海域;FT1:断面1;FT2:断面2;FT3:断面3;FT4:断面4;FT5:断面5。
      Note:UCR: Upwelling core region; UPR: Upwelling periphery region; FT1: Fishing transect 1; FT2: Fishing transect 2; FT3: Fishing transect 3; FT4: Fishing transect 4; FT5: Fishing transect 5.
    下载: 导出CSV

    表  4  鱼类不同类群组间差异和主要分歧种及其贡献率(> 10%)

    Tab.  4  Differences in community structure and contribution rates of different species(> 10%)

    种类Species丰度百分比Ratio of abundance/%丰度变化Variation in abundance贡献率Contribution rate/%
    上升流核心区 Upwelling core region上升流周边海域Upwelling periphery region
    鳞首方头鲳Cubiceps squamiceps85.737.04减少21.4
    扁舵鲣Auxis thazard1.7950.87增加14
    长体圆鲹Decapterus macrosoma4.673.42减少12.8
    大眼金枪鱼Thunnus obesus0.2529.5增加11.8
    圆舵鲣Auxis rochei4.880减少11.3
    下载: 导出CSV
  • [1] 曹欣中. 浙江近海沿岸上升流与渔场的关系[J]. 海洋湖沼通报, 1985, 1(1): 25−28.

    Cao Xinzhong. On the relationship of the upwelling with fishery off Zhejiang[J]. Transactions of Oceanology and Limnology, 1985, 1(1): 25−28.
    [2] Punya P, Kripa V, Padua S, et al. Impact of environmental changes on the fishery of motorized and non-motorized sub-sectors of the upwelling zone of Kerala, southeastern Arabian sea[J]. Estuarine, Coastal and Shelf Science, 2021, 250: 107144. doi: 10.1016/j.ecss.2020.107144
    [3] 尹健强, 黄良民, 李开枝, 等. 南海西北部陆架区沿岸流和上升流对中华哲水蚤分布的影响[J]. 海洋学报, 2013, 35(2): 143−153. doi: 10.3969/j.issn.0253-4193.2013.02.015

    Yin Jianqiang, Huang Liangmin, Li Kaizhi, et al. Effects of coastal current and upwelling on the distributions of Calanus sinicus on the northwest continental shelf of the South China Sea[J]. Acta Oceanologica Sinica, 2013, 35(2): 143−153. doi: 10.3969/j.issn.0253-4193.2013.02.015
    [4] 孙鲁峰, 徐兆礼, 邢小丽, 等. 鱼山渔场近海海域浮游植物数量与上升流的关系[J]. 海洋环境科学, 2012, 31(6): 881−887.

    Sun Lufeng, Xu Zhaoli, Xing Xiaoli, et al. Relationship between phytoplankton and upwelling in Yushan Fishery coastal waters[J]. Marine Environmental Science, 2012, 31(6): 881−887.
    [5] 陈莹, 赵辉. 南海中西部叶绿素时空变化特征分析[J]. 海洋学研究, 2021, 39(3): 84−94.

    Chen Ying, Zhao Hui. Spatio-temporal distribution of chlorophyll in the mid-western South China Sea[J]. Journal of Marine Sciences, 2021, 39(3): 84−94.
    [6] May-Kú M A, Ornelas-Roa M, Suárez-Morales E. Surface copepod assemblages in shallow coastal waters off northeastern Yucatan Peninsula influenced by the Yucatan upwelling[J]. Regional Studies in Marine Science, 2022, 56: 102718. doi: 10.1016/j.rsma.2022.102718
    [7] Duncan S E, Sell A F, Hagen W, et al. Environmental drivers of upper mesopelagic fish assemblages in the Benguela Upwelling System[J]. Marine Ecology Progress Series, 2022, 688: 133−152.
    [8] Manjusha U, Jayasankar J, Remya R, et al. Influence of coastal upwelling on the fishery of small pelagics off Kerala, south-west coast of India[J]. Indian Journal of Fisheries, 2013, 60(2): 37−42.
    [9] 陈芃, 陈新军, 雷林. 秘鲁上升流对秘鲁鳀渔场的影响[J]. 水产学报, 2018, 42(9): 1367−1377.

