Distribution of dissolved organic matter in different water masses in the Yellow Sea in summer
-
摘要: 依据2017年8—9月对黄海海域溶解有机物(DOM)的调查,探讨了夏季黄海海水中溶解有机碳(DOC)和有色溶解有机物(CDOM)的空间分布特征。在表层海水中,受陆源影响较大的近岸海域CDOM含量相对较高,北黄海冷水团区域由于水产养殖的饵料引起DOC浓度升高,且该部分DOC以无色为主。DOC浓度随深度逐渐降低,而CDOM逐渐升高,该特征在冷水团区域更为显著,因此DOC和CDOM在冷水团区域的表底差异远大于浅水区的非冷水团区域。陆源输入和初级生产是引起表层DOC升高的主要原因,而光漂白则引起CDOM降低,同时光漂白还导致表层水体中CDOM分子量和芳香性低于底层。底层溶解氧饱和度在冷水团为80%~93%,均表现为弱不饱和状态。层化不仅阻碍了O2向底层水体输送,还抑制了DOC和CDOM的垂向混合,这是引起冷水团区域表底层DOC和CDOM差异较大的主要原因。Abstract: Based on the investigation of dissolved organic matter (DOM) in the Yellow Sea from August to September 2017, the spatial distributions of dissolved organic carbon (DOC) and chromophoric dissolved organic matter (CDOM) were studied in the Yellow Sea. In surface seawater, CDOM was higher in the nearshore water, which might be caused by the relatively significant influence by the river input, while colorless DOC concentration in the north Yellow Sea Cold Water (YSCW) area was enhanced by aquaculture. The DOC concentration decreased along depth in the water column, but an inverse trend for CDOM, especially in the YSCW area. Terrestrial DOC input and primary production were mainly responsible for the surface DOC enhancement, while photobleaching induced the decrease of CDOM. Additionally, photobleaching also decreased the molecular weight and aromaticity of CDOM in surface water. In the YSCW, O2 was slightly unsaturated, with the saturation degree of 80%–93%. In this area, strong stratification prevented the vertical diffusion of O2 to bottom water. Additionally, stratification could also restrain the vertical mixing of DOC and CDOM, which was mainly responsible for the large difference of DOC and CDOM between surface and bottom waters.
-
图 1 2017年夏季黄海海区采样站位与水团分布(站位详细信息见表1)
红色虚线表示渤海、北黄海、南黄海以及东海之间的分界线,蓝色实线区域显示黄海冷水团区域。字母缩写分别代表: 渤海沿岸流(BSCoW)、黄海沿岸流(YSCoW)、朝鲜沿岸流(WKCoW)、长江冲淡水(CDW)、台湾暖流(TWC)、黑潮(KC)、对马暖流(TWW)
Fig. 1 Map of sampling stations and current system in the Yellow Sea in summer 2017 (see Tab. 1 for detailed sampling information)
The red dashed lines represent the boundaries between different geographic areas as indicated in the map, while the blue solid lines show the Yellow Sea Cold Water Mass areas. Currents are: the Bohai Sea Coastal Water (BSCoW), the Yellow Sea Coastal Water (YSCoW), the Western Korea Coastal Water (WKCoW), the Changjiang Diluted Water (CDW), the Taiwan Warm Current (TWC), the Kuroshi Current (KC), and the Tsushima Warm Water (TWW)
图 3 2017年夏季黄海典型站位温度、盐度、DO%、DOC、a330、E2/E3和SUVA254垂直分布
H09、B30:南、北黄海典型冷水团站位;H21、B25:南、北黄海典型非冷水团站位
Fig. 3 Vertical distributions of temperature, salinity, DO%, DOC, a330, E2/E3 and SUVA254 at typical stations in the Yellow Sea in summer 2017
Stations H09 and B30 are located inside the South and North Yellow Sea Cold Water Masses, and stations H21 and B25 are located outside the South and North Yellow Sea Cold Water Masses
图 4 2017年夏季黄海底层AOU以及表底层DOC、a330、Δ(E2/E3)和SUVA254差值
ΔDOC、Δ(E2/E3)为表层的值减去底层的值,Δa330、ΔSUVA254为底层的值减去表层的值
