留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

辽河口沉积物反硝化过程研究

明红霞 陈泉睿 史银银 苏洁 于颖 樊景凤

明红霞,陈泉睿,史银银,等. 辽河口沉积物反硝化过程研究−以反硝化功能基因丰度及 nirK型细菌群落结构分析为例[J]. 海洋学报,2020,42(12):82–92 doi: 10.3969/j.issn.0253-4193.2020.12.009
引用本文: 明红霞,陈泉睿,史银银,等. 辽河口沉积物反硝化过程研究−以反硝化功能基因丰度及 nir K型细菌群落结构分析为例[J]. 海洋学报,2020,42(12):82–92 doi: 10.3969/j.issn.0253-4193.2020.12.009
Ming Hongxia,Chen Quanrui,Shi Yinyin, et al. Study on denitrification process of sediment in the Liaohe Estuary−Analysis of the abundance of denitrification functional genes and the community structure of nirK-type bacteria[J]. Haiyang Xuebao,2020, 42(12):82–92 doi: 10.3969/j.issn.0253-4193.2020.12.009
Citation: Ming Hongxia,Chen Quanrui,Shi Yinyin, et al. Study on denitrification process of sediment in the Liaohe Estuary−Analysis of the abundance of denitrification functional genes and the community structure of nir K-type bacteria[J]. Haiyang Xuebao,2020, 42(12):82–92 doi: 10.3969/j.issn.0253-4193.2020.12.009

辽河口沉积物反硝化过程研究以反硝化功能基因丰度及nirK型细菌群落结构分析为例

doi: 10.3969/j.issn.0253-4193.2020.12.009
基金项目: 国家重点研发计划"全球变化及应对专项"(2016YFA0601401);国家自然科学基金(41676115);海洋赤潮灾害立体监测技术与应用国家海洋局重点实验室基金(MATHAB201815)。
详细信息
    作者简介:

    明红霞(1981-),女,山东省德州市人,主要从事海洋微生物学研究。E-mail: mingtianhx@163.com

    通讯作者:

    樊景凤(1972-),研究员,主要从事海洋生态学研究。E-mail: jffan@nmemc.org.cn

  • 中图分类号: P736.21

Study on denitrification process of sediment in the Liaohe EstuaryAnalysis of the abundance of denitrification functional genes and the community structure of nirK-type bacteria

  • 摘要: 近年来,辽河口沿岸人类活动频繁,工农业活动发达,大量的氮、磷等营养物质输入至感潮河段继而排放入海,导致辽河口水体富营养化程度加剧。沉积物区域是反硝化作用的重要发生地和微生物富集地。微生物能够将沉积物中的硝酸盐及亚硝酸盐还原为N2O和N2释放到大气中,进而减轻河口生态系统氮负荷。本文中的实验采用定量PCR技术测定辽河口表层沉积物反硝化过程功能基因narG、nirK、norB、nosZ的基因丰度,结果表明,主导硝酸盐还原的narG功能基因丰度最高。使用高通量测序技术对nirK型功能基因进行测序,结果显示,在辽河口反硝化细菌中DevosiaPhaeobacterAlcaligenesPseudomonas菌属丰度较高。反硝化功能基因的丰度主要受到沉积物粒径的影响,norB基因丰度与多个环境因子显著相关。nirK型反硝化细菌的群落结构和多样性主要受盐度、pH、溶解氧以及NO2的影响。研究分析了反硝化功能基因丰度和细菌群落结构及其主要影响因子,其结果为辽河口水体富营养化中氮元素归趋的认知提供理论依据。
  • 图  1  辽河口12个采样点站位布设及分组情况

    Fig.  1  Distribution and grouping of 12 stations in Liaohe Estuary

    图  2  辽河口narG、nirK、norB、nosZ功能基因丰度

    Fig.  2  Functional gene abundance of narG, nirK, norB, and nosZ in the Liaohe Estuary

    图  3  辽河口环境因子与功能基因丰度的皮尔逊相关性

    Fig.  3  Pearson correlation between environmental factors and the abundance of functional genes in the Liaohe Estuary

    图  4  nirK型功能基因OTUs分布的韦恩图(a)和花瓣图(b)

    Fig.  4  Venn diagram (a) and petal map (b) of the nirK functional gene OTUs distribution

    图  5  nirK型反硝化细菌属水平的群落结构柱状图

    Fig.  5  Histogram of community structure at the genus level of nirK-type denitrifying bacterias

    图  6  基于LEfSe分析的辽河口沉积物中nirK型反硝化细菌的丰度柱状图(a)和进化分支图(b)

    LDA SCORE是指用线性判别分析(LDA)对数据进行降维和评估差异显著的物种的影响力

    Fig.  6  Abundance histogram (a) and evolutionary branch map (b) of nir K-type denitrifying bacteria in the sediments of the Liaohe Estuary based on LEfSe analysis

