Study on the coupling relationship between the development of Ulva prolifera green tide and nutrients in the southern Yellow Sea in 2018
-
摘要: 根据2018年4月(春季,绿潮前期)和7月(夏季,绿潮后期) 南黄海营养盐、温度、盐度等水文参数及每日绿潮卫星监测数据,深入分析2018年绿潮的发展规律与营养盐结构特征之间的关系。结果表明:4月25在江苏南通外海首次发现浒苔绿潮,8月中旬在山东半岛近海消亡,其发展区域集中在122°E以西近海,且快速增殖阶段处在35°N以南江苏近海。各组分的营养盐浓度受沿岸径流、冷水团及生物作用等因素影响,均呈现江苏近海高外海以及北部低的特征。对比绿潮发展和营养盐分布呈现3个明显的绿潮−营养盐特征区域:高营养盐−绿潮快速发展区域(35°N以南,122°E 以西,江苏近海);低营养盐−绿潮消亡区域(35°N以北,122°E 以西,山东半岛外海域)及122°E以东外海无绿潮区域。不同特征区营养盐变化表明,江苏近岸较高的营养盐含量(
${\rm{NO}}_3^- $ -N>6.5 μmol/L,${\rm{PO}}_4^{3-} $ -P>0.27 μmol/L)和丰富来源是浒苔萌发和绿潮快速发展的重要物质基础,为绿潮发展提供了主要的氮、磷生源要素。北部山东半岛南外海较低的营养盐水平(7月,DIN<2 μmol/L,${\rm{PO}}_4^{3-} $ -P<0.03 μmol/L)是限制绿潮继续发展的重要因素。Abstract: Based on the nutrients and hydrological environment parameters collected during April (spring, before green tides) and July (summer, later stage of green tides) cruise, and the daily satellite monitoring data of green tides in the southern Yellow Sea (SYS) in 2018, we studied the spatio-temporal variations of the floating Ulva prolifera green tide and it's relationship with nutrients. The results showed that small scales of floating U. prolifera patches were firstly observed in the coastal area of Nantong, Jiangsu Province on April 25, and decomposed and disappeared in the coast of Shandong Peninsula in the mid-August. The trajectory area of floating green tides was mainly in the western of 122°E in the SYS, and the rapid growth phase of green tides existed in the south of 35°N, nearshore area of Jiangsu Province. Nutrients showed regional characteristics of high values in the coastal area of Jiangsu Province and low values in the offshore of the northern and eastern parts of the study area, which influenced by the Yellow Sea Cold Water Mass, freshwater influx, biological uptake and utilization, and other factors. Compared with the development trend of green tides and distributions of nutrients, there were three distinct characteristic zones with different nutrients conditions and stages of green tides: the coastal area of Jiangsu Province (south of 35°N, east of 122°E), characterized with high-value nutrients and rapid growth of green tides; the offshore area of Shandong Peninsula (north of 35°N, east of 122°E), characterized with low nutrients and dissipation phase of green tides; the east sea of 122°E, characterized with no green tides. The nutrients variations in different characteristic zones indicated that rich and sufficient nutrients (${\rm{NO}}_3^- $ -N>6.5 μmol/L,${\rm {PO}}_4^{3-} $ -P>0.27 μmol/L), and continuous nutrients inputs were the main factors contributing the germination and rapid growth of U. prolifera, and provided main N, P elements for the development of green tides in the coastal area of Jiangsu Province. The poor nutrients (DIN<2 μmol/L,${\rm {PO}}_4^{3-} $ -P<0.03 μmol/L in summer) might be the limiting factor limiting the continuous development of green tides in the offshore ocean of the Shandong Peninsula.-