Fig. 4 AOU in bottom wate and differences in DOC, a330, Δ(E2/E3), and SUVA254 between surface and bottom waters in the Yellow Sea in summer 2017
ΔDOC and Δ(E2/E3) are surface water values minus bottom water values,while Δa330 and ΔSUVA254 are bottom water values minus surface water values
表 1 2017年夏季黄海海区各站位采样时间、经纬度、水深以及采样深度
Tab. 1 Sampling date, coordinates, water depth and sampling depths of each station in the Yellow Sea in summer 2017
站位 调查时间 经纬度 水深/m 采样深度/m 南黄海 H01 8月29日 35.999°N, 121.009°E 30.4 3.0,14.9,24.8 H03 8月29日 36.000°N, 121.668°E 36.0 3.9,11.9,19.8,32.8 H05 8月30日 35.997°N, 122.327°E 52.0 3.6,11.9,20.9,48.6 H07* 8月31日 36.002°N, 122.999°E 71.0 4.0,22.8,34.7,68.0 H09* 9月1日 36.002°N, 124.000°E 76.0 4.0,19.8,31.8,73.4 H10* 9月2日 35.000°N, 123.996°E 80.0 4.0,19.9,39.7,78.3 H12* 9月2日 35.001°N, 122.994°E 73.0 4.1,19.8,39.7,71.2 H14* 9月2日 34.999°N, 122.337°E 60.5 4.0,19.9,30.8,57.4 H16 9月2日 34.998°N, 121.663°E 45.0 3.8,15.9,29.7,42.8 H18 9月3日 35.000°N, 120.998°E 36.5 4.0,10.0,17.8,34.6 H19 9月3日 34.001°N, 121.402°E 17.5 2.8,9.0,15.8 H21 9月3日 34.006°N, 122.000°E 18.5 2.9,8.9,16.9 H24 9月3日 34.000°N, 123.081°E 68.0 3.0,14.9,27.8,66.2 H26* 9月4日 34.002°N, 124.001°E 78.5 3.0,14.8,29.7,77.2 H27 9月4日 33.005°N, 124.001°E 50.0 3.6,14.9,29.7,47.2 H29 9月4日 33.000°N, 122.999°E 32.0 4.0,12.9,26.8 H32 9月4日 33.005°N, 121.999°E 18.0 3.0,8.9,14.9 B01* 9月9日 36.466°N, 122.962°E 60.0 3.0,13.9,29.8,58.4 B03 9月9日 36.823°N, 122.601°E 36.0 2.7,17.9,33.6 B05 9月9日 36.998°N, 122.876°E 30.0 2.8,13.9,27.5 B07* 9月9日 37.001°N, 123.426°E 72.0 3.2,21.8,35.8,70.1 B09* 9月9日 36.999°N, 124.001°E 75.0 3.1,20.8,37.7,72.3 BS01* 9月10日 37.394°N, 123.978°E 70.0 2.9,21.8,35.7,68.3 BS03* 9月10日 37.401°N, 123.372°E 75.0 3.1,25.8,36.8,69.4 BS05 9月10日 37.400°N, 122.833°E 37.0 3.0,19.9,33.7 北黄海 B12 9月10日 37.721°N, 122.952°E 65.0 3.1,22.9,32.8,63.1 B15 9月10日 38.440°N, 123.482°E 66.0 2.7,19.9,33.8,63.2 B17 9月11日 38.966°N, 123.911°E 53.5 3.1,14.9,27.8,51.4 B19 9月11日 39.220°N, 123.602°E 36.0 2.9,18.9,34.4 B21 9月11日 38.862°N, 123.003°E 52.4 1.9,11.9,22.9,49.6 B23* 9月11日 38.222°N, 122.738°E 52.0 4.0,12.0,25.8,49.4 B25 9月11日 37.693°N, 122.472°E 28.0 3.1,14.9,26.4 B26 9月12日 37.699°N, 122.003°E 23.0 3.1,11.9,20.9 表 2 2017年夏季黄海海区温度、盐度、溶解氧饱和度的变化范围及平均值
Tab. 2 Ranges and means of temperature, salinity, and dissolved oxygen saturation degree in the Yellow Sea in summer 2017
层次 海区 区域 水温/℃ 盐度 DO/% 表层 南黄海 冷水团 24.1~25.9 31.3~32.0 111%~114% n=11 (25.1±0.7) (31.7±0.2) (112%±1%) 非冷水团 23.1~27.1 30.0~31.7 100%~123% n=14 (24.9±1.1) (31.3±0.5) (112%±5%) 北黄海 冷水团 24.3~24.6 31.5~31.8 112%~114% n=3 (24.5±0.2) (31.7±0.1) (113%±1%) 非冷水团 22.6~24.9 31.5~31.9 109%~132% n=10 (23.9±0.7) (31.6±0.1) (115%±6%) 底层 南黄海 冷水团 7.4~9.6 32.2~32.9 81%~93% n=11 (8.4±0.5) (32.4±0.2) (86%±5%) 非冷水团 10.4~27.1 31.1~32.9 15%~113% n=14 (19.0±5.6) (31.9±0.5) (90%±23%) 北黄海 冷水团 6.6~9.0 32.2~32.3 80%~91% n=3 (7.9±1.0) (32.3±0.1) (86%±5%) 非冷水团 10.4~23.7 31.5~32.2 85%~108% n=10 (18.5±4.9) (31.9±0.3) (97%±8%) 注:n表示采样点数量;括号内数据代表平均值±标准偏差。 -
