Spatial distribution characteristics of fracture system in BSR zone in deep water area of the Qiongdongnan Basin
-
摘要: 为解决甲烷渗漏系统末端裂隙系统空间分布规律问题,基于南海北部深水区高分辨率三维地震数据,采用可视化与相干体技术描述似海底反射层分布区裂隙空间结构与分布特征,阐述了裂隙产生的地质成因类型,讨论了裂隙与其他类型输导体系对甲烷气成藏的关系。似海底反射层界面上部空间裂隙远少于下部空间的地质结构体,使水合物成藏过程中甲烷气供大于散,对研究水合物成藏和检测甲烷气的渗漏有普遍指示作用。根据裂隙的发育规模,研究区大致可以识别出短裂隙、长裂隙、裂隙束、裂隙群(组) 4种类型,它们对流体的渗漏能力依次增强,这些裂隙在地层中往往以多类型共存的方式,或与其他地质构造共同构成渗漏系统。这些结果和认识对完善深水盆地甲烷气渗漏系统水合物成藏模式及成藏机理有广泛意义。Abstract: In order to solve the problem of spatial distribution of fracture system at the end of methane leakage system, based on the high-resolution three-dimensional seismic data in the north of South China Sea, the spatial structure and distribution characteristics of fractures in bottom simulating reflector (BSR) distribution area are described by using visualization and coherent body technology. The geological genetic types of fractures are described. The relationship between fractures and other types of transport systems on methane gas accumulation is discussed. The fractures in the upper part of BSR interface are far less than those in the lower part of BSR interface, which makes the methane gas supply larger than that in the process of hydrate accumulation. It has a general indicating role in studying hydrate accumulation and detecting methane gas leakage. According to the development scale of fractures, the study area can roughly identify four types of fractures, they are each short fractures, long fractures, fracture bundles, and fracture groups, which enhance the leakage capacity of fluids in turn. These fractures often coexist in multiple types in the stratum, or form a leakage system together with other geological structures. These results and understandings are of great significance to improve the gas hydrate accumulation model and mechanism of methane leakage system in deep-water basin.
-
Key words:
- Qiongdongnan Basin /
- deep-water area /
- fracture /
- leakage system /
- spatial distribution
-
图 6 长昌凹陷三维区古近纪继承性断裂隙与新近纪新生裂隙特征(剖面位置见图1中L4)
a.同构造两段两套地层的断裂体系,分别是古近纪继承性断裂,新近纪新生断裂的相干属性;b.古近纪继承性断裂地震特征;c.新近纪新生裂隙地震特征
Fig. 6 Characteristics of Paleogene inherited faults and Miocene Cenozoic fractures in the three-dimensional area of the Changchang Depression (see Fig.1 for the location of Line L4)
a. The fault system of two strata in the same structure is the coherent property of Paleogene inherited fault and Neogene new fault; b. the seismic characteristics of Paleogene inherited fault; c. the seismic characteristics of Neogene new fractures
-