Key words:
- green tides /
- Ulva prolifera /
- nutrients /
- development phases /
- southern Yellow Sea /
- spatio-temporal variations
-
图 1 南黄海研究区域洋流系统(a)及站位设置(b, c)
1. 鲁北沿岸流;2. 黄海沿岸流和苏北沿岸流;3. 长江冲淡水−台湾暖流;4. 黄海暖流;5. 青岛冷水团(春季);6. 黄海冷水团(夏季、秋季);A. 苏北沿岸径流
Fig. 1 The current system (a) and sampling stations (b, c) in the study area of the southern Yellow Sea
1. Lubei Coastal Current; 2. Yellow Sea Coastal Current and Subei Coastal Current; 3. Changjiang Diluted Water and Taiwan Warm Current; 4. Yellow Sea Warm Current; 5. Qingdao Cold Water Mass (Spring); 6. Yellow Sea Cold Water Mass (Summer, Autumn); A. Subei Coastal Diluted Water
表 1 南黄海调查海域春、夏季不同水团中温度(T)、盐度(S)、营养盐浓度
Tab. 1 Salinity, temperature, nutrient concentrations in different water-masses of the study area in the southern Yellow Sea during spring and summer
2018年4月 整体 表层 中层 底层 沿岸水 冷水团 黄海暖流 特征 − − − − S<30 T<6.98℃ S>33 样品数/个 − 59 59 59 8 19 17 T/℃ 9.21±2.60 10.77±2.87 8.06±1.51 7.96±1.58 14.11±1.2 5.64±0.92 9.38±1.11 S 32.19±1.04 31.71±1.33 32.55±0.44 32.6±0.50 29.12±0.90 32.36±0.08 33.28±0.25 TSP/mg·L−1 70.42±85.14 85.14±89.78 51.87±74.19 70.46±90.06 106.75±17.12 17.99±2.54 32.15±27.61 ${\rm{NO}}_3^- $-N/μmol·L−1 7.61±8.75 10.48±11.8 4.72±3.71 5.75±3.94 33.77±10.59 1.16±1.18 5.91±1.41 ${\rm{NO}}_2^- $-N/μmol·L−1 0.14±0.10 0.14±0.09 0.15±0.10 0.15±0.11 0.20±0.04 0.07±0.05 0.22±0.11 ${\rm{NH}}_4^+ $-N/μmol·L−1 1.11±0.66 0.94±0.56 1.19±0.73 1.3±0.69 1.18±1.00 1.65±0.50 0.70±0.34 DIN/μmol·L−1 8.86±8.71 11.56±11.88 6.06±3.57 7.21±3.79 35.15±10.58 2.89±1.35 6.83±1.45 ${\rm {PO}}_4^{3-} $-P/μmol·L−1 0.30±0.18 0.25±0.17 0.32±0.17 0.35±0.19 0.47±0.17 0.12±0.10 0.47±0.10 ${\rm {SiO}}_3^{2-} $-Si/μmol·L−1 8.52±5.59 9.49±6.80 7.24±4.23 8.07±4.39 20.85±4.66 2.26±2.14 10.17±1.49 N/P 42.47±69.29 59.7±77.94 23.05±14.48 37.11±82.74 80.5±29.99 63.13±114.49 14.54±1.67 Si/N 1.13±0.62 1.13±0.81 1.17±0.46 1.08±0.36 0.61±0.09 0.70±0.45 1.54±0.32 Si/P 34.16±37.47 44.74±41.22 22.5±8.19 30.05±44.86 50.16±26.33 31.52±63.13 22.46±5.69 2018年7月 整体 表层 真光层 中层 底层 沿岸水 冷水团 特征 − − − − − S<30 T<14℃ 样品数/个 − 61 35 39 61 15 43 T/℃ 20.20±6.85 25.00±1.73 23.69±3.35 16.32±6.29 14.23±6.98 24.79±1.64 9.84±1.72 S 31.63±1.26 30.6±1.32 31.69±0.65 32.44±0.61 32.47±0.55 28.66±0.82 32.7±0.24 TSP/mg·L−1 27.46±24.99 38.56±37.13 19.76±8.88 19.88±8.23 25.32±12.53 70.98±47.07 19.39±4.15 ${\rm{NO}}_3^- $-N/μmol·L−1 4.85±5.29 6.18±6.87 3.02±3.93 3.88±3.86 5.67±3.62 15.18±6.03 4.37±3.08 ${\rm{NO}}_2^- $-N/μmol·L−1 0.39±0.47 0.37±0.34 0.51±0.62 0.46±0.57 0.46±0.54 0.45±0.32 0.13±0.15 ${\rm{NH}}_4^+ $-N/μmol·L−1 0.87±0.82 1.25±1.05 0.75±0.54 0.61±0.48 0.66±0.57 1.82±1.41 0.50±0.46 DIN/μmol·L−1 6.09±5.92 7.79±7.60 4.23±4.75 4.95±4.47 6.78±3.94 17.45±6.32 5.00±2.93 ${\rm {PO}}_4^{3-} $-P/μmol·L−1 0.19±0.21 0.13±0.17 0.10±0.13 0.21±0.19 0.36±0.23 0.31±0.23 0.37±0.23 ${\rm {SiO}}_3^{2-} $-Si/μmol·L−1 7.33±6.36 6.58±5.96 6.51±7.73 7.96±6.86 10.38±6.04 12.67±6.01 7.44±3.92 N/P 58.23±72.72 84.9±65.10 71.52±110.12 32.5±34.9 28.19±26.13 87.4±54.9 17.84±20.49 Si/N 2.30±3.40 1.91±2.43 3.85±6.23 1.95±1.01 1.62±0.44 0.74±0.38 1.75±0.74 Si/P 75.23±99.38 97.83±134.98 100.48±85.99 51.87±46.58 42.24±34.95 65.48±57.29 27.00±21.25 注:−表示无数据。 表 2 调查海域绿潮暴发前后浒苔漂移区域与非浒苔区域表层营养盐对比
Tab. 2 The variations of nutrients and hydrological parameters of surface layer in different development phases area of green tides
调查海域表层 浒苔绿潮漂移海域 122°E以西海域 35°N以南高营养盐区域 2018年4月 2018年7月 变化量/% 2018年4月 2018年7月 变化量/% 样品数/个 33 33 25 24 T/℃ 11.80±3.30 23.84±1.09 12.04/108 13.34±1.99 23.63±1.03 10.29/77 S 31.03±1.39 30.28±1.19 −0.75/2 30.61±1.35 30.01±1.26 −0.60/2 TSP/mg·L−1 125.04±100.12 60.66±41.23 −64.38/51 159.28±91.24 82.71±30.84 −76.57/48 ${\rm{NO}}_3^- $-N/μmol·L−1 14.52±14.19 8.46±7.38 −6.06/42 18.98±13.51 11.25±6.75 −7.73/41 ${\rm{NO}}_2^- $-N/μmol·L−1 0.15±0.09 0.38±0.27 0.23/153 0.18±0.08 0.46±0.25 0.28/156 ${\rm{NH}}_4^+ $-N/μmol·L−1 1.05±0.64 1.43±0.97 0.38/36 1.00±0.69 1.72±0.97 0.72/72 DIN/μmol·L−1 15.72±14.23 10.27±7.78 −5.45/37 20.16±13.60 13.43±6.74 −6.73/33 ${\rm {PO}}_4^{3-} $-P/μmol·L−1 0.22±0.19 0.17±0.20 −0.05/23 0.28±0.19 0.23±0.21 −0.05/18 N/P 81.9±90.18 97.91±60.73 16/19 92.64±99.58 91.17±55.59 −1.47/2 调查海域表层 浒苔绿潮漂移海域 非浒苔漂移海域 35°N以北低营养盐区域 122°E以东外海 2018年4月 2018年7月 变化量/% 2018年4月 2018年7月 变化量/% 样品数/个 8 9 27 29 T/℃ 7.00±1.10 24.41±1.09 17.41/249 9.58±1.52 26.28±1.34 16.7/174 S 32.34±0.07 31.00±0.48 −1.34/4 32.56±0.48 31.00±1.37 −1.56/5 TSP/mg·L−1 18.03±2.31 14.13±2.54 −3.9/22 38.44±38.49 18.08±13.89 −20.36/53 ${\rm{NO}}_3^- $-N/μmol·L−1 0.59±1.11 1.01±1.11 0.42/71 5.37±3.99 3.72±5.18 −1.65/31 ${\rm{NO}}_2^- $-N/μmol·L−1 0.04±0.03 0.17±0.21 0.13/325 0.13±0.09 0.38±0.42 0.25/192 ${\rm{NH}}_4^+ $-N/μmol·L−1 1.20±0.46 0.67±0.39 −0.53/44 0.79±0.41 1.05±1.11 0.26/33 DIN/μmol·L−1 1.83±1.15 1.83±1.24 0/0 6.28±3.94 5.12±6.38 −1.16/18 ${\rm {PO}}_4^{3-} $-P/μmol·L−1 0.05±0.01 0.02±0.01 −0.03/60 0.29±0.14 0.08±0.10 −0.21/72 N/P 48.34±38.44 115.9±73.25 67.56/140 33.78±47.56 68.7±66.74 34.92/103 -
