Hydrothermal systems at offshore Taiwan: Unique biological and geochemical characteristics
-
摘要: 台湾地处西太平洋构造活动带,近海发育了多处热液活动,其中最典型的为龟山岛和绿岛热液体系。本文对海峡两岸在龟山岛和绿岛热液的地球化学特征以及周边生物体的响应的研究进展进行了综述。龟山岛热液喷出流体具有全球最低的pH(1.52),富含重金属元素和CO2等酸性气体,是周围海水中有色溶解有机质的来源;绿岛具有全球热液中最低的溶解有机碳浓度(14 μmol /L),且具有特殊的动力学特性。喷口周边分布了较为罕见的自然硫烟囱体和硫磺球。喷口的高毒性、高酸性热液改变了热液区生物体如螃蟹的生活习性和解毒机制。热液区的主要活跃菌群为参与碳、硫和氮代谢途径的γ-和ε-变形菌。主要生物质合成以硫还原和硫氧化的化能无机自养型生物为主,微生物硫代谢促进了热液系统中的微生物能量流动和元素循环作用。某些热液生物采用繁殖期迁徙的机制应对高毒性、高酸性热液环境。在热液活动的胁迫下,这些微生物产生了新颖独特的代谢产物。此外,龟山岛和绿岛热液体系还受到了潮汐、台风和地震等灾害性事件的影响。台湾近海热液体系的研究对认识热液地球化学循环、探讨热液的生态环境效应等具有重要的意义。Abstract: Offshore eastern Taiwan situated in the West Pacific active zone, there are multiple hydrothermal vents among which Kueishantao (KST) and Lutao (LT) host the most active systems. This paper reviewed the progress of the geochemical characteristics and biological responses of the KST and LT hydrothermal systems. The vent fluids emanated from the shallow KST hydrothermal vents have the world's lowest pH (1.52) values of any submarine vents. The fluids are rich in heavy metals and are accompanied by gases composed mostly by CO2. The hydrothermal vents are considered to be a source for chromophoric and fluorescent dissolved organic matter in the oceans. The hydrothermal systems showed the world’s lowest concentration of dissolved organic carbon (14 μmol/L) and unique kinetic characteristics in Lutao. Native sulfur chimneys and sulfur balls were found around the KST vents. The highly toxic and acidic KST vent fluids have disturbed the behavior of ambient macro-organisms including crabs which have developed detoxication measures. The active bacteria groups in the KST field are dominated by Gammaproteobacteria and Epsilonbacteraeota that are involved in the carbon, sulfur, and nitrogen metabolic pathways. Sulfur-reducing and sulfide-oxidizing chemolithoautotrophs account for most of the primary biomass synthesis, which fuels microbial energy flow and element cycling in the hydrothermal systems. Vent crab evolved an adaptive modulation of reproductive behavior to survive in the hydrothermal vent field. Under the stress of the KST hydrothermal activity, the microorganisms have generated cryptic compounds and metabolic products. Furthermore, both the KST and LD hydrothermal systems are affected by tides and catastrophic events such as typhoons and earthquakes. The studies on the hydrothermal systems at offshore Taiwan are of essential importance for investigating the geochemical cycles and eco-environmental impacts of global hydrothermal systems.1) Lebrato M, Garbe-Schönberg D, Tseng L C, et al. Earthquake and typhoon trigger shifts in shallow vents biogeochemistry analogous to human-made ocean disturbances[J]. Submitted to Scientific Reports, 2019.