[1] Brown A. Evaluation of possible gas microseepage mechanisms[J]. AAPG Bulletin, 2000, 84(11): 1775−1789. [2] Saunders D F, Burson K R, Thompson C K. Model for hydrocarbon microseepage and related near-surface alterations[J]. AAPG Bulletin, 1999, 83(1): 170−185. [3] Schumacher D, Abrams M A. Hydrocarbon migration and its near-surface expression[C]//Outgrowth of the AAPG Hedberg Research Conference. Tulsa, Oklahoma : American Association of Petroleum Geologists, 1996. [4] 吴能友, 杨胜雄, 王宏斌, 等. 南海北部陆坡神狐海域天然气水合物成藏的流体运移体系[J]. 地球物理学报, 2009, 52(6): 1641−1650. doi: 10.3969/j.issn.0001-5733.2009.06.027Wu Nengyou, Yang Shengxiong, Wang Hongbin, et al. Gas-bearing fluid influx sub-system for gas hydrate geological system in Shenhu Area, northern South China Sea[J]. Chinese Journal of Geophysics, 2009, 52(6): 1641−1650. doi: 10.3969/j.issn.0001-5733.2009.06.027 [5] 吴时国, 董冬冬, 杨胜雄, 等. 南海北部陆坡细粒沉积物天然气水合物系统的形成模式初探[J]. 地球物理学报, 2009, 52(7): 1849−1857. doi: 10.3969/j.issn.0001-5733.2009.07.019Wu Shiguo, Dong Dongdong, Yang Shengxiong, et al. Genetic model of the hydrate system in the fine grain sediments in the northern continental slope of South China Sea[J]. Chinese Journal of Geophysics, 2009, 52(7): 1849−1857. doi: 10.3969/j.issn.0001-5733.2009.07.019 [6] 何家雄, 卢振权, 苏丕波, 等. 南海北部天然气水合物气源系统与成藏模式[J]. 西南石油大学学报: 自然科学版, 2016, 38(6): 8−24.He Jiaxiong, Lu Zhenquan, Su Peibo, et al. Source supply system and reservoir forming model prediction of natural gas hydrate in the deep water area of the northern South China Sea[J]. Journal of Southwest Petroleum University: Science & Technology Edition, 2016, 38(6): 8−24. [7] Cook A E, Goldberg D, Kleinberg R L. Fracture-controlled gas hydrate systems in the northern Gulf of Mexico[J]. Marine and Petroleum Geology, 2008, 25(9): 932−941. doi: 10.1016/j.marpetgeo.2008.01.013 [8] 宋瑞有, 于俊峰, 晁彩霞, 等. 裂隙识别技术及其在油气和水合物勘探中的应用[J]. 热带海洋学报, 2020, 39(1): 120−129.Song Ruiyou, Yu Junfeng, Chao Caixia, et al. Fracture identification technique and its application in gas and hydrate exploration[J]. Journal of Tropical Oceanography, 2020, 39(1): 120−129. [9] 许怀智, 蔡东升, 孙志鹏, 等. 琼东南盆地中央峡谷沉积充填特征及油气地质意义[J]. 地质学报, 2012, 86(4): 641−650. doi: 10.3969/j.issn.0001-5717.2012.04.010Xu Huaizhi, Cai Dongsheng, Sun Zhipeng, et al. Filling characters of central submarine canyon of Qiongdongnan Basin and its significance of petroleum geology[J]. Acta Geologica Sinica, 2012, 86(4): 641−650. doi: 10.3969/j.issn.0001-5717.2012.04.010 [10] 何家雄, 夏斌, 孙东山, 等. 琼东南盆地油气成藏组合、运聚规律与勘探方向分析[J]. 石油勘探与开发, 2006, 33(1): 53−58. doi: 10.3321/j.issn:1000-0747.2006.01.012He Jiaxiong, Xia Bin, Sun Dongshan, et al. Hydrocarbon accumulation, migration and play targets in the Qiongdongnan Basin, South China Sea[J]. Petroleum Exploration and Development, 2006, 33(1): 53−58. doi: 10.3321/j.issn:1000-0747.2006.01.012 [11] 马文宏, 何家雄, 姚永坚, 等. 南海北部边缘盆地第三系沉积及主要烃源岩发育特征[J]. 天然气地球科学, 2008, 19(1): 41−48. doi: 10.11764/j.issn.1672-1926.2008.01.41Ma Wenhong, He Jiaxiong, Yao Yongjian, et al. Characteristics of tertiary sediments and main source rocks, northern South China Sea[J]. Natural Gas Geoscience, 2008, 19(1): 41−48. doi: 10.11764/j.issn.1672-1926.2008.01.41 [12] 何家雄, 陈胜红, 崔莎莎, 等. 