[1] Zhou Mingjiang, Liu Dongyan, Anderson D M, et al. Introduction to the special issue on green tides in the Yellow Sea[J]. Estuarine, Coastal and Shelf Science, 2015, 163: 3−8. doi: 10.1016/j.ecss.2015.06.023 [2] Hiraoka M, Ohno M, Kawaguchi S, et al. Crossing test among floating Ulva thalli forming ‘green tide’ in Japan[J]. Hydrobiologia, 2004, 512(1): 239−245. [3] Charlier R H, Morand P, Finkl C W, et al. Green tides on the Brittany coasts[J]. Environmental Research, Engineering and Management, 2007, 3(41): 52−59. [4] Zhao Jin, Jiang Peng, Liu Zhengyi, et al. The Yellow Sea green tides were dominated by one species, Ulva (Enteromorpha) prolifera, from 2007 to 2011[J]. Chinese Science Bulletin, 2013, 58(19): 2298−2302. doi: 10.1007/s11434-012-5441-3 [5] 王宗灵, 傅明珠, 肖洁, 等. 黄海浒苔绿潮研究进展[J]. 海洋学报, 2018, 40(2): 1−13.Wang Zongling, Fu Mingzhu, Xiao Jie, et al. Progress on the study of the Yellow Sea green tides caused by Ulva prolifera[J]. Haiyang Xuebao, 2018, 40(2): 1−13. [6] Gao Shan, Chen Xiaoyuan, Yi Qianqian, et al. A strategy for the proliferation of Ulva prolifera, main causative species of green tides, with formation of sporangia by fragmentation[J]. PLoS One, 2010, 5(1): e8571. doi: 10.1371/journal.pone.0008571 [7] Zhao Xiaohui, Cui Jianjun, Zhang Jianheng, et al. Reproductive strategy of the floating alga Ulva prolifera in blooms in the Yellow Sea based on a combination of zoid and chromosome analysis[J]. Marine Pollution Bulletin, 2019, 146: 584−590. doi: 10.1016/j.marpolbul.2019.07.018 [8] 卢健, 张启龙, 李安春. 苏北沿岸流对浒苔暴发及漂移过程的影响[J]. 海洋科学, 2014, 38(10): 83−89. doi: 10.11759/hykx20130128001Lu Jian, Zhang Qilong, Li Anchun. The influence of Subei coastal current on the outbreak and drift of Enteromorpha prolifera[J]. Marine Sciences, 2014, 38(10): 83−89. doi: 10.11759/hykx20130128001 [9] Strokal M, Kroeze C, Wang Mengru, et al. Reducing future river export of nutrients to coastal waters of China in optimistic scenarios[J]. Science of the Total Environment, 2017, 579: 517−528. doi: 10.1016/j.scitotenv.2016.11.065 [10] Liang Zhongyao, Wu Sifeng, Chen Huili, et al. A probabilistic method to enhance understanding of nutrient limitation dynamics of phytoplankton[J]. Ecological Modelling, 2018, 368: 404−410. doi: 10.1016/j.ecolmodel.2017.11.004 [11] Anderson D M, Cembella A D, Hallegraeff G M. Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management[J]. Annual Review of Marine Science, 2012, 4: 143−176. doi: 10.1146/annurev-marine-120308-081121 [12] Wei Qinsheng, Wang Baodong, Yao Qingzhen, et al. Physical-biogeochemical interactions and potential effects on phytoplankton and Ulva prolifera in the coastal waters off Qingdao (Yellow Sea, China)[J]. Acta Oceanologica Sinica, 2018, 38(2): 11−23. [13] Shi Xiaoyong, Qi Mingyan, Tang Hongjie, et al. Spatial and temporal nutrient variations in the Yellow Sea and their effects on Ulva prolifera blooms[J]. Estuarine, Coastal and Shelf Science, 2015, 163: 36−43. doi: 10.1016/j.ecss.2015.02.007 [14] Chen Lei, Li Chaolun, Zhou Konglin, et al. Effects of nutrient limitations on three species of zooplankton[J]. Acta Oceanologica Sinica, 2018, 37(4): 58−68. doi: 10.1007/s13131-017-1122-z [15] Li Hongmei, Zhang Yongyu, Chen Jing, et al. Nitrogen uptake and assimilation preferences of the main green tide alga Ulva prolifera in the Yellow Sea, China[J]. Journal of Applied Phycology, 2018, 31(1): 625−635. [16] 李瑞香, 吴晓文, 韦钦胜, 等. 