    Chen Peng, Chen Xinjun, Lei Lin. Influence of Peruvian upwelling on the anchoveta (Engraulis ringens) fishing ground[J]. Journal of Fisheries of China, 2018, 42(9): 1367−1377.
    [10] Cury P, Roy C. Optimal environmental window and pelagic fish recruitment success in upwelling areas[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1989, 46(4): 670−680. doi: 10.1139/f89-086
    [11] 于杰, 王新星, 李永振, 等. 南海中西部渔场上升流时空变化特征分析[J]. 海洋科学, 2015, 39(6): 104−113. doi: 10.11759/hykx20140522004

    Yu Jie, Wang Xinxing, Li Yongzhen, et al. Analysis of the upwelling in the fishing ground in Midwestern South China Sea[J]. Marine Sciences, 2015, 39(6): 104−113. doi: 10.11759/hykx20140522004
    [12] 王新星, 于杰, 李永振, 等. 南海主要上升流及其与渔场的关系[J]. 海洋科学, 2015, 39(9): 131−137. doi: 10.11759/hykx20130627001

    Wang Xinxing, Yu Jie, Li Yongzheng, et al. The relationship between major upwelling and the upwelling fishing grounds in the South China Sea[J]. Marine Sciences, 2015, 39(9): 131−137. doi: 10.11759/hykx20130627001
    [13] Liang Wenzhao, Tang Danling, Luo Xin. Phytoplankton size structure in the western South China Sea under the influence of a ‘jet-eddy system’[J]. Journal of Marine Systems, 2018, 187: 82−95. doi: 10.1016/j.jmarsys.2018.07.001
    [14] Qian Jing, Li Jiajun, Zhang Kui, et al. Spatial–temporal distribution of large-size light falling-net fisheries in the South China Sea[J]. Frontiers in marine science, 2022, 9: 1075855. doi: 10.3389/fmars.2022.1075855
    [15] 粟丽, 陈作志, 张鹏, 等. 2017年南海中南部渔场灯光罩网渔获物组成及渔获率时空分布[J]. 南方水产科学, 2018, 14(5): 11−20. doi: 10.3969/j.issn.2095-0780.2018.05.003

    Su Li, Chen Zuozhi, Zhang Peng, et al. Catch composition and spatial-temporal distribution of catch rate of light falling-net fishing in central and southern South China Sea fishing ground in 2017[J]. South China Fisheries Science, 2018, 14(5): 11−20. doi: 10.3969/j.issn.2095-0780.2018.05.003
    [16] 粟丽, 陈作志, 黄梓荣, 等. 2015年春季南海北部陆架海域网采浮游植物群落结构及其与环境因子关系[J]. 海洋学研究, 2019, 37(3): 86−96.

    Su Li, Chen Zuozhi, Huang Zirong, et al. Net-collected phytoplankton community structure in relation to environmental factors in the continental shelf of the northern South China Sea in spring 2015[J]. Journal of Marine Science, 2019, 37(3): 86−96.
    [17] 张鹏, 张俊, 李渊, 等. 秋季南海中南部海域的一次灯光罩网探捕调查[J]. 南方水产科学, 2016, 12(2): 67−74.

    Zhang Peng, Zhang Jun, Li Yuan, et al. An exploratory fishing survey of light falling-net fisheries in the central and southern South China Sea in autumn[J]. South China Fisheries Science, 2016, 12(2): 67−74.
    [18] Ramanantsoa J D, Krug M, Penven P, et al. Coastal upwelling south of Madagascar: temporal and spatial variability[J]. Journal of Marine Systems, 2018, 178: 29−37. doi: 10.1016/j.jmarsys.2017.10.005
    [19] 王林慧, 史洁, 高会旺. 2014—2016厄尔尼诺年秘鲁上升流的变化特征及其影响因素[J]. 中国海洋大学学报, 2020, 50(7): 1−9.

    Wang Linhui, Shi Jie, Gao Huiwang. The Variability characteristics and influential factors in Peru Upwelling over 2014-2016 El Niño years[J]. Periodical of Ocean University of China, 2020, 50(7): 1−9.
    [20] 蔡研聪, 徐姗楠, 陈作志, 等. 南海北部近海渔业资源群落结构及其多样性现状[J]. 南方水产科学, 2018, 14(2): 10−18. doi: 10.3969/j.issn.2095-0780.2018.02.002

    Cai Yancong, Xu Shannan, Chen Zuozhi, et al. Current status of community structure and diversity of fishery resources in offshore northern South China Sea[J]. South China Fisheries Science, 2018, 14(2): 10−18. doi: 10.3969/j.issn.2095-0780.2018.02.002
    [21] 王雪辉, 林昭进, 杜飞雁, 等. 南海西北部陆架区鱼类的种类组成与群落格局[J]. 生态学报, 2013, 33(7): 2225−2235. doi: 10.5846/stxb201112261975

