留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

渤海海峡沉积物输运的参数化计算

齐富康 边昌伟 徐景平

齐富康,边昌伟,徐景平. 渤海海峡沉积物输运的参数化计算[J]. 海洋学报,2020,42(3):83–96,doi:10.3969/j.issn.0253−4193.2020.03.008
引用本文: 齐富康,边昌伟,徐景平. 渤海海峡沉积物输运的参数化计算[J]. 海洋学报,2020,42(3):83–96,doi:10.3969/j.issn.0253−4193.2020.03.008
Qi Fukang,Bian Changwei,Xu Jingping. Parameterization of sediment transport in the Bohai Strait[J]. Haiyang Xuebao,2020, 42(3):83–96,doi:10.3969/j.issn.0253−4193.2020.03.008
Citation: Qi Fukang,Bian Changwei,Xu Jingping. Parameterization of sediment transport in the Bohai Strait[J]. Haiyang Xuebao,2020, 42(3):83–96,doi:10.3969/j.issn.0253−4193.2020.03.008

渤海海峡沉积物输运的参数化计算

doi: 10.3969/j.issn.0253-4193.2020.03.008
基金项目: 国家自然科学基金(41530966,41476070)。
详细信息
    作者简介:

    齐富康(1994-),男,山东省临邑县人,主要从事海洋沉积动力学研究。E-mail: qiqiqi789456@163.com

    通讯作者:

    徐景平,男,教授,主要从事海洋沉积动力学研究。E-mail: xujp@sustc.edu.cn

  • 中图分类号: P736.21

Parameterization of sediment transport in the Bohai Strait

  • 摘要: 本文以2018年冬季渤海海峡两个站位的定点连续观测数据为基础,使用一维参数化方案,计算了观测站位底边界层内的水平悬浮物输运通量以及推移质输运量。在参数化方案中,简化的一维对流扩散方程被用于计算底边界层内的垂向悬浮物浓度。为了验证参数化方案的可靠性,本文基于观测数据对比了两种底剪切应力计算模型、四种临界起动剪切应力计算方法和两种一维对流扩散方程解法。对比结果表明:(1)不同模型计算的底剪切应力结果相近;(2)临界起动剪切应力受到颗粒间黏性作用的影响;(3)一维对流扩散方程的求解过程需要考虑沉积物浓度的分层效应和不同粒级颗粒临界起动剪切应力的差异。基于上述对比结果确定的最优参数化方案,进一步计算了观测站位的沉积物输运量:(1)在有再悬浮的时段,距底5 m内的水平悬浮物通量占全水深悬浮物通量的比例(T01站约为21%,T02站约为17%)显著高于相同层位水通量的占比;(2)依据参数化方案估算的冬季平均的悬浮物通量比忽略底边界层悬浮物浓度垂向变化的传统方法结果高约16%;(3)推移质输运量比悬移质输运量约低两个数量级。
  • 图  1  观测站位(a)及其表层样的粒度频率分布(b,c)

    本文将砂定义为粒径大于62.5 μm的颗粒,粉砂定义为粒径8~62.5 μm的颗粒,黏土定义为粒径小于8 μm的颗粒

    Fig.  1  Observation stations (a) and particle size frequency distribution of bed sediments (b,c)

    The sand fraction is defined as the particles with a diameter larger than 62.5 μm, the silt fraction is defined as the particles with a diameter between 8 μm and 62.5 μm, the clay fraction is defined as the particles with a diameter smaller than 8 μm

    图  2  ADCP回声强度反演的悬浮体浓度(SSCi)与抽滤实验得到的悬浮体浓度(SSCp)拟合

    Fig.  2  Linear fitting equations between suspended sediment concentration estimated from ADCP echo intensity (SSCi) and suspended sediment concentration measured from pumping experiment (SSCp)

    图  3  Soulsby[8]和Van Rijn[17]模型计算底剪切应力的对比

    a. 浪致(τw)和流致(τc)底剪切应力; b. 浪−流合致底剪切应力

    Fig.  3  Comparison of bed shear stress calculated by Van Rijn’s[17] and Soulsby’s[8] models

    a. Wave-related bed shear stress (τw) and current-related bed shear stress (τc); b. bed shear stress beneath combined waves and currents

    图  4  T01站8种粒径组分不同临界启动剪切应力(τcr)计算方法的结果对比

    蓝色为基于公式(6)校正系数ξ1计算的τcr;青色为基于公式(7)校正系数ξ2计算的τcr;黄色为基于公式(5)(考虑颗粒间的黏性作用)的计算结果;红色为假设颗粒间无黏性的计算结果