-
图 4 龟山岛热液流体温度受到全日潮的影响,2000年台风“碧利斯”摧毁了所监测的喷口使其不再活动[4] (a);潮汐对绿岛热液“户外池”水深的影响(b)
Fig. 4 The Kueishantao vent fluids were affected by diurnal tides, and the Typhoon “Bilis” at 2000 destroyed the monitored vent (a); semi-diurnal oscillation of water depth induced by tide of the Lutao hydrothermal system (b)
图 5 热液口微生物介导的生物地球化学过程,以及这些独特生态系统中碳、硫和氮循环的可能耦合机制(根据文献[23]重新绘制)
rTCA/CCB表示还原性三羧酸循环/卡尔文循环
Fig. 5 Microbial involved biogeochemical process, and the carbon, sulfur and nitrogen cycles and possible coupling mechanisms of this unique hydrothermal ecological system (modified from referance [23])
rTCA/CCB represents reductive tricarboxylic acid cycle/Calvin-Benson-Bassham cycle
-
[1] Chen C T A, Wang B J, Huang J F, et al. Investigation into extremely acidic hydrothermal fluids off Kueishan Tao, Taiwan, China[J]. Acta Oceanologica Sinica, 2005, 24(1): 125−133. [2] Zheng Hao, Xu Changdong, Yang Liyang, et al. Diurnal variations of dissolved organic matter in the hydrothermal system of Green Island, Taiwan[J]. Marine Chemistry, 2017, 195: 61−69. doi: 10.1016/j.marchem.2017.05.003 [3] Shen Chuanchou, Wu C C, Dai Changfeng, et al. Variable uplift rate through time: Holocene coral reef and neotectonics of Lutao, eastern Taiwan[J]. Journal of Asian Earth Sciences, 2018, 156: 201−206. doi: 10.1016/j.jseaes.2018.01.016 [4] Chen C T A, Zeng Zhigang, Kuo Fuwen, et al. Tide-influenced acidic hydrothermal system offshore NE Taiwan[J]. Chemical Geology, 2005, 224(1/3): 69−81. [5] Wu Shijun, Yang Canjun, Chen C T A. A handheld sampler for collecting organic samples from shallow hydrothermal vents[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(8): 1951−1958. doi: 10.1175/JTECH-D-12-00189.1 [6] Han Chenhua, Ye Ying, Pan Yiwen, et al. Spatial distribution pattern of seafloor hydrothermal vents to the southeastern Kueishan Tao offshore Taiwan Island[J]. Acta Oceanologica Sinica, 2014, 33(4): 37−44. doi: 10.1007/s13131-014-0405-x [7] Ding Qian, Pan Yiwen, Huang Yuanfeng, et al. The optimization of Ag/Ag2S electrode using carrier electroplating of nano silver particles and its preliminary application to offshore Kueishan Tao, Taiwan[J]. Continental Shelf Research, 2015, 111: 262−267. doi: 10.1016/j.csr.2015.08.018 [8] Chen Xuegang, Lyu S S, Garbe-Schönberg D, et al. Heavy metals from Kueishantao shallow-sea hydrothermal vents, offshore northeast Taiwan[J]. Journal of Marine Systems, 2018, 180: 211−219. doi: 10.1016/j.jmarsys.2016.11.018 [9] Zeng Zhigang, Wang Xiaoyuan, Chen C T A, et al. Boron isotope compositions of fluids and plumes from the Kueishantao hydrothermal field off northeastern Taiwan: implications for fluid origin and hydrothermal processes[J]. Marine Chemistry, 2013, 157: 59−66. doi: 10.1016/j.marchem.2013.09.001 [10] Hung J J, Yeh H Y, Peng S H, et al. Influence of submarine hydrothermalism on sulfur and metal accumulation in surface sediments in the Kueishantao venting field off northeastern Taiwan[J]. Marine Chemistry, 2018, 198: 88−96. doi: 10.1016/j.marchem.2017.12.004 [11] Zeng Zhigang, Chen C T A, Yin Xuebo, et al. Origin of native sulfur ball from the Kueishantao hydrothermal field offshore northeast Taiwan: Evidence from trace and rare earth element composition[J]. Journal of Asian Earth Sciences, 2011, 40(2): 661−671. doi: 10.1016/j.jseaes.2010.10.019 [12] Zeng Zhigang, Liu Changhua, Chen C T A, et al. Origin of a native sulfur chimney in the Kueishantao hydrothermal field, offshore northeast Taiwan[J]. Science in China Series D: Earth Sciences, 2007, 50(11): 1746−1753. doi: 10.1007/s11430-007-0092-y [13] Yu Mingzhen, Chen Xuegang, Garbe-Schönberg D, et al. Volatile chalcophile elements in native sulfur from a submarine hydrothermal system at Kueishantao, offshore NE Taiwan[J]. Minerals, 2019, 9(4): 245. doi: 10.3390/min9040245 [14] Chen Xuegang, Zhang Haiyan, Li Xiaohu, et al. The chemical and isotopic compositions of gas discharge from shallow-water hydrothermal vents at Kueishantao, offshore northeast Taiwan[J]. Geochemical Journal, 2016, 50(4): 341−355. doi: 10.2343/geochemj.2.0425 [15] Lin Y S, Lui H K, Lee J, et al. Fates of vent CO2 and its impact on carbonate chemistry in the shallow-water hydrothermal field offshore Kueishantao Islet, NE Taiwan[J]. Marine Chemistry, 2019, 210: 1−12. doi: 10.1016/j.marchem.2019.02.002 [16] Yang T F, Lan T F, Lee H F, et al. Gas