不同营养盐条件下浒苔的生长[J]. 海洋科学进展, 2009, 27(2): 211−216. doi: 10.3969/j.issn.1671-6647.2009.02.011Li Ruixiang, Wu Xiaowen, Wei Qinsheng, et al. Growth of Enteromorpha prolifera under different nutrient conditions[J]. Advances in Marine Science, 2009, 27(2): 211−216. doi: 10.3969/j.issn.1671-6647.2009.02.011 [17] Wang Baodong, Wang Xiulin, Zhan Run. Nutrient conditions in the Yellow Sea and the East China Sea[J]. Estuarine, Coastal and Shelf Science, 2003, 58(1): 127−136. doi: 10.1016/S0272-7714(03)00067-2 [18] Li Dongxue, Gao Zhiqiang, Song Debin, et al. Characteristics and influence of green tide drift and dissipation in Shandong Rongcheng coastal water based on remote sensing[J]. Estuarine, Coastal and Shelf Science, 2019, 227: 106335. doi: 10.1016/j.ecss.2019.106335 [19] Zhang Haibo, Su Rongguo, Shi Xiaoyong, et al. Role of nutrients in the development of floating green tides in the southern Yellow Sea, China, in 2017[J]. Marine Pollution Bulletin, 2020, 156: 111197. doi: 10.1016/j.marpolbul.2020.111197 [20] 祝陈坚. 海水分析化学实验[M]. 青岛: 中国海洋大学出版社, 2006.Zhu Chenjian. Experiment of Seawater Analytical Chemistry[M]. Qingdao: China Ocean University Press, 2006. [21] Xu Qing, Zhang Hongyuan, Cheng Yongcun. Multi-sensor monitoring of Ulva prolifera blooms in the Yellow Sea using different methods[J]. Frontiers of Earth Science, 2016, 10(2): 378−388. doi: 10.1007/s11707-015-0528-1 [22] Qi Lin, Hu Chuanmin, Xing Qianguo, et al. Long-term trend of Ulva prolifera blooms in the western Yellow Sea[J]. Harmful Algae, 2016, 58: 35−44. doi: 10.1016/j.hal.2016.07.004 [23] Sun Xiao, Wu Mengquan, Xing Qianguo, et al. Spatio-temporal patterns of Ulva prolifera blooms and the corresponding influence on chlorophyll-a concentration in the southern Yellow Sea, China[J]. Science of the Total Environment, 2018, 640-641: 807−820. doi: 10.1016/j.scitotenv.2018.05.378 [24] 自然资源部海洋预警监测司. 中国海洋灾害公报[R]. 北京: 自然资源部, 2008-2019.Marine Early Warning and Monitoring Division, Ministry of Natural Resources. Bulletin of China marine disaster[R]. Beijing: Ministry of Natural Resources, 2008−2019. [25] 吴孟泉, 郭浩, 张安定, 等. 2008年—2012年山东半岛海域浒苔时空分布特征研究[J]. 