南海北部大陆边缘深水盆地烃源岩早期预测与评价[J]. 中国地质, 2009, 36(2): 404−416. doi: 10.3969/j.issn.1000-3657.2009.02.014He Jiaxiong, Chen Shenghong, Cui Shasha, et al. Early-stage prediction and evaluation of hydrocarbon source rocks in the deep basin on the northern continental margin of the South China Sea[J]. Geology in China, 2009, 36(2): 404−416. doi: 10.3969/j.issn.1000-3657.2009.02.014 [13] 邵磊, 李昂, 吴国瑄, 等. 琼东南盆地沉积环境及物源演变特征[J]. 石油学报, 2010, 31(4): 548−552. doi: 10.7623/syxb201004005Shao Lei, Li Ang, Wu Guoxuan, et al. Evolution of sedimentary environment and provenance in Qiongdongnan Basin in the northern South China Sea[J]. Acta Petrolei Sinica, 2010, 31(4): 548−552. doi: 10.7623/syxb201004005 [14] 孙永革, 杨中威, 谢柳娟, 等. 基于裂解色谱质谱技术的琼东南盆地渐新统源岩生烃潜力评价[J]. 石油学报, 2010, 31(4): 579−585. doi: 10.7623/syxb201004010Sun Yongge, Yang Zhongwei, Xie Liujuan, et al. Pyrolysis-gas chromatography-mass spectrography as a method to evaluate hydrocarbon generation potential of Oligocene source rocks from Qiongdongnan Basin, offshore South China Sea[J]. Acta Petrolei Sinica, 2010, 31(4): 579−585. doi: 10.7623/syxb201004010 [15] 黄保家, 李绪深, 王振峰, 等. 琼东南盆地深水区烃源岩地球化学特征与天然气潜力[J]. 中国海上油气, 2012, 24(4): 1−7. doi: 10.3969/j.issn.1673-1506.2012.04.001Huang Baojia, Li Xushen, Wang Zhenfeng, et al. Source rock geochemistry and gas potential in the deep water area, Qiongdongnan Basin[J]. China Offshore Oil and Gas, 2012, 24(4): 1−7. doi: 10.3969/j.issn.1673-1506.2012.04.001 [16] 何仕斌, 张功成, 米立军, 等. 南海北部大陆边缘盆地深水区储层类型及沉积演化[J]. 石油学报, 2007, 28(5): 51−56. doi: 10.3321/j.issn:0253-2697.2007.05.009He Shibin, Zhang Gongcheng, Mi Lijun, et al. Reservoir type and sedimentary evolution in the continental margin deepwater area of the northern South China Sea[J]. Acta Petrolei Sinica, 2007, 28(5): 51−56. doi: 10.3321/j.issn:0253-2697.2007.05.009 [17] 王英民, 徐强, 李冬, 等. 南海西北部晚中新世的红河海底扇[J]. 科学通报, 2011, 56(14): 1488−1494. doi: 10.1007/s11434-011-4441-zWang Yingmin, Xu Qiang, Li Dong, et al. Late Miocene Red River submarine fan, northwestern South China Sea[J]. Chinese Science Bulletin, 2011, 56(14): 1488−1494. doi: 10.1007/s11434-011-4441-z [18] 张迎朝, 徐新德, 甘军, 等. 琼东南盆地深水大气田地质特征、成藏模式及勘探方向研究[J]. 地质学报, 2017, 91(7): 1620−1633. doi: 10.3969/j.issn.0001-5717.2017.07.013Zhang Yingzhao, Xu Xinde, Gan Jun, et al. Study on the geological characteristics, accumulation model and exploration direction of the giant deepwater gas field in the Qiongdongnan Basin[J]. Acta Geologica Sinica, 2017, 91(7): 1620−1633. doi: 10.3969/j.issn.0001-5717.2017.07.013 [19] Liu Xiaofeng, Zhang Daojun, Zhai Shikui, et al. A heavy mineral viewpoint on sediment provenance and environment in the Qiongdongnan Basin[J]. Acta Oceanologica Sinica, 2015, 34(4): 41−55. doi: 10.1007/s13131-015-0648-1 [20] 罗进华, 朱培民. 琼东南盆地陆坡区重力流沉积体系超高精度解析[J]. 