    Fig.  4  Comparison of the results of different critical bed-shear stress (τcr) calculations for 8 particle size fractions at T01 Station

    Blue bar represents τcr calculated basing on correction factor ξ1 calculated by Eq. (6); cyan bar represents τcr calculated basing on correction factor ξ2 calculated by Eq. (7); yellow bar represents the results of Eq. (5) where cohesive effects are related; red bar represents the results of assuming no clay coating effects between particles

    图  5  T01和T02站在不同时刻的再悬浮浓度剖面与观测浓度剖面的对比

    t表示时刻。红色线表示中值粒径代入考虑分层效应的简化平流扩散方程的结果;黑色线表示不同粒级颗粒分别代入考虑分层效应的简化平流扩散方程的结果;蓝色线表示中值粒径带入Rouse剖面的结果;粉红色线表示不同粒级颗粒分别带入Rouse剖面的结果;绿色圆圈表示ADCP声学信号反演的SSC

    Fig.  5  Comparison between modeled SSC profile and measured SSC profile at observation stations T01 and T02 at different time

    t represents time. Red line represents the result of simplified advection-diffusion equation involving stratification effects under median diameter; black line represents the result of simplified advection-diffusion equation involving stratification effects under graded particle diameters; blue line represents the result of Rouse profile under median diameter; pink line represents the result of Rouse profile under graded particle diameters; green circles represents SSC by ADCP backscatter inversion

    图  6  观测站位T01和T02的风速和距底5 m的流速

    黑色箭头表示风速,红色箭头表示流速。箭头的长度和方向分别表示流或风的大小和方向。S1表示大潮阶段,S2表示大风阶段(阴影部分),S3表示小潮(伴随短时大风)阶段

    Fig.  6  Wind speed and current velocity at 5 MAB at observation stations T01 and T02

    Black arrows represent wind speed and red arrows represent current velocity. The length and the direction of the arrow indicates the magnitude and the direction of current or wind respectively. S1 represents the stage of spring tides, S2 represents the stage of strong winds (the dash area) and S3 represents the stage of neap tides with short term winds

    图  7  T01和T02站位时间序列的数据

    a, e. 距底5 m的流速大小和ADCP观测的水位;b, f. 有效波高(Hs)、波周期(T)、波浪轨道流速(Uw);c, g. 浪-流合致有效底剪切应力(τcw')、8 μm颗粒的临界启动剪切应力(τcr)、8 μm颗粒在距底5 m的扩散系数(εs);d, h. 距底5 m的模拟SSC和观测SSC

    Fig.  7  Time series data of T01 and T02 stations

    a, e. current velocity at 5 m above bottom and water level observed by ADCP; b, f. significant wave height (Hs), wave period (T) and wave orbital velocity (Uw); c, g. effective bed shear stress combined currents and waves (τcw'), critical bed-shear stress (τcr) for particle size of 8 μm and mixing coefficient (εs) for particle size of 8 μm at 5 m above bottom; d, h. modeled and measured SSC at 5 m above bottom

    图  8  比较参数化计算底边界层(BBL)SSC与用定值代替底边界层SSC这两种情况下,底边界层时间序列SSF计算结果的差异

    SSF_1h1表示使用选取的最优参数化方案计算的底边界层SSF。SSF_2h1表示把底边层的SSC视为定值,计算的底边界层SSF。SSFh表示以SSF_1h1为底边界层通量计算的全水深SSF。SSF_1h1/SSFh表示SSF_1h1占SSFh的比例

    Fig.  8  The differences of the calculation results of time-series SSF in BBL under the comparison between SSC calculated by parameterization scheme and SSC in BBL replaced by the constant

    SSF_1h1 represents SSF in BBL calculated by optimal parameterization scheme. SSF_2h1 represents SSF in BBL regarding SSC as a constant. SSFh represents SSF in the whole water column regarding SSF_1h1 as SSF in BBL. SSF_1h1/SSFh represents the proportion of SSF_1h1 in SSFh

    表  1  两个站位基本信息和现场观测使用的仪器

    Tab.  1  The basic information of two stations and instruments used during in-situ investigation

    站位平均水深/m纬度经度观测开始日期观测结束日期观测平台搭载仪器
    T0130.938.10°N121.20°E2018年1月6日2018年1月13日锚系、底基三脚架、船基吊放四脚架ADCP,CTD,沉积物捕获器,LISST
    T0251.238.41°N121.38°E2018年1月2日2018年1月12日锚系、海床基、船基吊放四脚架ADCP,CTD,CT,TU,沉积物捕获器,LISST
    下载: 导出CSV

