Regional characteristics and Moho depth for the Ross Sea, Antarctic
-
摘要: 本文基于中国南极考察第30航次、第32航次所获得的实测重力资料,结合NGDC资料,开展12个航次重力场数据的平差融合工作,全部386个交点平差后标准差减小为±1.53×10−5 m/s2,与卫星重力差值平均值为1.49×10−5 m/s2,均方差为±3.81×10−5 m/s2,并在此基础上采用频率域界面反演法计算莫霍面深度。研究发现,与沉积盆地对应重力异常低值相悖,在罗斯海北部盆地、维多利亚地盆地、中央海槽、东部盆地4个主要盆地腹地却表现为重力异常高值,跨度达100 km以上。莫霍面深度分布整体呈南深北浅之势,范围为10~28 km。伴随着罗斯海西部盆地的多次拉张及岩浆活动,该区域的地壳厚度和莫霍面深度高值和低值相间分布,并表现出越来越大的差异性。综合剖面结果表明,罗斯海重力异常值的长波长变化与莫霍面的起伏呈正相关关系,但是反演的莫霍面深度与区域重力场特征并非完全对应,所以岩浆底侵和地壳侵入仍不足以导致罗斯海盆地的重力异常或盆地几何形状。Abstract: Based on the measured data in the 30th, 32th of Chinese National Antarctic Research Expedition, combined with the reference data, this study processed 12 groups of data in study area and draw the gravity anomaly map, with all 386 crossovers among these cruises the standard deviation reaching ±1.53×10−5 m/s2. Compared to satellite gravity, the mean value of the difference is 1.49×10−5 m/s2, with the standard deviation is ±3.81×10−5 m/s2. On this basis, we used a frequency domain interface inversion method to calculate the Moho depth. It is contrary to sedimentary basins with low values of gravity anomaly, the gravity of the hinterland in the northern Ross Basin, the Victoria Basin, the Central Trough and the Eastern Basin is high, with a span of 100 km or more. The distribution of the Moho depth is generally high in the south and low in the north, ranging from 10 km to 28 km. Along with the multiple extensions and magmatism in the western part of the Ross Sea, the crustal thickness and Moho depth of the area show increasing differences, with interphase distribution of abnormal high and low values. Combining inverted depth of Moho and Gravity-Seismic inversion interpretation profile, we considered the long-wavelength variation of the gravity anomaly is positively correlated with the fluctuation of the Moho depth. However, the inversion Moho depth does not correspond exactly to the regional gravity field characteristics, so magma underplating and crustal intrusion are still insufficient to cause gravity anomalies or basin geometries in the Ross Sea Basin.
-
Key words:
- regional gravity field /
- Moho depth /
- Ross Sea /
- Antarctic
-
表 1 采用的罗斯海重力测线资料
Tab. 1 Gravity data for the Ross Sea used in this study
序号 航次 年份 测量仪器 月漂移/10−5m·s−2 出发港/返回港 数据来源 1 CHN30 2014年 L&R S型海洋重力仪 −2.98 中国极地科考码头/中国极地科考码头 实测数据 2 CHN32 2016年 L&R S型海洋重力仪 1.785 中国极地科考码头/中国极地科考码头 实测数据 3 ELT52 1972年 GSS-2型海洋重力仪 − 南极洲麦克默多站/新西兰利特尔顿港 文献[14] 4 ELT32 1967年 GSS-2型海洋重力仪 − 新西兰达尼丁港/新西兰惠灵顿港 文献[14] 5 I284AN 1984年 − − 南极洲麦克默多站/新西兰利特尔顿港 文献[14] 6 NBP93-7 1993年 L&R S型海洋重力仪 − 蓬塔阿雷纳斯港/南极洲麦克默多站 文献[14] 7 NBP94-1 1994年 L&R S型海洋重力仪 0 南极洲麦克默多站/南极洲麦克默多站 文献[14] 8 NBP95-1 1995年 L&R S-36海洋重力仪 − 南极洲麦克默多站/新西兰利特尔顿港 文献[14] 9 NBP96-1 1996年 L&R S-36海洋重力仪 1.0 南极洲麦克默多站/南极洲麦克默多站 文献[14] 10 NBP0301 2003年 L&R S-36海洋重力仪 − 南极洲麦克默多站/南极洲麦克默多站 文献[14] 11 NBP0401 2004年 L&R S型海洋重力仪 − 南极洲麦克默多站/南极洲麦克默多站 文献[14] 12 RS8102 1981年 L&R S-80海洋重力仪 − − 文献[14] 注:“−”代表NGDC未对测线的情况进行说明。 表 2 密度模型
Tab. 2 Density model
地层 密度/g·cm−3 库尔曼高地 上地壳 2.65 下地壳 2.92 中央高地 上地壳 2.70 下地壳 2.92(存在密度异常体) 东部盆地 上地壳 2.73 下地壳 2.95 -