    Wang Xuehui, Lin Zhaojin, Du Feiyan, et al. Fish species composition and community pattern in the continental shelf of northwestern South China Sea[J]. Acta Ecologica Sinica, 2013, 33(7): 2225−2235. doi: 10.5846/stxb201112261975
    [22] 马琳, 巢林, 何雨莎, 等. 热带喀斯特季节性雨林12个树种木质部栓塞抗性与其解剖结构及相关性状间的关系[J]. 植物生态学报, 2024, 48(7): 888−902. doi: 10.17521/cjpe.2024.0016

    Ma Lin, Chao Lin, He Yusha, et al. Relationship of embolism resistance with xylem anatomical structure and related traits of 12 tree species in tropical karst seasonal rainforests[J]. Chinese Journal of Plant Ecology, 2024, 48(7): 888−902. doi: 10.17521/cjpe.2024.0016
    [23] 贺佳云, 张东, 储玲, 等. 人为干扰对溪流鱼类功能多样性及其纵向梯度格局的影响[J]. 生物多样性, 2021, 29(7): 927−937. doi: 10.17520/biods.2020434

    He Jiayun, Zhang Dong, Chu Ling, et al. Anthropogenic disturbances affect the functional diversity of stream fishes and its longitudinal patterns in China[J]. Biodiversity Science, 2021, 29(7): 927−937. doi: 10.17520/biods.2020434
    [24] Eisele M H, Madrigal-Mora S, Espinoza M. Drivers of reef fish assemblages in an upwelling region from the Eastern Tropical Pacific Ocean[J]. Journal of Fish Biology, 2021, 98(4): 1074−1090. doi: 10.1111/jfb.14639
    [25] 晏磊, 张鹏, 杨吝, 等. 2011年春季南海中南部海域灯光罩网渔业渔获组成的初步分析[J]. 南方水产科学, 2014, 10(3): 97−103.

    Yan Lei, Zhang Peng, Yang Lin, et al. Catch composition of light falling-net fishery in the central and southern South China Sea in spring of 2011[J]. South China Fisheries Science, 2014, 10(3): 97−103.
    [26] 张衡, 吴祖立, 周为峰, 等. 南海南沙群岛灯光罩网渔场金枪鱼科渔获种类、渔获率及其峰值期[J]. 海洋渔业, 2016, 38(2): 140−148.

    Zhang Heng, Wu Zuli, Zhou Weifeng, et al. Species composition, catch rate and occurrence peak time of Thunnidae family in the fishing ground of light falling-net fisheries in the Nansha Islands area of the South China Sea[J]. Marine Fisheries, 2016, 38(2): 140−148.
    [27] 沈国英. 海洋生态学[M]. 3版. 科学出版社, 2010.

    a) Shen Guoying. Marine Ecology[M]. 3rd ed. Science Press, 2010.
    [28] Pennington J T, Chavez F P. Seasonal fluctuations of temperature, salinity, nitrate, chlorophyll and primary production at station H3/M1 over 1989-1996 in Monterey Bay, California[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2000, 47(5/6): 947−973.
    [29] Rykaczewski R R, Checkley Jr D M. Influence of ocean winds on the pelagic ecosystem in upwelling regions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(6): 1965−1970.
    [30] 黄佳兴, 龚玉艳, 徐姗楠, 等. 南海中西部渔场主要渔业生物碳氮稳定同位素特征[J]. 热带海洋学报, 2019, 38(1): 76−84.

    Huang Jiaxing, Gong Yuyan, Xu Shannan, et al. Characteristics of stable carbon and nitrogen isotopes of major fishery organisms in the fishing ground of central western South China Sea[J]. Journal of Tropical Oceanography, 2019, 38(1): 76−84.
    [31] Kidé S O, Manté C, Demarcq H, et al. Groundfish assemblages diversity in upwelling ecosystems: insights from the Mauritanian Exclusive Economic Zone[J]. Biodiversity and Conservation, 2021, 30(8): 2279−2304.
    [32] 任春宇, 高建华, 刘焘, 等. 冬春季黄海温度锋面的多时间尺度变化及主控因素分析[J]. 海洋学报, 2023, 45(4): 31−45.

    Ren Chunyu, Gao Jianhua, Liu Tao, et al. Multi-timescale variation of temperature fronts in the Yellow Sea during winter and spring and its main controlling factors analysis[J]. Haiyang Xuebao, 2023, 45(4): 31−45.
    [33] 吴丽航, 王健鑫, 许永久, 等. 长江口及邻近海域冬、夏季浮游动物群落结构的季节差异分析[J]. 浙江海洋大学学报, 2022, 41(3): 183−191.