地质科技情报, 2019, 38(6): 42−50.Luo Jinhua, Zhu Peimin. Gravity induced deposits in the continental slope of Qiongdongnan Basin based on ultrahigh resolution AUV data[J]. Geological Science and Technology Information, 2019, 38(6): 42−50. [21] 李纯泉, 陈红汉, 张树林. 琼东南盆地压力场及其演化特征[J]. 新疆石油地质, 2002, 23(5): 389−391. doi: 10.3969/j.issn.1001-3873.2002.05.009Li Chunquan, Chen Honghan, Zhang Shulin. Pressure field and its evolutional characteristics in Qiongdongnan Basin[J]. Xinjiang Petroleum Geology, 2002, 23(5): 389−391. doi: 10.3969/j.issn.1001-3873.2002.05.009 [22] 杨金海, 杨希冰, 周杰, 等. 琼东南盆地深水区松南—宝岛凹陷反转构造带发育特征及油气地质意义[J]. 海洋学报, 2019, 41(5): 97−106.Yang Jinhai, Yang Xibing, Zhou Jie, et al. Characteristics of inversion structure belts and their hydrocarbon geological significance in the Songnan-Baodao Sag in deep water area of the Qiongdongnan Basin[J]. Haiyang Xuebao, 2019, 41(5): 97−106. [23] 姚哲, 王振峰, 左倩媚, 等. 琼东南盆地中央峡谷深水大气田形成关键要素与勘探前景[J]. 石油学报, 2015, 36(11): 1358−1366. doi: 10.7623/syxb201511005Yao Zhe, Wang Zhenfeng, Zuo Qianmei, et al. Critical factors for the formation of large-scale deepwater gas field in central canyon system of Qiongdongnan Basin and its exploration potential[J]. Acta Petrolei Sinica, 2015, 36(11): 1358−1366. doi: 10.7623/syxb201511005 [24] Løseth H, Gading M, Wensaas L. Hydrocarbon leakage interpreted on seismic data[J]. Marine and Petroleum Geology, 2009, 26(7): 1304−1319. doi: 10.1016/j.marpetgeo.2008.09.008 [25] Su Ming, Sha Zhibin, Zhang Cuimei, et al. Types, characteristics and significances of migrating pathways of gas-bearing fluids in the Shenhu Area, northern continental slope of the South China Sea[J]. Acta Geologica Sinica, 2017, 91(1): 219−231. doi: 10.1111/1755-6724.13073 [26] 杨胜雄, 梁金强, 陆敬安, 等. 南海北部神狐海域天然气水合物成藏特征及主控因素新认识[J]. 地学前缘, 2017, 24(4): 1−14.Yang Shengxiong, Liang Jinqiang, Lu Jing’an, et al. New understandings on the characteristics and controlling factors of gas hydrate reservoirs in the Shenhu area on the northern slope of the South China Sea[J]. Earth Science Frontiers, 2017, 24(4): 1−14. [27] Guliev I S. A review of mud volcanism[R]. Azerbaijan: Azerbaijan Academy of Sciences Institute of Geology, 1992: 65. [28] Graue K. Mud volcanoes in deepwater Nigeria[J]. Marine and Petroleum Geology, 2000, 17(8): 959−974. doi: 10.1016/S0264-8172(00)00016-7 [29] Stewart S A, Davies R J. Structure and emplacement of mud volcano systems in the South Caspian Basin[J]. AAPG Bulletin, 2006, 90(5): 771−786. doi: 10.1306/11220505045 [30] Arntsen B, Wensaas L, Løseth H, et al. Seismic modeling of gas chimneys[J]. Geophysics, 2007, 72(5): SM225−SM259. [31] Løseth H, Wensaas L, Arntsen B. Gas chimneys-indication of fractured cap rocks[C]//Extended Abstract AAPG Hedberg Conference. Vancou-ver, BC, Canada: AAPG, 2002. [32] Mandl G, Harkness R M. Hydrocarbon migration by hydraulic fracturing[C]//Jones M E, Preston R M F. Deformation of Sediments and Sedimentary Rocks. London: Geological Society of Special Publication, 1987, 29: 39-53. [33] Vernik L. Hydrocarbon-generation-induced microcracking of source rocks[J]. Geophysics, 1994, 59(4): 555−563. doi: 10.1190/1.1443616 [34] 郝芳, 李思田, 龚再升, 等. 