    LDA SCORE means using linear discriminant analysis (LDA) to reduce the dimension of data and evaluate the influence of species with significant differences

    图  7  nirK型反硝化细菌群落与环境因子变量的冗余分析图

    横轴和纵轴分别在两个主要维度上解释了微生物群落组成中携带nirK基因的突变量

    Fig.  7  Redundancy analysis of nirK-type denitrifying bacteria community and environmental factor variables

    The horizontal axils and the vertical axils explained the variation of nirK gene in microbial community composition in two main dimensions

    表  1  辽河口底层水中环境因子理化参数[11]

    Tab.  1  Physical and chemical parameters of environmental factors in bottom water of the Liaohe Estuary[11]

    站位温度/℃盐度电导率/mS·cm−1pHDO浓度/mg·L−1$ {{\rm {NH}}_4^+} $浓度/μmol·L−1$ {{\rm {NO}}_2^-} $浓度/μmol·L−1$ {{\rm {NO}}_3^- }$浓度/μmol·L−1$ {{\rm {PO}}_4^{3-}} $浓度/μmol·L−1
    A126.231.547.38.006.31.080.240.800.11
    A227.028.744.67.996.31.110.327.270.13
    A326.927.743.27.986.41.180.398.950.18
    A426.725.540.07.946.11.490.4812.320.01
    B126.519.631.57.866.35.890.3717.020.29
    B227.020.733.17.926.15.610.3515.270.20
    B326.819.832.07.885.05.940.4015.950.28
    B426.513.121.87.723.39.500.6115.230.27
    C125.97.013.37.624.09.220.6018.630.34
    C226.05.59.77.573.114.281.0222.060.40
    C325.92.44.57.546.213.610.9421.980.31
    C425.70.815.87.546.911.830.935.080.23
    下载: 导出CSV

    表  2  辽河口表层沉积物中环境因子理化参数[11]

    Tab.  2  Physical and chemical parameters of environmental factors in surface sediments of the Liaohe Estuary[11]

    站位TOC含量/%TP浓度/μg·g−1TN浓度/μg·g−1黏土含量/%粉砂含量/%砂含量/%
    A10.82185.034.731.1858.4810.34
    A20.4357.240.223.5351.5524.92
    A30.5394.465.326.2461.3512.41
    A40.5690.360.531.0160.138.85
    B10.4997.1131.037.0062.970.03
    B20.7099.6298.014.5756.6728.76
    B30.60102.0136.021.4661.5716.97
    B40.14117.076.512.6059.5427.87
    C10.34109.087.918.0166.9615.04
    C20.3447.838.34.6447.3647.99
    C30.4684.490.518.4753.8227.71
    C40.3426.630.12.6712.4584.88
    下载: 导出CSV

    表  3  反硝化功能基因的引物

    Tab.  3  Primers for denitrification genes

    基因引物5′-3′ 序列参考文献
    nirK FlaCuATC ATG GTS CTG CCG CG[12]
    R3CuGCC TCG ATC AGR TTG TGG TT
    nosZ nosZ1126FGGG CTB GGG CCR TTG CA[13]
    nosZ1138RGAA GCG RTC CTT SGA RAA CTTG
    narG narG571FCCG ATY CCG GCV ATG TCS AT[13]
    narG773RGGN ACG TTN GAD CCC CA
    norB norB1FCGN GAR TTY CTS GAR CAR CC[14]
    norB3RCCY TCV ACC CAG ASA TGC AC
    下载: 导出CSV

    表  4  辽河口nirK型反硝化细菌丰度及多样性

    Tab.  4  Abundance and diversity of nirK-type denitrifying bacteria in the Liaohe Estuary