[1] Hedges J I. Global biogeochemical cycles: progress and problems[J]. Marine Chemistry, 1992, 39(1/3): 67−93. [2] Hansell D A, Carlson C A. Deep-ocean gradients in the concentration of dissolved organic carbon[J]. Nature, 1998, 395(6699): 263−266. doi: 10.1038/26200 [3] Hansell D A, Carlson C A, Repeta D J, et al. Dissolved organic matter in the ocean: a controversy stimulates new insights[J]. Oceanography, 2009, 22(4): 202−211. doi: 10.5670/oceanog [4] Ducklow R B H. The Black Sea: ecology and oceanography by Yuri I Sorokin[J]. The Quarterly Review of Biology, 2002, 77(4): 475−476. [5] Sipler R E, Bronk D A. Dynamics of dissolved organic nitrogen[M]//Hansell D A, Carlson C A. Biogeochemistry of Marine Dissolved Organic Matter. Amsterdam: Academic Press, 2015: 127–232. [6] Cornell S, Randell A, Jickells T. Atmospheric inputs of dissolved organic nitrogen to the oceans[J]. Nature, 1995, 376(6537): 243−246. doi: 10.1038/376243a0 [7] Opsahl S, Benner R. Distribution and cycling of terrigenous dissolved organic matter in the ocean[J]. Nature, 1997, 386(6624): 480−482. doi: 10.1038/386480a0 [8] Johannes R E, Webb K L. Release of dissolved amino acids by marine zooplankton[J]. Science, 1965, 150(3692): 76−77. doi: 10.1126/science.150.3692.76 [9] Fogg G E. The ecological significance of extracellular products of phytoplankton photosynthesis[J]. Botanica Marina, 1983, 26(1): 3−14. [10] Gobler C J, Hutchins D A, Fisher N S, et al. Release and bioavailability of C, N, P, Se, and Fe following viral lysis of a marine chrysophyte[J]. Limnology and Oceanography, 1997, 42(7): 1492−1504. doi: 10.4319/lo.1997.42.7.1492 [11] Myklestad S M. Dissolved organic carbon from phytoplankton[M]//Wangersky P J. Marine Chemistry. Berlin, Heidelberg: Springer, 2000: 111–148. [12] Teira E, Reinthaler T, Pernthaler A, et al. Combining catalyzed reporter deposition-fluorescence in situ hybridization and microautoradiography to detect substrate utilization by bacteria and archaea in the deep ocean[J]. Applied and Environmental Microbiology, 2004, 70(7): 4411−4414. doi: 10.1128/AEM.70.7.4411-4414.2004 [13] Reinthaler T, van Aken H, Veth C, et al. Prokaryotic respiration and production in the meso- and bathypelagic realm of the eastern and western North Atlantic basin[J]. Limnology and Oceanography, 2006, 51(3): 1262−1273. doi: 10.4319/lo.2006.51.3.1262 [14] Manahan D T, Richardson K. Competition studies on the uptake of dissolved organic nutrients by bivalve larvae (Mytilus edulis) and marine bacteria[J]. Marine Biology, 1983, 75(2/3): 241−247. [15] First M R, Hollibaugh J T. The model high molecular weight DOC compound, dextran, is ingested by the benthic ciliate Uronema marinum but does not supplement ciliate growth[J]. Aquatic Microbial Ecology, 2009, 57(1): 79−87. [16] Moran M A, Zepp R G. Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter[J]. Limnology and Oceanography, 1997, 42(6): 1307−1316. doi: 10.4319/lo.1997.42.6.1307 [17] Druffel E R M, Griffin S, Bauer J E, et al. Distribution of particulate organic carbon and radiocarbon in the water column from the upper slope to the abyssal NE Pacific Ocean[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 1998, 45(4/5): 667−687. [18] Stubbins A, Niggemann J, Dittmar T. Photo-lability of deep ocean dissolved black carbon[J]. Biogeosciences, 2012, 9(5): 1661−1670. doi: 10.5194/bg-9-1661-2012 [19] Song Guisheng, Li Yijie, Hu Suzheng, et al. Photobleaching of chromophoric dissolved organic matter (CDOM) in the Yangtze River estuary: kinetics and effects of temperature, pH, and salinity[J]. Environmental Science: Processes & Impacts, 2017, 19(6): 861−873. [20] 管秉贤. 黃海冷水团的水温变化以及环流特征的初步分析[J]. 海洋与湖沼, 1963, 5(4): 255−284.Guan Bingxian. A preliminary study of the temperature variations and the characteristics of the circulation of the cold water mass of the Yellow Sea[J]. Oceanologia et Limnologia Sinica, 1963, 5(4): 255−284. [21] 林金祥, 宋万先. 黄海冷水团的基本特征[J]. 海洋研究, 1981, 4: 1−13.Lin Jinxiang, Song Wanxian. Basic characteristics of the Yellow Sea Cold Water Mass[J]. Marine Research, 1981, 4: 1−13. [22] 李凤岐, 苏育嵩. 海洋水团分析[M]. 青岛: 青岛海洋大学出版社, 2000.Li Fengqi, Su Yusong. Analyses of Water Masses in Oceans[M]. Qingdao: Qingdao Ocean University Press, 2000. [23] 王保栋, 王桂云, 郑昌洙, 等. 南黄海溶解氧的垂直分布特性[J]. 海洋学报, 1999, 21(5): 72−77. doi: 10.3321/j.issn:0253-4193.1999.05.009Wang Baodong, Wang Guiyun, Chung C S, et al. Features in vertical profiles of dissolved oxygen in the southern Huanghai Sea[J]. Haiyang Xuebao, 1999, 21(5): 72−77. doi: 10.3321/j.issn:0253-4193.1999.05.009 [24] Zhai W D, Zheng N, Huo C, et al. Subsurface pH and carbonate saturation state of aragonite on the Chinese side of the North Yellow Sea: seasonal variations and controls[J]. Biogeosciences, 2014, 11(4): 1103−1123. doi: 10.5194/bg-11-1103-2014 [25] Xu Xuemei, Zang Kunpeng, Huo Cheng, et al. Aragonite saturation state and dynamic mechanism in the southern Yellow Sea, China[J]. Marine Pollution Bulletin, 2016, 109(1): 142−150. doi: 10.1016/j.marpolbul.2016.06.009 [26] 翟惟东. 黄海的季节性酸化现象及其调控[J]. 中国科学: 地球科学, 2018, 61(6): 647−658.Zhai Weidong. Exploring seasonal acidification in the Yellow Sea[J]. Science China: Earth Sciences, 2018, 61(6): 647−658. [27] Waldbusser G G, Voigt E P, Bergschneider H, et al. Biocalcification in the eastern oyster (Crassostrea virginica) in relation to long-term trends in Chesapeake Bay pH[J]. Estuaries and Coasts, 2011, 34(2): 221−231. doi: 10.1007/s12237-010-9307-0 [28] Ekstrom J A, Suatoni L, Cooley S R, et al. Vulnerability and adaptation of US shellfisheries to ocean acidification[J]. Nature Climate Change, 2015, 5(3): 207−214. doi: 10.1038/nclimate2508 [29] 刁焕祥, 沈志良. 黄海冷水域水化学要素的垂直分布特性[J]. 海洋科学集刊, 1985(25): 41−51.Diao Huanxiang, Shen Zhiliang. The vertical distribution of the chemical factors in the Yellow Sea Cold Water[J]. Studia Marina Sinica, 1985(25): 41−51. [30] 王保栋. 黄海冷水域生源要素的变化特征及相互关系[J]. 海洋学报, 2000, 22(6): 47−54. doi: 10.3321/j.issn:0253-4193.2000.06.006Wang Baodong. Characteristics of variations and interrelations of biogenic elements in the Huanghai Sea Cold Water Mass[J]. Haiyang Xuebao, 2000, 22(6): 47−54. doi: 10.3321/j.issn:0253-4193.2000.06.006 [31] 朱栾, Bellerby R. 夏季黄海海水碳酸盐体系特征[J]. 