留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

卷积神经网络在卫星遥感海冰图像分类中的应用探究

崔艳荣 邹斌 韩震 石立坚 刘森

崔艳荣,邹斌,韩震,等. 卷积神经网络在卫星遥感海冰图像分类中的应用探究−以渤海海冰为例[J]. 海洋学报,2020,42(9):100–109 doi: 10.3969/j.issn.0253-4193.2020.09.011
引用本文: 崔艳荣,邹斌,韩震,等. 卷积神经网络在卫星遥感海冰图像分类中的应用探究−以渤海海冰为例[J]. 海洋学报,2020,42(9):100–109 doi: 10.3969/j.issn.0253-4193.2020.09.011
Cui Yanrong,Zou Bin,Han Zhen, et al. Application of convolutional neural networks in satellite remote sensing sea ice image classification: A case study of sea ice in the Bohai Sea[J]. Haiyang Xuebao,2020, 42(9):100–109 doi: 10.3969/j.issn.0253-4193.2020.09.011
Citation: Cui Yanrong,Zou Bin,Han Zhen, et al. Application of convolutional neural networks in satellite remote sensing sea ice image classification: A case study of sea ice in the Bohai Sea[J]. Haiyang Xuebao,2020, 42(9):100–109 doi: 10.3969/j.issn.0253-4193.2020.09.011

卷积神经网络在卫星遥感海冰图像分类中的应用探究以渤海海冰为例

doi: 10.3969/j.issn.0253-4193.2020.09.011
基金项目: 国家重点研发计划(2018YFC1407200,2018YFC1407206);近海海洋环境遥感监测预警服务支撑项目。
详细信息
    作者简介:

    崔艳荣(1994-),女,安徽省灵璧县人,从事深度学习在卫星遥感海冰解译中的应用研究。E-mail:1278260805@qq.com

    通讯作者:

    邹斌,男,(1969-),教授,从事卫星遥感海洋应用研究。E-mail:13601238901@126.com

  • 中图分类号: P731.15;P715.7

Application of convolutional neural networks in satellite remote sensing sea ice image classification: A case study of sea ice in the Bohai Sea

  • 摘要: 本文以TensorFlow为框架搭建卷积神经网络,基于迁移学习的思想,以经典的手写数字识别作为引入,对不同代价函数和激活函数组合对卷积神经网络模型分类结果影响进行了评价分析。以HJ-1A/B渤海海冰图像为实验数据源,分析了不同函数组合对遥感海冰图像分类的影响,优选出交叉熵代价函数与ReLU激活函数为最佳的组合,证明了卷积神经网络在遥感海冰分类中的应用可行性。对渤海海冰图像分类结果进行验证,其中带标签样本验证精度为98.4%。使用该模型对无标签的测试样本进行识别,讨论了样本的窗口尺寸对海冰分类结果的影响,发现在400×400小范围分类实验中最佳窗口尺寸为2×2;最后对整个渤海海域进行识别验证,效果较好。
  • 图  1  卷积神经网络模型

    Fig.  1  Model diagram of convolutional neural network

    图  2  Sigmoid原函数和导函数Deriv. Sigmoid[20]

    Fig.  2  Sigmoid function and Deriv. Sigmoid[20]

    图  3  ReLU激活函数[18]

    Fig.  3  ReLU activation function[18]

    图  4  HJ-1B卫星图像样本

    Fig.  4  HJ-1B satellite image sample

    图  5  HJ-1A卫星图像样本

    Fig.  5  HJ-1A satellite image sample

    图  8  模型测试样本400×400数据源(a)和2×2(b)、5×5(c)、10×10(d)窗口大小模型识别结果

    a中亮色为海冰,暗色为海水;b−d中紫色代表海冰,黄色代表海水

    Fig.  8  Test sample 400×400 (a), and 2×2 (b)、5×5 (c)、10×10 (d) model recognition results

    The bright represents sea ice, and the dark represents sea water in a;the purple represents sea ice, and the yellow represents sea water in b-d

    图  6  模型训练误差曲线

    Fig.  6  Loss curve of model training

    图  7  模型训练精度曲线

    Fig.  7  Accuracy curve of model training

    图  9  HJ-1B卫星图像20×20(a)、40×40(b)和80×80(c)窗口大小模型识别结果

    红色曲线表示冰、水分界线

    Fig.  9  20×20 (a)、40×40 (b)、80×80(c)model recognition results of HJ-1B satellite image

    The red curve represents the ice-water boundary

    图  10  HJ-1A卫星图像20×20(a)、40×40(b)和80×80(c)窗口大小模型识别结果

    红色曲线表示冰、水分界线

    Fig.  10  20×20 (a)、40×40 (b)、80×80(c)model recognition results of HJ-1A satellite image