    表  2  T01和T02站海底沉积物组分划分

    Tab.  2  Fractions of bed sediments of stations T01 and T02

    组分编号12345678
    粒径/μm>250177~250125~17788~12562.5~8832~62.58~32<8
    T01站各组分百分含量/%13.9120.9821.4513.364.893.1111.2311.07
    T02站各组分百分含量/%17.899.6312.0611.348.7410.7712.7716.80
    下载: 导出CSV

    表  3  T01和T02站平均悬浮物通量(SSF)和推移质通量分析对比

    Tab.  3  The comparison of mean SSF throughout the whole water column and bed-load transport

    站位阶段SSF/g·(m·s)−1方向/(°)推移质通量/g·(m·s)−1
    T01S123.103340.16
    S293.111450.41
    S37.683530.035
    T02S130.733480.22
    S214.002690.034
    S36.932340.018
    下载: 导出CSV
  • [1] Martin J M, Zhang J, Shi M C, et al. Actual flux of the Huanghe (Yellow River) sediment to the Western Pacific Ocean[J]. Netherlands Journal of Sea Research, 1993, 31(3): 243−254. doi: 10.1016/0077-7579(93)90025-N
    [2] 王桂芝, 高抒. 黄渤海水体交换、悬沙特征及其对渤海海峡沉积的影响[J]. 海洋通报, 2002, 21(1): 43−48. doi: 10.3969/j.issn.1001-6392.2002.01.007

    Wang Guizhi, Gao Shu. Characteristics of Yellow-Bohai Sea water exchange and suspended sediment: their effects on sedimentation in the Bohai Strait[J]. Marine Science Bulletin, 2002, 21(1): 43−48. doi: 10.3969/j.issn.1001-6392.2002.01.007
    [3] Yang Z S, Liu J P. A unique Yellow River−derived distal subaqueous delta in the Yellow Sea[J]. Marine Geology, 2007, 240(1/4): 169−176.
    [4] 蒋东辉, 高抒. 渤海海峡潮流底应力与沉积物分布的关系[J]. 沉积学报, 2002, 20(4): 663−667. doi: 10.3969/j.issn.1000-0550.2002.04.021

    Jiang Donghui, Gao Shu. Relationship between the tidally-induced near-bed shear stress and the distribution of surficial sediments in the Bohai Strait[J]. Acta Sedimentologica Sinica, 2002, 20(4): 663−667. doi: 10.3969/j.issn.1000-0550.2002.04.021
    [5] Bi Naishuang, Yang Zuosheng, Wang Houjie, et al. Seasonal variation of suspended-sediment transport through the southern Bohai Strait[J]. Estuarine, Coastal and Shelf Science, 2011, 93(3): 239−247. doi: 10.1016/j.ecss.2011.03.007
    [6] Wang Houjie, Wang Aimei, Bi Naishuang, et al. Seasonal distribution of suspended sediment in the Bohai Sea, China[J]. Continental Shelf Research, 2014, 90: 17−32. doi: 10.1016/j.csr.2014.03.006
    [7] Wang Yan, Li Rihui, Wen Zhenhe, et al. The summer spring-neap variation of the water thermohaline-turbidity structure and its dynamical mechanism in the southern Bohai Strait[J]. Continental Shelf Research, 2014, 90: 52−59. doi: 10.1016/j.csr.2014.04.004
    [8] Soulsby R L. Dynamics of Marine Sands: A Manual for Practical Applications[M]. London: Thomas Telford, 1997.
    [9] Jiang Wensheng, Pohlmann T, Sun Jun, et al. SPM transport in the Bohai Sea: field experiments and numerical modelling[J]. Journal of Marine Systems, 2004, 44(3/4): 175−188.
    [10] Qiao Lulu, Zhong Yi, Wang Nan, et al. Seasonal transportation and deposition of the suspended sediments in the Bohai Sea and Yellow Sea and the related mechanisms[J]. Ocean Dynamics, 2016, 66(5): 751−766. doi: 10.1007/s10236-016-0950-2
    [11] 李爱超, 乔璐璐, 万修全, 等. 渤海海峡悬浮体分布、通量及其季节变化[J]. 海洋与湖沼, 2016, 47(2): 310−318.