海洋科学, 2017, 41(12): 66−74. doi: 10.11759/hykx20170527002Zhu Luan, Bellerby R. Summer characteristics of carbonate system in the Yellow Sea[J]. Marine Sciences, 2017, 41(12): 66−74. doi: 10.11759/hykx20170527002 [32] 韦钦胜, 王保栋. 南黄海冷水团海域及西部近岸区表层沉积物中碳、氮、磷的分布特征及其生态学指示意义[J]. 环境科学学报, 2012, 32(7): 1697−1707.Wei Qinsheng, Wang Baodong. Distributions of carbon, nitrogen and phosphorus in the surface sediments and their ecological implications in the areas of cold water mass and off the western coast of the southern Yellow Sea[J]. Acta Scientiae Circumstantiae, 2012, 32(7): 1697−1707. [33] 赵军杰, 张婧, 杨桂朋. 秋季东、黄海有色溶解有机物(CDOM)的光学特性研究[J]. 海洋环境科学, 2013, 32(6): 818−823.Zhao Junjie, Zhang Jing, Yang Guipeng. Optical properties of the colored dissolved organic matter in the Yellow Sea and the East China Sea in autumn[J]. Marine Environmental Science, 2013, 32(6): 818−823. [34] 周倩倩. 黄渤海夏秋季有色溶解有机物(CDOM)的分布特征及季节变化的研究[D]. 青岛: 中国海洋大学, 2015.Zhou Qianqian. The study on distribution and seasonal changes of chromophoric dissolved organic matter in summer and autumn in the Bohai Sea and the Yellow Sea[D]. Qingdao: Ocean University of China, 2015. [35] 刘兆冰, 梁文健, 秦礼萍, 等. 渤海和北黄海有色溶解有机物(CDOM)的分布特征和季节变化[J]. 环境科学, 2019, 40(3): 1198−1208.Liu Zhaobing, Liang Wenjian, Qin Liping, et al. Distribution and seasonal variations of chromophoric dissolved organic matter (CDOM) in the Bohai Sea and the north Yellow Sea[J]. Environmental Science, 2019, 40(3): 1198−1208. [36] 朱青青, 张婧, 杨桂朋. 冬季黄渤海有色溶解有机物的光学特性研究[J]. 中国海洋大学学报, 2018, 48(8): 77−88.Zhu Qingqing, Zhang Jing, Yang Guipeng. Optical properties of the chromophoric dissolved organic matter in the Bohai Sea and the Yellow Sea in winter[J]. Periodical of Ocean University of China, 2018, 48(8): 77−88. [37] Chen C T A. Chemical and physical fronts in the Bohai, Yellow and East China seas[J]. Journal of Marine Systems, 2009, 78(3): 394−410. doi: 10.1016/j.jmarsys.2008.11.016 [38] 赫崇本, 汪圆祥, 雷宗友, 等. 黄海冷水团的形成及其性质的初步探讨[J]. 海洋与湖沼, 1959, 2(1): 11−15.He Chongben, Wang Yuanxiang, Lei Zongyou, et al. A preliminary study of the formation of Yellow Sea Cold Mass and its properties[J]. Oceanologia et Limnologia Sinica, 1959, 2(1): 11−15. [39] Kondo M. Oceanographic investigations of fishing grounds in the East China Sea and the Yellow Sea. Ⅰ. Characteristics of the mean temperature and salinity distributions measured at 50 m and near the bottom[J]. Bulletin of the Seikai Regional Fisheries Research Laboratory, 1985, 62: 19−66. [40] 翁学传, 张以恳, 王从敏, 等. 黄海冷水团的变化特征[J]. 海洋与湖沼, 1988, 19(4): 368−379.Weng Xuechuan, Zhang Yiken, Wang Congmin, et al. The variational characteristics of the Huanghai Sea (Yellow Sea) Cold Water Mass[J]. Oceanologia et Limnologia Sinica, 1988, 19(4): 368−379. [41] Riley J P, Skirrow G. Chemical Oceanography[M]. 2nd ed. New York: Academic Press, 1975, 1: 417. [42] Bricaud A, Morel A, Prieur L. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains[J]. Limnology and Oceanography, 1981, 26(1): 43−53. doi: 10.4319/lo.1981.26.1.0043 [43] Hu Chuanmin, Muller-Karger F E, Zepp R G. Absorbance, absorption coefficient, and apparent quantum yield: a comment on common ambiguity in the use of these optical concepts[J]. Limnology and Oceanography, 2002, 47(4): 1261−1267. doi: 10.4319/lo.2002.47.4.1261 [44] Babin M, Stramski D, Ferrari G M, et al. Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe[J]. Journal of Geophysical Research: Oceans, 2003, 108(C7): 3211. doi: 10.1029/2001JC000882 [45] Chen C C, Gong G C, Shiah F K. Hypoxia in the East China Sea: one of the largest coastal low-oxygen areas in the world[J]. Marine Environmental Research, 2007, 64(4): 399−408. doi: 10.1016/j.marenvres.2007.01.007 [46] Wang Hongjie, Dai Minhan, Liu Jinwen, et al. Eutrophication-driven hypoxia in the East China Sea off the Changjiang Estuary[J]. Environmental Science & Technology, 2016, 50(5): 2255−2263. [47] Zhang Haiyan, Zhao Liang, Sun Yao, et al. Contribution of sediment oxygen demand to hypoxia development off the Changjiang Estuary[J]. Estuarine, Coastal and Shelf Science, 2017, 192: 149−157. doi: 10.1016/j.ecss.2017.05.006 [48] 王毅梦, 吴冠伟, 杨桂朋, 等. 夏季黄、渤海溶解碳水化合物的浓度分布[J]. 海洋环境科学, 2013, 32(2): 227−234.Wang Yimeng, Wu Guanwei, Yang Guipeng, et al. Distributions of dissolved carbohydrates in the Bohai Sea and the Yellow Sea during summer[J]. Marine Environmental Science, 2013, 32(2): 227−234. [49] 高爽, 李正炎. 北黄海夏、冬季叶绿素和初级生产力的空间分布和季节变化特征[J]. 中国海洋大学学报, 2009, 39(4): 604−610.Gao Shuang, Li Zhengyan. Spatial and seasonal variation of chlorophyll and primary productivity in summer and winter in the northern Yellow Sea[J]. Periodical of Ocean University of China, 2009, 39(4): 604−610. [50] 郑国侠, 宋金明, 戴纪翠, 等. 南黄海秋季叶绿素a的分布特征与浮游植物的固碳强度[J]. 海洋学报, 2006, 28(3): 109−118. doi: 10.3321/j.issn:0253-4193.2006.03.013Zheng Guoxia, Song Jinming, Dai Jicui, et al. Distributions of chlorophyll-a and carbon fixed strength of phytoplankton in autumn of the southern Huanghai Sea waters[J]. Haiyang Xuebao, 2006, 28(3): 109−118. doi: 10.3321/j.issn:0253-4193.2006.03.013 [51] 蔡惠文, 卓丽飞, 吴常文. 海水养殖污染负荷评估研究[J]. 浙江海洋学院学报: 自然科学版, 2014, 33(6): 558−567.Cai Huiwen, Zhuo Lifei, Wu Changwen. Review of waste loadings generation from marine aquaculture[J]. Journal of Zhejiang Ocean University: Natural Science, 2014, 33(6): 558−567. [52] 唐启升, 韩冬, 毛玉泽, 等. 中国水产养殖种类组成、不投饵率和营养级[J]. 中国水产科学, 2016, 23(4): 729−758.Tang Qisheng, Han Dong, Mao Yuze, et al. Species composition, non-fed rate and trophic level of Chinese aquaculture[J]. Journal of Fishery Sciences of China, 2016, 23(4): 729−758. [53] del Vecchio R, Blough N V. Photobleaching of chromophoric dissolved organic matter in natural waters: kinetics and modeling[J]. Marine Chemistry, 2002, 78(4): 231−253. doi: 10.1016/S0304-4203(02)00036-1 [54] Rochelle-Newall E J, Fisher T R. Production of chromophoric dissolved organic matter fluorescence in marine and estuarine environments: an investigation into the role of phytoplankton[J]. Marine Chemistry, 2002, 77(1): 7−21. doi: 10.1016/S0304-4203(01)00072-X [55] Nelson N B, Carlson C A, Steinberg D K. Production of chromophoric dissolved organic matter by Sargasso Sea microbes[J]. Marine Chemistry, 2004, 89(1/4): 273−287. [56] Yamashita Y, Tanoue E. Production of bio-refractory