光谱学与光谱分析, 2014, 34(5): 1312−1318. doi: 10.3964/j.issn.1000-0593(2014)05-1312-07Wu Mengquan, Guo Hao, Zhang Anding, et al. Research on the characteristics of Ulva prolifera in Shandong Peninsula during 2008−2012 based on MODIS data[J]. Spectroscopy and Spectral Analysis, 2014, 34(5): 1312−1318. doi: 10.3964/j.issn.1000-0593(2014)05-1312-07 [26] Zhang Jianheng, Huo Yuanzi, Zhang Zhenglong, et al. Variations of morphology and photosynthetic performances of Ulva prolifera during the whole green tide blooming process in the Yellow Sea[J]. Marine Environmental Research, 2013, 92: 35−42. doi: 10.1016/j.marenvres.2013.08.009 [27] 丁月旻. 黄海浒苔绿潮中生源要素的迁移转化及对生态环境的影响[D]. 青岛: 中国科学院研究生院(海洋研究所), 2014.Ding Yuemin. Impacts of Ulva (Enteromorpha) prolifera in the green tide on the Yellow Sea ecological environment—implications from migration and transformation of biogenic elements[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2014. [28] 马洪瑞, 陈聚法, 崔毅, 等. 灌河和射阳河水质状况分析及主要污染物入海量估算[J]. 渔业科学进展, 2010, 31(3): 92−99. doi: 10.3969/j.issn.1000-7075.2010.03.013Ma Hongrui, Chen Jufa, Cui Yi, et al. Analysis of water quality and assessment of major pollutants input to the sea from the Guan River and Sheyang River[J]. Progress in Fishery Sciences, 2010, 31(3): 92−99. doi: 10.3969/j.issn.1000-7075.2010.03.013 [29] 靳姗姗, 孙俊川, 魏泽勋. 渤海沿岸流季节变化对青岛冷水团影响的初步分析[J]. 海洋科学进展, 2017, 35(3): 317−328. doi: 10.3969/j.issn.1671-6647.2017.03.002Jin Shanshan, Sun Junchuan, Wei Zexun. Effects of the seasonal variability of the Bohai Sea coastal current on the Qingdao Cold Water Mass[J]. Advances in Marine Science, 2017, 35(3): 317−328. doi: 10.3969/j.issn.1671-6647.2017.03.002 [30] 赵胜, 于非, 刁新源, 等. 黄海暖流的路径及机制研究[J]. 海洋科学, 2011, 35(11): 73−80.Zhao Sheng, Yu Fei, Diao Xinyuan, et al. The path and mechanism of the Yellow Sea Warm Current[J]. Marine Sciences, 2011, 35(11): 73−80. [31] Zhang Qilong, Liu Xingquan, Cheng Minghua, et al. Characteristics and formation causes of Qingdao Cold Water Mass[J]. Chinese Journal of Oceanology and Limnology, 2002, 20(4): 303−308. doi: 10.1007/BF02847919 [32] Fu Mingzhu, Sun Ping, Wang Zongling, et al. Structure, characteristics and possible formation mechanisms of the subsurface chlorophyll maximum in the Yellow Sea Cold Water Mass[J]. Continental Shelf Research, 2018, 165: 93−105. doi: 10.1016/j.csr.2018.07.007 [33] Wang Changyou, Su Rongguo, Guo Laodong, et al. Nutrient absorption by Ulva prolifera and the growth mechanism leading to green-tides[J]. Estuarine, Coastal and Shelf Science, 2019, 227: 106329. doi: 10.1016/j.ecss.2019.106329 [34] 吴晓文, 李瑞香, 徐宗军, 等. 营养盐对浒苔生长影响的围隔生态实验[J]. 海洋科学进展, 2010, 28(4): 538−544. doi: 10.3969/j.issn.1671-6647.2010.04.015Wu Xiaowen, Li Ruixiang, Xu Zongjun, et al. Mesocosm experiments of nutrient effects on enteromorpha prolifera growth[J]. Advances in Marine Science, 2010, 28(4): 538−544. doi: 10.3969/j.issn.1671-6647.2010.04.015 [35] Redfield A C. The influence of organisms on the composition of sea-water[J]. Sea, 1963, 40(6): 640−644. [36] Zheng Mingshan, Lin Jiajia, Zhou Shidan, et al. Salinity mediates