    The red curve represents the ice-water boundary

    表  1  CCD载荷参数

    Tab.  1  CCD parameters

    有效载荷波段号光谱范围/μm空间分辨率/m幅宽/km
    CCD相机B010.43~0.5230360(单台)
    B020.52~0.6030360(单台)
    B030.63~0.6930700(两台)
    B040.76~0.9030700(两台)
    下载: 导出CSV

    表  2  交叉熵代价函数与ReLU激活函数组合

    Tab.  2  Combination of cross-entropy cost function and ReLU activation function

    迭代次数训练精度/%验证精度/%
    8 00092.091.4
    10 00098.093.0
    20 00098.096.8
    下载: 导出CSV

    表  5  二次代价函数与Sigmoid激活函数组合

    Tab.  5  Combination of quadratic cost function and Sigmoid activation function

    迭代次数训练精度/%验证精度/%
    8 00030.027.0
    10 00044.038.4
    20 00074.065.3
    下载: 导出CSV

    表  3  二次代价函数与ReLU激活函数组合

    Tab.  3  Combination of quadratic cost function and ReLU activation function

    迭代次数训练精度/%验证精度/%
    8 00070.076.5
    10 00074.084.6
    20 00084.091.9
    下载: 导出CSV

    表  4  交叉熵代价函数与Sigmoid激活函数组合

    Tab.  4  Combination of cross-entropy cost function and Sigmoid activation function

    迭代次数训练精度/%验证精度/%
    8 00058.045.1
    10 00052.051.7
    20 00074.083.9
    下载: 导出CSV

    表  6  不同代价函数和激活函数组合的海冰图像分类结果

    Tab.  6  Sea ice image classification results with different cost function and activation function combinations

    函数组合迭代次数训练精度/%验证精度/%
    交叉熵代价函数与ReLU激活函数组合5099.698.4
    交叉熵代价函数与Sigmoid激活函数组合5089.880.8
    下载: 导出CSV
  • [1] Wang Wenbo, Wen Yusong, Dong Xue, et al. Sea ice classification of SAR image based on wavelet transform and gray level co-occurrence matrix[C]//Proceedings of the Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC). Qinhuangdao: IEEE, 2015.
    [2] Ressel R, Singha S. Comparing near coincident space borne C and X band fully polarimetric SAR data for Arctic sea ice classification[J]. Remote Sensing, 2016, 8(3): 198. doi: 10.3390/rs8030198
    [3] Liu Huiying, Guo Huadong, Zhang Lu. SVM-based sea ice classification using textural features and concentration from RADARSAT-2 dual-pol ScanSAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(4): 1601−1613. doi: 10.1109/JSTARS.2014.2365215
    [4] Zakhvatkina N, Korosov A, Muckenhuber S, et al. Operational algorithm for ice-water classification on dual-polarized RADARSAT-2 images[J]. The Cryosphere, 2017, 11(1): 33−46. doi: 10.5194/tc-11-33-2017
    [5] Tan Weikai, Li J, Xu Linlin, et al. Semiautomated segmentation of sentinel-1 SAR imagery for mapping sea ice in Labrador coast[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(5): 1419−1432. doi: 10.1109/JSTARS.2018.2806640
    [6] 张明, 吕晓琪, 张晓峰, 等. 结合纹理特征的SVM海冰分类方法研究[J]. 海洋学报, 2018, 40(11): 149−156.

    Zhang Ming, Lü Xiaoqi, Zhang Xiaofeng, et al. Research on SVM sea ice classification based on texture features[J]. Haiyang Xuebao, 2018, 40(11): 149−156.
    [7] 任莎莎, 郎文辉. 基于K-GMM算法的SAR海冰图像分类[J]. 地理与地理信息科学, 2018, 34(5): 42−48. doi: 10.3969/j.issn.1672-0504.2018.05.008

    Ren Shasha, Lang Wenhui. SAR sea ice image classification based on the K-GMM algorithm[J]. Geography and Geo-Information Science, 2018, 34(5): 42−48. doi: 10.3969/j.issn.1672-0504.2018.05.008
    [8] 郑敏薇, 李晓明, 任永政. 高分3号星载合成孔径雷达极地海冰自动检测方法研究[J]. 海洋学报, 2018, 40(9): 113−124.

    Zheng Minwei, Li Xiaoming, Ren Yongzheng. The method study on automatic sea ice detection with GaoFen-3 synthetic aperture radar data in polar regions[J]. Haiyang Xuebao, 2018, 40(9): 113−124.
    [9] 逯跃锋, 和鑫, 陆黎娟, 等. 基于纹理分析的SAR海冰图像分类方法[J]. 山东理工大学学报:自然科学版, 2019, 33(1): 51−55.