    Li Aichao, Qiao Lulu, Wang Xiuquan, et al. Distribution, flux and seasonal variation of suspended particulate matters in the Bohai Strait[J]. Oceanologia et Limnologia Sinica, 2016, 47(2): 310−318.
    [12] Wang Aimei, Wang Houjie, Bi Naishuang, et al. Sediment transport and dispersal pattern from the Bohai Sea to the Yellow Sea[J]. Journal of Coastal Research, 2016, 74: 104−116. doi: 10.2112/SI74-010.1
    [13] 时钟, 周洪强. 长江口北槽口外悬沙浓度垂线分布的数学模拟[J]. 海洋工程, 2000, 18(3): 57−62. doi: 10.3969/j.issn.1005-9865.2000.03.011

    Shi Zhong, Zhou Hongqiang. Numerical modelling of concentration profiles of suspended sediment in the Changjiang Estuary[J]. Ocean Engineering, 2000, 18(3): 57−62. doi: 10.3969/j.issn.1005-9865.2000.03.011
    [14] Xu J P, Noble M, Eittreim S L. Suspended sediment transport on the continental shelf near Davenport, California[J]. Marine Geology, 2002, 181(1/3): 171−193.
    [15] 原野, 江文胜, 高会旺, 等. 莱州湾口弱层结水体中沉积物再悬浮特征及其水平、沉降通量研究[J]. 海洋与湖沼, 2011, 42(1): 1−8. doi: 10.11693/hyhz201101001001

    Yuan Ye, Jiang Wensheng, Gao Huiwang, et al. Resuspension and associated horizontal, settling fluxes of sediment in the weakly stratified Laizhou Bay mouth[J]. Oceanologia et Limnologia Sinica, 2011, 42(1): 1−8. doi: 10.11693/hyhz201101001001
    [16] Xiong Jilian, Wang Xiaohua, Wang Yaping, et al. Mechanisms of maintaining high suspended sediment concentration over tide-dominated offshore shoals in the southern Yellow Sea[J]. Estuarine, Coastal and Shelf Science, 2017, 191: 221−233. doi: 10.1016/j.ecss.2017.04.023
    [17] Van Rijn L C. Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas[M]. Amsterdam: Aqua Publications, 1993.
    [18] Xu J P. Suspended sediment concentration profiles in the bottom boundary layer[D]. Williamsburg, VA: College of William and Mary, 1993.
    [19] Van Rijn L C. Unified view of sediment transport by currents and waves. II: Suspended transport[J]. Journal of Hydraulic Engineering, 2007, 133(6): 668−689. doi: 10.1061/(ASCE)0733-9429(2007)133:6(668)
    [20] Neumeier U, Ferrarin C, Amos C L, et al. Sedtrans05: An improved sediment-transport model for continental shelves and coastal waters with a new algorithm for cohesive sediments[J]. Computers & Geosciences, 2008, 34(10): 1223−1242.
    [21] 孙湘平. 中国近海区域海洋[M]. 北京: 海洋出版社, 2006.

    Sun Xiangping. Regional Marine in China Seas[M]. Beijing: China Ocean Press, 2006.
    [22] Cheng Peng, Gao Shu, Bokuniewicz H. Net sediment transport patterns over the Bohai Strait based on grain size trend analysis[J]. Estuarine, Coastal and Shelf Science, 2004, 60(2): 203−212. doi: 10.1016/j.ecss.2003.12.009
    [23] 中国科学院海洋研究所海洋地质研究室. 渤海地质[M]. 北京: 科学出版社, 1985.

    Department of Marine Geology, Institute of Oceanography, Chinese Academy of Sciences. The Bohai Sea Geology[M]. Beijing: Science Press, 1985.
    [24] Huang Dai, Su Jilan, Backhaus J O. Modelling the seasonal thermal stratification and baroclinic circulation in the Bohai Sea[J]. Continental Shelf Research, 1999, 19(11): 1485−1505. doi: 10.1016/S0278-4343(99)00026-6
    [25] 江文胜, 吴德星, 高会旺. 渤海夏季底层环流的观测与模拟[J]. 青岛海洋大学学报, 2002, 32(4): 511−518.

    Jiang Wensheng, Wu Dexing, Gao Huiwang. The observation and simulation of bottom circulation in the Bohai Sea in summer[J]. Journal of Ocean University of Qingdao, 2002, 32(4): 511−518.
    [26] Zhang Zhixin, Qiao Fangli, Guo Jingsong, et al. Seasonal changes and driving forces of inflow and outflow through the Bohai Strait[J]. Continental Shelf Research, 2018, 154: 1−8. doi: 10.1016/j.csr.2017.12.012
    [27] 郭炳火. 黄海物理海洋学的主要特征[J]. 黄渤海海洋, 1993, 11(3): 7−18.