    采样点OTUs
    个数
    有效序
    列数
    Coverage
    /%
    Chao1
    指数
    ACE
    指数
    Shannon
    指数
    Simpson
    指数
    A11123707199.96138.25127.222.660.146
    A2963694799.9997.0097.992.280.230
    A31213616499.99121.27122.162.710.151
    A41323048799.95140.67139.962.540.201
    B11263031599.94146.00135.692.520.188
    B21363281699.97138.80139.672.590.169
    B32373731099.96244.09242.593.250.122
    B41623167399.94183.86172.692.780.144
    C12363774599.97245.43240.573.320.103
    C23053727499.94319.62313.623.620.077
    C32913613699.97293.77293.633.600.088
    C41603333499.89248.00267.542.820.140
    下载: 导出CSV
  • [1] Smith D P, Thrash J C, Nicora C D, et al. Proteomic and transcriptomic analyses of “Candidatus Pelagibacter ubique”describe the first PII-independent response to nitrogen limitation in a free-living Alphaproteobacterium[J]. mBio, 2013, 4(6): e00133−12.
    [2] Herbert R A. Nitrogen cycling in coastal marine ecosystems[J]. FEMS Microbiology Reviews, 1999, 23(5): 563−590. doi: 10.1111/j.1574-6976.1999.tb00414.x
    [3] Helen D, Kim H, Tytgat B, et al. Highly diverse nirK genes comprise two major clades that harbour ammonium-producing denitrifiers[J]. BMC Genomics, 2016, 17(1): 155. doi: 10.1186/s12864-016-2465-0
    [4] Zumft W G. Cell biology and molecular basis of denitrification[J]. Microbiology and Molecular Biology Reviews, 1997, 61(4): 533−616. doi: 10.1128/.61.4.533-616.1997
    [5] Penton C R, Johnson T A, Quensen J F, et al. Functional genes to assess nitrogen cycling and aromatic hydrocarbon degradation: primers and processing matter[J]. Frontiers in Microbiology, 2013, 4: 279.
    [6] Santoro A E, Boehm A B, Francis C A. Denitrifier community composition along a nitrate and salinity gradient in a coastal aquifer[J]. Applied and Environmental Microbiology, 2006, 72(3): 2102−2109. doi: 10.1128/AEM.72.3.2102-2109.2006
    [7] Jones C M, Hallin S. Ecological and evolutionary factors underlying global and local assembly of denitrifier communities[J]. The ISME Journal, 2010, 4(5): 633−641. doi: 10.1038/ismej.2009.152
    [8] 陶怡乐, 温东辉. 细菌硝酸盐异化还原成铵过程及其在河口生态系统中的潜在地位与影响[J]. 微生物学通报, 2016, 43(1): 172−181.

    Tao Yile, Wen Donghui. Dissimilatory nitrate reduction to ammonium: The potential and impacts in estuarine regions[J]. Microbiology China, 2016, 43(1): 172−181.
    [9] 袁晓敏, 杨继松, 刘凯, 等. 盐分对辽河口湿地土壤DOC及CO2生成的影响[J]. 生态学杂志, 2017, 36(8): 2111−2117.

    Yuan Xiaomin, Yang Jisong, Liu Kai, et al. Effects of salinity on DOC concentration and CO2 production of wetland soil in Liaohe Estuarine[J]. Chinese Journal of Ecology, 2017, 36(8): 2111−2117.
    [10] Bu Hongmei, Meng Wei, Zhang Yuan. Nitrogen pollution and source identification in the Haicheng River basin in Northeast China[J]. Science of the Total Environment, 2011, 409(18): 3394−3402. doi: 10.1016/j.scitotenv.2011.05.030
    [11] 张慧珍, 常永凯, 陈泉睿, 等. 辽河口沉积物中古菌和细菌群落结构分析[J]. 海洋学报, 2018, 40(6): 113−130.