    Wu Lihang, Wang Jianxin, Xu Yongjiu, et al. Seasonal difference analysis of zooplankton community structure in winter and summer in the Yangtze Estuary and adjacent waters[J]. Journal of Zhejiang Ocean University (Natural Science), 2022, 41(3): 183−191.
    [34] Plisnier P D, Cocquyt C, Cornet Y, et al. Phytoplankton blooms and fish kills in Lake Tanganyika related to upwelling and the limnological cycle[J]. Journal of Great Lakes Research, 2023, 49(6): 102247. doi: 10.1016/j.jglr.2023.102247
    [35] Tang Danling, Kawamura H, Van Dien T, et al. Offshore phytoplankton biomass increase and its oceanographic causes in the South China Sea[J]. Marine Ecology Progress Series, 2004, 268: 31−41. doi: 10.3354/meps268031
    [36] 曾嘉维, 林坤, 王学锋, 等. 雷州湾附近海域鱼类群落结构及其与环境因子的关系[J]. 中国水产科学, 2019, 26(1): 108−117. doi: 10.3724/SP.J.1118.2019.18378

    Zeng Jiawei, Lin Kun, Wang Xuefeng, et al. Fish community structure and its relationship with environmental factors in Leizhou Bay[J]. Journal of Fishery Sciences of China, 2019, 26(1): 108−117. doi: 10.3724/SP.J.1118.2019.18378
    [37] 宋晨, 王晓波, 张国豪, 等. 浙江瓯江口海域游泳动物群落特征及其与环境因子的关系[J]. 海洋与湖沼, 2023, 54(4): 1113−1124.

    Song Chen, Wang Xiaobo, Zhang Guohao, et al. Community characteristics of nekton assemblages in Oujiang river estuary and its relationship with environmental factors, Zhejiang, East China[J]. Oceanologia et Limnologia Sinica, 2023, 54(4): 1113−1124.
    [38] Putri A R S, Zainuddin M. Impact of climate changes on skipjack tuna (Katsuwonus pelamis) catch during may-July in the Makassar Strait[J]. IOP Conference Series: Earth and Environmental Science, 2019, 253(1): 012046.
    [39] 何倩, 刘淑德, 唐衍力, 等. 山东琵琶岛海域人工鱼礁区鱼类群落物种及功能多样性[J]. 中国水产科学, 2023, 30(12): 1479−1495. doi: 10.12264/JFSC2023-0195

    He Qian, Liu Sude, Tang Yanli, et al. Species and functional diversity of fish communities in an artificial reef area of the Pipa Island sea, Shandong[J]. Journal of Fishery Sciences of China, 2023, 30(12): 1479−1495. doi: 10.12264/JFSC2023-0195
    [40] Abdellaoui S, El Halouani H, Tai I, et al. Resource partitioning within major bottom fish species in a highly productive upwelling ecosystem[J]. Journal of Marine Systems, 2017, 173: 1−8. doi: 10.1016/j.jmarsys.2017.03.012
    [41] 李波, 阳秀芬, 王锦溪, 等. 南海大眼金枪鱼(Thunnus obesus)摄食生态研究[J]. 海洋与湖沼, 2019, 50(2): 336−346. doi: 10.11693/hyhz20180900215

    Li Bo, Yang Xiufen, Wang Jinxi, et al. Feeding ecology of bigeye tuna (Thunnus obesus) in the South China Sea[J]. Oceanologia et Limnologia Sinica, 2019, 50(2): 336−346. doi: 10.11693/hyhz20180900215
    [42] 陶雅晋, 莫檬, 何雄波, 等. 南海黄鳍金枪鱼(Thunnus albacores)摄食习性及其随生长发育的变化[J]. 渔业科学进展, 2017, 38(4): 1−10. doi: 10.11758/yykxjz.20160716001

    Tao Yajin, Mo Meng, He Xiongbo, et al. Feeding habits and ontogenetic diet shifts of Yellowfin Tuna (Thunnus albacores) in the South China Sea[J]. Progress in Fishery Sciences, 2017, 38(4): 1−10. doi: 10.11758/yykxjz.20160716001
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  10
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-12
  • 修回日期:  2025-02-11
  • 网络出版日期:  2025-05-16

目录

    /

    返回文章
    返回