fluorescent dissolved organic matter in the ocean interior[J]. Nature Geoscience, 2008, 1(9): 579−582. doi: 10.1038/ngeo279 [57] Jørgensen L, Stedmon C A, Kragh T, et al. Global trends in the fluorescence characteristics and distribution of marine dissolved organic matter[J]. Marine Chemistry, 2011, 126(1/4): 139−148. [58] Nelson N B, Siegel D A. The global distribution and dynamics of chromophoric dissolved organic matter[J]. Annual Review of Marine Science, 2013, 5: 447−476. doi: 10.1146/annurev-marine-120710-100751 [59] Peuravuori J, Pihlaja K. Molecular size distribution and spectroscopic properties of aquatic humic substances[J]. Analytica Chimica Acta, 1997, 337(2): 133−149. doi: 10.1016/S0003-2670(96)00412-6 [60] Lou Tao, Xie Huixiang. Photochemical alteration of the molecular weight of dissolved organic matter[J]. Chemosphere, 2006, 65(11): 2333−2342. doi: 10.1016/j.chemosphere.2006.05.001 [61] Weishaar J L, Aiken G R, Bergamaschi B A, et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon[J]. Environmental Science & Technology, 2003, 37(20): 4702−4708. [62] Bertilsson S, Tranvik L J. Photochemical transformation of dissolved organic matter in lakes[J]. Limnology and Oceanography, 2000, 45(4): 753−762. doi: 10.4319/lo.2000.45.4.0753 [63] Helms J R, Stubbins A, Ritchie J D, et al. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter[J]. Limnology and Oceanography, 2008, 53(3): 955−969. doi: 10.4319/lo.2008.53.3.0955 [64] Su Jianzhong, Dai Minhan, He Biyan, et al. Tracing the origin of the oxygen-consuming organic matter in the hypoxic zone in a large eutrophic estuary: the lower reach of the Pearl River Estuary, China[J]. Biogeosciences, 2017, 14(18): 4085−4099. doi: 10.5194/bg-14-4085-2017 [65] Diaz R J. Overview of hypoxia around the world[J]. Journal of Environmental Quality, 2001, 30(2): 275−281. doi: 10.2134/jeq2001.302275x [66] Rabouille C, Conley D J, Dai M H, et al. Comparison of hypoxia among four river-dominated ocean margins: the Changjiang (Yangtze), Mississippi, Pearl, and Rhône rivers[J]. Continental Shelf Research, 2008, 28(12): 1527−1537. doi: 10.1016/j.csr.2008.01.020 [67] Kemp W M, Testa J M, Conley D J, et al. Temporal responses of coastal hypoxia to nutrient loading and physical controls[J]. Biogeosciences, 2009, 6(12): 2985−3008. doi: 10.5194/bg-6-2985-2009 [68] 李繁华, 刘爱菊, 赵松鹤, 等. 山东近海水文状况[M]. 济南: 山东省地图出版社, 1989.Li Fanhua, Liu Aiju, Zhao Songhe, et al. Shandong Coastal Waters[M]. Ji’nan: Shandong Province Map Press, 1989. [69] Lee Y C, Qin Y S, Liu R Y. Yellow Sea Atlas[M]. Seoul: Ho Yong Publishing Co., 1998. [70] 郭炳火, 黄振宗, 李培英, 等. 中国近海及邻近海域海洋环境[M]. 北京: 海洋出版社, 2004.Guo Binghuo, Huang Zhengzong, Li Peiying, et al. Marine Environment of China Seas and its Adjacent Sea Area[M]. Beijing: China Ocean Press, 2004. [71] Lønborg C, Álvarez-Salgado X A, Davidson K, et al. Assessing the microbial bioavailability and degradation rate constants of dissolved organic matter by fluorescence spectroscopy in the coastal upwelling system of the Ría de Vigo[J]. Marine Chemistry, 2010, 119(1/4): 121−129. -