[1] Dalziel I W D, Elliot D H. West Antarctica: Problem child of Gondwanaland[J]. Tectonics, 1982, 1(1): 3−19. doi: 10.1029/TC001i001p00003 [2] Cande S C, Stock J M, Müller R D, et al. Cenozoic motion between East and West Antarctica[J]. Nature, 2000, 404(6774): 145. doi: 10.1038/35004501 [3] Lemasurier W E, Thomson J W, Baker P E, et al. Volcanoes of the Antarctic Plate and Southern Oceans[M]//Antarctic Research Series 48. Washington D C, American Geophysical Union, 1990. [4] Behrendt J C, Cooper A. Evidence of rapid Cenozoic uplift of the shoulder escarpment of the Cenozoic West Antarctic rift system and a speculation on possible climate forcing[J]. Geology, 1991, 19(4): 315−319. doi: 10.1130/0091-7613(1991)019<0315:EORCUO>2.3.CO;2 [5] Coren F, Zanolla C, Marson I. Computation of the moho depths from gravity data in the Ross Sea (Antarctica)[M]//Gravity and Geoid. Berlin, Heidelberg: Springer, 1995. [6] Marson I, Štoka M, Velicogna I, et al. Gravity, geoid, isostasy and Moho depth in the Ross Sea, Antarctica[M]//Gravity, Geoid and Marine Geodesy. Berlin Heidelberg: Springer, 1997. [7] Elliot D H. Jurassic magmatism and tectonism associated with Gondwanaland break-up: an Antarctic perspective[J]. Geological Society, London, Special Publications, 1992, 68(1): 165−184. doi: 10.1144/GSL.SP.1992.068.01.11 [8] Heimann A, Fleming T H, Elliot D H, et al. A short interval of Jurassic continental flood basalt volcanism in Antarctica as demonstrated by 40Arc 39Ar geochronology[J]. Earth and Planetary Science Letters, 1994, 121(1/2): 19−41. [9] Boger S D. Antarctica-Before and after Gondwana[J]. Gondwana Research, 2011, 19(2): 335−371. doi: 10.1016/j.gr.2010.09.003 [10] Salvini F, Brancolini G, Busetti M, et al. Cenozoic geodynamics of the Ross Sea region, Antarctica: crustal extension, intraplate strike-slip faulting, and tectonic inheritance[J]. Journal of Geophysical Research Solid Earth, 1997, 102(B11): 24669−24696. doi: 10.1029/97JB01643 [11] Salvini F, Storti F. Cenozoic tectonic lineaments of the Terra Nova Bay region, Ross Embayment, Antarctica[J]. Global & Planetary Change, 1999, 23(1): 129−144. [12] Fielding C R, Henrys S A, Wilson T J. Rift history of the Western Victoria Land Basin: A new perspective based on integration of cores with seismic reflection data[C]//International Symposium on Antarctic Earth Sciences. Berlin, Heidelberg: Springer, 2006. [13] Ji Fei, Li Fei, Gao Jinyao, et al. 3-D density structure of the Ross Sea basins, West Antarctica from constrained gravity inversion and their tectonic implications[J]. Geophysical Journal International, 2018, 215(2): 1241−1256. doi: 10.1093/gji/ggy343 [14] National Oceanic And Atmospheric Administration. NOAA-NESDIS-NCEI(formerly NGDC)-Maps-Trackline Gephysical Data.[2019-03-10]. http://maps.ngdc.noaa.gov/viewers/geophysics/ [15] 刘晨光, 刘保华, 郑彦鹏, 等. 海洋重磁资料的最小二乘平差处理方法[J]. 海洋科学进展, 2005, 23(4): 513−517. doi: 10.3969/j.issn.1671-6647.2005.04.019Liu Chengguang, Liu Baohua, Zheng Yanpeng, et al. Least square adjustment method for processing marine gravity and geomagnetic data[J]. Advances In Marine Science, 2005, 23(4): 513−517. doi: 10.3969/j.issn.1671-6647.2005.04.019 [16] 刘保华, 刘晨光, 裴彦良, 等. 大洋调查中海山地磁测量的静日变化校正方法[J]. 海洋学报, 2008, 30(6): 94−98.Liu Baohua, Liu Chengguang, Pei Yanliang, et al. Diurnal variation correction method based on linear least-squares algorithm in exploration of seamounts[J]. Haiyang Xuebao, 2008, 30(6): 94−98. [17] 高金耀, 张涛, 谭勇华, 等. 不规则重磁测线网误差模型的约束最小二乘平差[J]. 