    Lu Yuefeng, He Xin, Lu Lijuan, et al. Research on classification method of the SAR sea ice image based on texture analysis[J]. Journal of Shandong University of Technology: Natural Science Edition, 2019, 33(1): 51−55.
    [10] 朱立先, 惠凤鸣, 张智伦, 等. 基于Sentinel-1A/B SAR数据的西北航道海冰分类研究[J]. 北京师范大学学报: 自然科学版, 2019, 55(1): 66−76.

    Zhu Lixian, Hui Fengming, Zhang Zhilun, et al. Sea ice classification in Northwest Passage based on Sentinel-1A/B SAR data[J]. Journal of Beijing Normal University: Natural Science, 2019, 55(1): 66−76.
    [11] Wang Lei, Wong A, Scott K A, et al. Sea ice concentration estimation from satellite SAR imagery using convolutional neural network and stochastic fully connected conditional random field[EB/OL].[2018-12-20]. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=6090D494FAC52D7E708A655DBDC70F05?doi=10.1.1.700.1082&rep=rep1&type=pdf, 2015.
    [12] Chen Sizhe, Wang Haipeng, Xu Feng, et al. Target classification using the deep convolutional networks for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4806−4817. doi: 10.1109/TGRS.2016.2551720
    [13] Wang Lei, Scott K A, Clausi D A. Sea ice concentration estimation during freeze-up from SAR imagery using a convolutional neural network[J]. Remote Sensing, 2017, 9(5): 408. doi: 10.3390/rs9050408
    [14] 黄冬梅, 李明慧, 宋巍, 等. 卷积神经网络和深度置信网络在SAR影像冰水分类的性能评估[J]. 中国图象图形学报, 2018, 23(11): 1720−1732. doi: 10.11834/jig.180226

    Huang Dongmei, Li Minghui, Song Wei, et al. Performance of convolutional neural network and deep belief network in sea ice-water classification using SAR imagery[J]. Journal of Image and Graphics, 2018, 23(11): 1720−1732. doi: 10.11834/jig.180226
    [15] 李彦冬, 郝宗波, 雷航. 卷积神经网络研究综述[J]. 计算机应用, 2016, 36(9): 2508−2515. doi: 10.11772/j.issn.1001-9081.2016.09.2508

    Li Yandong, Hao Zongbo, Lei Hang. Survey of convolutional neural network[J]. Journal of Computer Applications, 2016, 36(9): 2508−2515. doi: 10.11772/j.issn.1001-9081.2016.09.2508
    [16] 徐先峰, 冯大政. 一种充分利用变量结构的解卷积混合盲源分离新方法[J]. 电子学报, 2009, 37(1): 112−117, 131. doi: 10.3321/j.issn:0372-2112.2009.01.020

    Xu Xianfeng, Feng Dazheng. A new method based on the full utilizations of concerning variables’ structures for blind source separation of convolutive mixtures[J]. Acta Electronica Sinica, 2009, 37(1): 112−117, 131. doi: 10.3321/j.issn:0372-2112.2009.01.020
    [17] 赵宏, 郭万鹏. 深度神经网络代价函数选择与性能评测研究[J]. 软件, 2018, 39(1): 14−20. doi: 10.3969/j.issn.1003-6970.2018.01.004

    Zhao Hong, Guo Wanpeng. Selection and evaluation of cost function in deep neural network[J]. Computer Engineering & Software, 2018, 39(1): 14−20. doi: 10.3969/j.issn.1003-6970.2018.01.004
    [18] Yarotsky D. Error bounds for approximations with deep ReLU networks[J]. Neural Networks, 2017, 94: 103−114. doi: 10.1016/j.neunet.2017.07.002
    [19] 袁文翠, 孔雪. 基于TensorFlow深度学习框架的卷积神经网络研究[J]. 微型电脑应用, 2018, 34(2): 29−32. doi: 10.3969/j.issn.1007-757X.2018.02.009

    Yuan Wencui, Kong Xue. The study of convolution neural network based on TensorFlow deep learning framework[J]. Microcomputer Applications, 2018, 34(2): 29−32. doi: 10.3969/j.issn.1007-757X.2018.02.009
    [20] 张萧, 黄晞, 仲伟汉, 等. Sigmoid函数及其导函数的FPGA实现[J]. 福建师范大学学报:自然科学版, 2011, 27(2): 62−65.

    Zhang Xiao, Huang Xi, Zhong Weihan, et al. Implementation of Sigmoid function and its derivative on FPGA[J]. Journal of Fujian Normal University: Natural Science Edition, 2011, 27(2): 62−65.
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  389
  • HTML全文浏览量:  94
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-03
  • 修回日期:  2020-01-07
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2020-09-25

目录

    /

    返回文章
    返回