the effects of nitrogen enrichment on the growth, photosynthesis, and biochemical composition of Ulva prolifera[J]. Environmental Science and Pollution Research, 2019, 26(19): 19982−19990. doi: 10.1007/s11356-019-05364-y [37] Li Hongmei, Zhang Yongyu, Han Xiurong, et al. Growth responses of Ulva prolifera to inorganic and organic nutrients: Implications for macroalgal blooms in the southern Yellow Sea, China[J]. Scientific Reports, 2016, 6: 26498. doi: 10.1038/srep26498 [38] 齐明燕. 浒苔(Ulva prolifera)及缘管浒苔(Ulva linza)对不同形态氮营养盐的吸收利用研究[D]. 青岛: 中国海洋大学, 2015.Qi Mingyan. Study on the uptake of different nitrogen by Ulva prolifera and Ulva linz[D]. Qingdao: Ocean University of China, 2015. [39] 李俭平. 浒苔对氮营养盐的响应及其氮营养盐吸收动力学和生理生态研究[D]. 青岛: 中国科学院研究生院(海洋研究所), 2011.Li Jianping. The response to nitrogen nutrient, and the uptake kinetics mechanism of nitrogen and ecophysiological analysis of Enteromorpha prolifera[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2011. [40] 商兆堂, 蒋名淑, 濮梅娟. 江苏紫菜养殖概况和气候适宜性分析[J]. 安徽农业科学, 2008, 36(13): 5315−5319. doi: 10.3969/j.issn.0517-6611.2008.13.053Shang Zhaotang, Jiang Mingshu, Pu Meijuan. Analysis of the general situations of laver culture in Jiangsu Province and its climatic suitability[J]. Journal of Anhui Agricultural Sciences, 2008, 36(13): 5315−5319. doi: 10.3969/j.issn.0517-6611.2008.13.053 [41] Qi Jianhua, Shi Jihui, Gao Huiwang, et al. Atmospheric dry and wet deposition of nitrogen species and its implication for primary productivity in coastal region of the Yellow Sea, China[J]. Atmospheric Environment, 2013, 81: 600−608. doi: 10.1016/j.atmosenv.2013.08.022 [42] Li Hongmei, Zhang Yongyu, Tang Hongjie, et al. Spatiotemporal variations of inorganic nutrients along the Jiangsu coast, China, and the occurrence of macroalgal blooms (green tides) in the southern Yellow Sea[J]. Harmful Algae, 2017, 63: 164−172. doi: 10.1016/j.hal.2017.02.006 [43] Wei Qinsheng, Wang Baodong, Yao Qingzhen, et al. Hydro-biogeochemical processes and their implications for Ulva prolifera blooms and expansion in the world’s largest green tide occurrence region (Yellow Sea, China)[J]. Science of the Total Environment, 2018, 645: 257−266. doi: 10.1016/j.scitotenv.2018.07.067 [44] 胡劲召, 齐丹, 徐功娣. 浒苔对富营养化海水中氮磷去除效果的研究[J]. 海南热带海洋学院学报, 2017, 24(5): 27−30, 41.Hu Jinzhao, Qi Dan, Xu Gongdi. Enteromorpha's N-P removal efficiency in the eutrophicated seawater[J]. Journal of Hainan Tropical Ocean University, 2017, 24(5): 27−30, 41. [45] 张艾芹, 江辉煌, 顾正平, 等. 江苏近岸海域表层海水中营养盐组成、分布及季节变化特征[J]. 海洋湖沼通报, 2018(2): 49−59.Zhang Aiqin, Jiang Huihuang, Gu Zhengping, et al. Composition, distribution and seasonal variation of surface seawater nutrients in Jiangsu coastal waters[J]. Transactions of Oceanology and Limnology, 2018(2): 49−59.