海洋测绘, 2006, 26(4): 6−10. doi: 10.3969/j.issn.1671-3044.2006.04.002Gao Jinyao, Zhang Tao, Tan Yonghua, et al. Constraint least-square adjustment for marine gravity and magnetic track-line data in irregular survey network with arbitrary error model[J]. Hydrographic Surveying and Charting, 2006, 26(4): 6−10. doi: 10.3969/j.issn.1671-3044.2006.04.002 [18] 马龙, 郑彦鹏, 裴彦良, 等. 南极布兰斯菲尔德海峡船测重力资料平差处理[J]. 海洋科学进展, 2015, 33(3): 403−413. doi: 10.3969/j.issn.1671-6647.2015.03.015Ma Long, Zheng Yanpeng, Pei Yanliang, et al. The adjustment of shipborne gravimetric data for the Bransfield Strait[J]. Advances in Marine Science, 2015, 33(3): 403−413. doi: 10.3969/j.issn.1671-6647.2015.03.015 [19] Parker R L. The rapid calculation of potential anomalies[J]. Geophysical Journal of the Royal Astronomical Society, 1973, 31(4): 447−455. doi: 10.1111/j.1365-246X.1973.tb06513.x [20] Oldenburg D W. The inversion and interpretation of gravity anomalies[J]. Geophysics, 1974, 39(4): 526−536. doi: 10.1190/1.1440444 [21] Laske G, Masters G, Ma Z, et al. Update on CRUST1.0-A 1-degree Global Model of Earth's Crust[C]//EGU General Assembly Conference. Vienna, Austria, 2013. [22] Davey F J. Geophysical studies in the Ross Sea region[J]. Journal of the Royal Society of New Zealand, 1981, 11(4): 465−479. doi: 10.1080/03036758.1981.10423336 [23] Behrendt J C, Blankenship D D, Finn C A, et al. CASERTZ aeromagnetic data reveal late Cenozoic flood basalts(?) in the West Antarctic rift system[J]. Geology, 1994, 22(1994): 527−530. [24] Ferraccioli F, Bozzo E, Damaske D. Aeromagnetic signatures over western Marie Byrd Land provide insight into magmatic arc basement, mafic magmatism and structure of the Eastern Ross Sea Rift flank[J]. Tectonophysics, 1951, 347(1/3): 139−165. [25] Ghidella M E, Zambrano O M, Ferraccioli F, et al. Analysis of James Ross Island volcanic complex and sedimentary basin based on high-resolution aeromagnetic data[J]. Tectonophysics, 2013, 585(2): 90−101. [26] Cooper A K, Barker P F, Brancolini G. The Late Mesozoic and Cenozoic structural setting of the Ross Sea region[M]//Geology and Seismic Stratigraphy of the Antarctic Margin. Washington D C, American Geophysical Union, 1990: 167−182. [27] White R, Dan M K. Magmatism at rift zones: The generation of volcanic continental margins and flood basalts[J]. Journal of Geophysical Research Solid Earth, 1989, 94(B6): 7685−7729. doi: 10.1029/JB094iB06p07685 [28] Tessensohn F, Wörner G. The Ross Sea rift system, Antarctica: structure, evolution and analogues[M]// Geological Evolution of Antarctica. Cambridge: Cambridge University Press, 1991: 285–292. [29] Behrendt J C. The aeromagnetic method as a tool to identify Cenozoic magmatism in the West Antarctic Rift System beneath the West Antarctic Ice Sheet — A review; Thiel subglacial volcano as possible source of the ash layer in the WAISCORE[J]. Tectonophysics, 2013, 585(2): 124−136. [30] Trey H, Cooper A K, Pellis G, et al. Transect across the West Antarctic rift system in the Ross Sea, Antarctica[J]. Tectonophysics, 1999, 301(1/2): 61−74. [31] Karner G D, Studinger M, Bell R E. Gravity anomalies of sedimentary basins and their mechanical implications: Application to the Ross Sea basins, West Antarctica[J]. Earth & Planetary Science Letters, 2005, 235(3/4): 577−596. [32] Cooper A K, Davey F J, Behrendt J C, et al. Seismic stratigraphy and structure of theVictoria Land Basin, western Ross Sea, Antarctica[M]. Houston, Texas: Circum-Pacific Council for Energy and Mineral Resources, 1987.