    Zhang Huizhen, Chang Yongkai, Chen Quanrui, et al. Community structure analysis of archaea and bacteria in sediments of Liaohe Estuary[J]. Haiyang Xuebao, 2018, 40(6): 113−130.
    [12] Hallin S, Lindgren P E. PCR detection of genes encoding nitrite reductase in denitrifying bacteria[J]. Applied and Environmental Microbiology, 1999, 65(4): 1652−1657. doi: 10.1128/AEM.65.4.1652-1657.1999
    [13] Chen Zhe, Liu Jinbo, Wu Minna, et al. Differentiated response of denitrifying communities to fertilization regime in paddy soil[J]. Microbial Ecology, 2012, 63(2): 446−459. doi: 10.1007/s00248-011-9909-5
    [14] Casciotti K L, Ward B B. Phylogenetic analysis of nitric oxide reductase gene homologues from aerobic ammonia-oxidizing bacteria[J]. FEMS Microbiology Ecology, 2005, 52(2): 197−205. doi: 10.1016/j.femsec.2004.11.002
    [15] Dang Hongyue, Li Jing, Chen Ruipeng, et al. Diversity, abundance, and spatial distribution of sediment ammonia-oxidizing Betaproteobacteria in response to environmental gradients and coastal eutrophication in Jiaozhou Bay, China[J]. Applied and Environmental Microbiology, 2010, 76(14): 4691−4702. doi: 10.1128/AEM.02563-09
    [16] Jiang Xiaoliang, Yao Lu, Guo Laodong, et al. Multi-scale factors affecting composition, diversity, and abundance of sediment denitrifying microorganisms in Yangtze lakes[J]. Applied Microbiology and Biotechnology, 2017, 101(21): 8015−8027. doi: 10.1007/s00253-017-8537-5
    [17] Yang Jisong, Zhan Chao, Li Yunzhao, et al. Effect of salinity on soil respiration in relation to dissolved organic carbon and microbial characteristics of a wetland in the Liaohe River estuary, Northeast China[J]. Science of the Total Environment, 2018, 642: 946−953. doi: 10.1016/j.scitotenv.2018.06.121
    [18] Mahjoubi M, Aliyu H, Cappello S, et al. The genome of Alcaligenes aquatilis strain BU33N: insights into hydrocarbon degradation capacity[J]. PLoS One, 2019, 14(9): e0221574. doi: 10.1371/journal.pone.0221574
    [19] Jiang Yan, Wen Jianping, Bai Jing, et al. Biodegradation of phenol at high initial concentration by Alcaligenes faecalis[J]. Journal of Hazardous Materials, 2007, 147(1/2): 672−676.
    [20] Chen Yong, Zhu Sidong, Lin Danqiu, et al. Devosia Naphthalenivorans sp. nov., isolated from East Pacific Ocean sediment[J]. International Journal of Systematic and Evolutionary Microbiology, 2019, 69(7): 1974−1979. doi: 10.1099/ijsem.0.003410
    [21] Park S, Jung Y T, Kim S, et al. Devosia confluentis sp. nov., isolated from the junction between the ocean and a freshwater lake, and reclassification of two Vasilyevaea species as Devosia enhydra comb. nov. and Devosia mishustinii comb. nov[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(10): 3935−3941. doi: 10.1099/ijsem.0.001291
    [22] Wolińska A, Kuźniar A, Zielenkiewicz U, et al. Metagenomic analysis of some potential nitrogen-fixing bacteria in arable soils at different formation processes[J]. Microbial Ecology, 2017, 73(1): 162−176. doi: 10.1007/s00248-016-0837-2
    [23] Rivas R, Willems A, Subba-Rao N S, et al. Description of Devosia neptuniae sp. nov. that nodulates and fixes nitrogen in symbiosis with Neptunia natans, an aquatic legume from India[J]. Systematic and Applied Microbiology, 2003, 26(1): 47−53. doi: 10.1078/072320203322337308
    [24] Fu Yingnan, Wang Rui, Zhang Zilian, et al. Complete genome sequence of the d-Amino acid catabolism bacterium Phaeobacter sp. Strain JL2886, isolated from deep seawater of the South China Sea[J]. Genome Announcements, 2016, 4(5): e00913−16.
    [25] Gram L, Rasmussen B B, Wemheuer B, et al. Phaeobacter inhibens from the Roseobacter clade has an environmental niche as a surface colonizer in harbors[J]. Systematic and Applied Microbiology, 2015, 38(7): 483−493. doi: 10.1016/j.syapm.2015.07.006
    [26] Trautwein K, Hensler M, Wiegmann K, et al. The marine bacterium Phaeobacter inhibens secures external ammonium by rapid buildup of intracellular nitrogen stocks[J]. FEMS Microbiology Ecology, 2018, 94(10): 1−14.
    [27] Perkins T L, Clements K, Baas J H, et al. Sediment composition influences spatial variation in the abundance of human pathogen indicator bacteria within an estuarine environment[J]. PLoS One, 2014, 9(11): e112951. doi: 10.1371/journal.pone.0112951
    [28] Luo Ling, Zhou Zhichao, Gu Jidong. Distribution, diversity and abundance of bacterial laccase-like genes in different particle size fractions of sediments in a subtropical mangrove ecosystem[J]. Ecotoxicology, 2015, 24(7/8): 1508−1516.
    [29] Zaghmouri I, Michotey V D, Armougom F, et al. Salinity shifts in marine sediment: importance of number of fluctuation rather than their intensities on bacterial denitrifying community[J]. Marine Pollution Bulletin, 2018, 130: 76−83. doi: 10.1016/j.marpolbul.2018.03.020
    [30] Liu Wenzhi, Yao Lu, Jiang Xiaoliang, et al. Sediment denitrification in Yangtze lakes is mainly influenced by environmental conditions but not biological communities[J]. Science of the Total Environment, 2018, 616−617: 978−987. doi: 10.1016/j.scitotenv.2017.10.221
    [31] Zhou Shilei, Huang Tinglin, Zhang Chunhua, et al. Illumina MiSeq sequencing reveals the community composition of NirS-Type and NirK-Type denitrifiers in Zhoucun reservoir—a large shallow eutrophic reservoir in northern China[J]. RSC Advances, 2016, 6(94): 91517−91528. doi: 10.1039/C6RA18017E
    [32] Fan Haoxin, Bolhuis H, Stal L J. Denitrification and the denitrifier community in coastal microbial mats[J]. FEMS Microbiology Ecology, 2015, 91(3): 1−11.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  175
  • HTML全文浏览量:  86
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-18
  • 修回日期:  2020-06-08
  • 网络出版日期:  2021-01-06
  • 刊出日期:  2020-12-25

目录

    /

    返回文章
    返回