    Guo Binghuo. Major features of the physical oceanography in the Yellow Sea[J]. Journal of Oceanography of Huanghai & Baihai Seas, 1993, 11(3): 7−18.
    [28] Miao Qingsheng, Yang Jinkun, Yang Yang, et al. Observation and analysis of tidal and residual current in the North Yellow Sea in the spring[J]. IOP Conference Series Earth and Environmental Science, 2018, 121(5): 052040.
    [29] Thorne P D, Hurther D. An overview on the use of backscattered sound for measuring suspended particle size and concentration profiles in non-cohesive inorganic sediment transport studies[J]. Continental Shelf Research, 2013, 73: 97−118.
    [30] Downing A, Thorne P D, Vincent C E. Backscattering from a suspension in the near field of a piston transducer[J]. The Journal of the Acoustical Society of America, 1995, 97(3): 1614−1620. doi: 10.1121/1.412100
    [31] Thorne P D, Hanes D M. A review of acoustic measurement of small-scale sediment processes[J]. Continental Shelf Research, 2002, 22(4): 603−632. doi: 10.1016/S0278-4343(01)00101-7
    [32] Moate B D, Thorne P D. Interpreting acoustic backscatter from suspended sediments of different and mixed mineralogical composition[J]. Continental Shelf Research, 2012, 46: 67−82. doi: 10.1016/j.csr.2011.10.007
    [33] Medwin H, Clay C S. Fundamentals of Acoustical Oceanography[M]. San Diego: Academic Press, 1998.
    [34] Van Rijn L C. Unified view of sediment transport by currents and waves. I: initiation of motion, bed roughness, and bed-load Transport[J]. Journal of Hydraulic Engineering, 2007, 133(6): 649−667. doi: 10.1061/(ASCE)0733-9429(2007)133:6(649)
    [35] Egiazaroff I V. Calculation of nonuniform sediment concentrations[J]. Journal of the Hydraulics Division, 1965, 91(4): 225−247.
    [36] Kleinhans M G, Van Rijn L C. Stochastic prediction of sediment transport in sand-gravel bed rivers[J]. Journal of Hydraulic Engineering, 2002, 128(4): 412−425. doi: 10.1061/(ASCE)0733-9429(2002)128:4(412)
    [37] Sistermans P G J. Graded sediment transport by non-breaking waves and a current[D]. The Netherlands: Department of Civil Engineering, Delft University of Technology, 2002.
    [38] Van Rijn L C. Unified view of sediment transport by currents and waves. III: graded beds[J]. Journal of Hydraulic Engineering, 2007, 133(7): 761−775. doi: 10.1061/(ASCE)0733-9429(2007)133:7(761)
    [39] Soulsby R L. The bottom boundary layer of shelf seas[J]. Elsevier Oceanography Series, 1983, 35: 189−266. doi: 10.1016/S0422-9894(08)70503-8
    [40] Mo Dongxue, Hou Yijun, Li Jian, et al. Study on the storm surges induced by cold waves in the Northern East China Sea[J]. Journal of Marine Systems, 2016, 160: 26−39. doi: 10.1016/j.jmarsys.2016.04.002
    [41] Soulsby R L. Simplified Calculation Of Wave Orbital Velocities[M]. Wallingford, U. K.: HR Wallingford Ltd., 2006.
    [42] Yao Peng, Su Min, Wang Zhengbing, et al. Experiment inspired numerical modeling of sediment concentration over sand-silt mixtures[J]. Coastal Engineering, 2015, 105: 75−89. doi: 10.1016/j.coastaleng.2015.07.008
    [43] Van Rijn L C. Sediment transport, Part II: suspended load transport[J]. Journal of Hydraulic Engineering, 1984, 110(110): 1613−1641.
    [44] Richardson J F, Zaki W N. The sedimentation of a suspension of uniform spheres under conditions of viscous flow[J]. Chemical Engineering Science, 1954, 3(2): 65−73. doi: 10.1016/0009-2509(54)85015-9
    [45] Shi Z, Zhou H J. Controls on effective settling velocities of mud flocs in the Changjiang Estuary, China[J]. Hydrological Processes, 2010, 18(15): 2877−2892.
    [46] Mikkelsen O, Pejrup M. The use of a LISST-100 laser particle sizer for in-situ estimates of floc size, density and settling velocity[J]. Geo-Marine Letters, 2001, 20(4): 187−195. doi: 10.1007/s003670100064
    [47] Fettweis M. Uncertainty of excess density and settling velocity of mud flocs derived from in situ measurements[J]. Estuarine, Coastal and Shelf Science, 2008, 78(2): 426−436. doi: 10.1016/j.ecss.2008.01.007
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  146
  • HTML全文浏览量:  73
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-10
  • 修回日期:  2019-02-17
  • 网络出版日期:  2020-11-18
  • 刊出日期:  2020-03-25

目录

    /

    返回文章
    返回