莺歌海盆地底辟发育机理与流体幕式充注[J]. 中国科学: 地球科学, 2001, 31(6): 471−476.Hao Fang, Li Sitian, Gong Zaisheng, et al. Mechanism of diapirism and episodic fluid injections in the Yinggehai Basin[J]. Science in China Series D: Earth Sciences, 2001, 31(6): 471−476. [35] 何家雄, 夏斌, 张树林, 等. 莺歌海盆地泥底辟成因、展布特征及其与天然气运聚成藏关系[J]. 中国地质, 2006, 33(6): 1336−1344. doi: 10.3969/j.issn.1000-3657.2006.06.017He Jiaxiong, Xia Bin, Zhang Shulin, et al. Origin and distribution of mud diapirs in the Yinggehai Basin and their relation to the migration and accumulation of natural gas[J]. Geology in China, 2006, 33(6): 1336−1344. doi: 10.3969/j.issn.1000-3657.2006.06.017 [36] 于俊峰, 侯静娴. 莺歌海盆地底辟构造演化非同期性[J]. 广东石油化工学院学报, 2018, 28(1): 1−5. doi: 10.3969/j.issn.2095-2562.2018.01.001Yu Junfeng, Hou Jingxian. Non-synchronism of diapir tectonic evolution in Yinggehai Basin[J]. Journal of Guangdong University of Petrochemical Technology, 2018, 28(1): 1−5. doi: 10.3969/j.issn.2095-2562.2018.01.001 [37] 王振峰, 裴健翔. 莺歌海盆地中深层黄流组高压气藏形成新模式——DF14井钻获强超压优质高产天然气层的意义[J]. 中国海上油气, 2011, 23(4): 213−217. doi: 10.3969/j.issn.1673-1506.2011.04.001Wang Zhenfeng, Pei Jianxiang. A new accumulation model of high pressure gas in Huangliu formation of the middle-deep interval in Yinggehai Basin: The significance of discovering a good-quality gas pay with overpressure and high production in Well DF14[J]. China Offshore Oil and Gas, 2011, 23(4): 213−217. doi: 10.3969/j.issn.1673-1506.2011.04.001 [38] Yu Junfeng, Pei Jianxiang, Xu Jing. New insight into oil and gas exploration in Miocene and late Oligocene strata in Qiongdongnan Basin[J]. Journal of Earth Science, 2009, 20(5): 811−823. doi: 10.1007/s12583-009-0055-7 [39] Bull S, Cartwright J, Huuse M. A subsurface evacuation model for submarine slope failure[J]. Basin Research, 2009, 21(4): 433−443. doi: 10.1111/j.1365-2117.2008.00390.x [40] 于俊峰. 琼东南盆地长昌凹陷三维地震区中新统微观构造成因探讨[J]. 海相油气地质, 2011, 16(2): 66−72. doi: 10.3969/j.issn.1672-9854.2011.02.010Yu Junfeng. Genesis of Miocene microtectonics in 3-dimensional seismic block in Changchang Depression, Qiongdongnan Basin[J]. Marine Origin Petroleum Geology, 2011, 16(2): 66−72. doi: 10.3969/j.issn.1672-9854.2011.02.010 [41] 宋瑞有, 于俊峰, 韩光明, 等. 莺歌海盆地底辟流体动态平衡体系及气藏模式[J]. 新疆石油地质, 2016, 37(5): 530−536.Song Ruiyou, Yu Junfeng, Han Guangming, et al. Diapiric hydro-dynamic balance system and gas reservoir model in Yinggehai Basin[J]. Xinjiang Petroleum Geology, 2016, 37(5): 530−536. [42] Løseth H, Wensaas L, Arntsen B. 1000 m long gas blow-out pipes[C]//Proceedings of the 63rd EAGE Conference & Exhibition. Amsterdam: EAGE, 2001.