compositions and helium isotopic ratios of fluid samples around Kueishantao, NE offshore Taiwan and its tectonic implications[J]. Geochemical Journal, 2005, 39(5): 469−480. doi: 10.2343/geochemj.39.469 [17] Chen Xuegang, Lyu Shuangshuang, Zhang Pingping, et al. Gas discharges from the Kueishantao hydrothermal vents, offshore northeast Taiwan: Implications for drastic variations of magmatic/hydrothermal activities[J]. Journal of Volcanology and Geothermal Research, 2018, 353: 1−10. doi: 10.1016/j.jvolgeores.2018.01.013 [18] Yang Liyang, Zhuang Wane, Chen C T A, et al. Unveiling the transformation and bioavailability of dissolved organic matter in contrasting hydrothermal vents using fluorescence EEM-PARAFAC[J]. Water Research, 2017, 111: 195−203. doi: 10.1016/j.watres.2017.01.001 [19] Yang Liyang, Hong Huasheng, Guo Weidong, et al. Absorption and fluorescence of dissolved organic matter in submarine hydrothermal vents off NE Taiwan[J]. Marine Chemistry, 2012, 128-129: 64−71. doi: 10.1016/j.marchem.2011.10.003 [20] Chiang H T, Shyu C, Chang H, et al. Geothermal monitoring of Kueishantao Island offshore of northeastern Taiwan[J]. Terrestrial Atmospheric and Oceanic Sciences, 2010, 21(3): 563−573. doi: 10.3319/TAO.2009.11.02.01(TH) [21] Hung J J, Yeh H Y, Peng S H, et al. External-forcing modulation on temporal variations of hydrothermalism-evidence from sediment cores in a submarine venting field off northeastern Taiwan[J]. PLoS One, 2018, 13(11): e0207774. doi: 10.1371/journal.pone.0207774 [22] Tang Kai, Liu Keshao, Jiao Nianzhi, et al. Functional metagenomic investigations of microbial communities in a shallow-sea hydrothermal system[J]. PLoS One, 2013, 8(8): e72958. doi: 10.1371/journal.pone.0072958 [23] Li Yufang, Tang Kai, Zhang Lianbao, et al. Coupled carbon, sulfur, and nitrogen cycles mediated by microorganisms in the water column of a shallow-water hydrothermal ecosystem[J]. Frontiers in Microbiology, 2018, 9: 2718. doi: 10.3389/fmicb.2018.02718 [24] Zhang Yao, Zhao Zihao, Chen C T A, et al. Sulfur metabolizing microbes dominate microbial communities in andesite-hosted shallow-sea hydrothermal systems[J]. PLoS One, 2012, 7(9): e44593. doi: 10.1371/journal.pone.0044593 [25] Zeng Zhigang, Ma Yao, Wang Xiaoyuan, et al. Elemental compositions of crab and snail shells from the Kueishantao hydrothermal field in the southwestern Okinawa Trough[J]. Journal of Marine Systems, 2018, 180: 90−101. doi: 10.1016/j.jmarsys.2016.08.012 [26] Jeng M S, Ng N K, Ng P K L. Feeding behaviour: Hydrothermal vent crabs feast on sea “snow”[J]. Nature, 2004, 432(7020): 969. doi: 10.1038/432969a [27] Hung J J, Peng S H, Chen C T A, et al. Reproductive adaptations of the hydrothermal vent crab Xenograpus testudinatus: An isotopic approach[J]. PLoS One, 2019, 14(2): e0211516. doi: 10.1371/journal.pone.0211516 [28] Hsiao S H, Fang T H. Hg bioaccumulation in marine copepods around hydrothermal vents and the adjacent marine environment in northeastern Taiwan[J]. Marine Pollution Bulletin, 2013, 74(1): 175−182. doi: 10.1016/j.marpolbul.2013.07.007 [29] Wang Tengwei, Chan T Y, Chan B K K. Trophic relationships of hydrothermal vent and non-vent communities in the upper sublittoral and upper bathyal zones off Kueishan Island, Taiwan: a combined morphological, gut content analysis and stable isotope approach[J]. Marine Biology, 2014, 161(11): 2447−2463. doi: 10.1007/s00227-014-2479-6 [30] Chen Y J, Wu J Y, Chen C T A, et al. Effects of low-pH stress on shell traits of the dove snail, Anachis misera, inhabiting shallow-vent environments off Kueishan Islet, Taiwan[J]. Biogeosciences, 2015, 12(9): 2631−2639. doi: 10.5194/bg-12-2631-2015 [31] Jiang Wei, Ye Panpan, Chen C T A, et al. Two novel hepatocellular carcinoma cycle inhibitory cyclodepsipeptides from a hydrothermal vent crab-associated fungus Aspergillus clavatus C2WU[J]. Marine Drugs, 2013, 11(12): 4761−4772. doi: 10.3390/md11124761 [32] Jiang Wei, Zhong Yuqian, Shen Li, et al. Stress-driven discovery of natural products from extreme marine environment-Kueishantao hydrothermal vent, a case study of metal switch valve[J]. Current Organic Chemistry, 2014, 18(7): 925−934. doi: 10.2174/138527281807140515155705 [33] Pan Chengqian, Shi Yutong, Chen Xuegang, et al. New compounds from a hydrothermal vent crab-associated fungus Aspergillus versicolor XZ-4[J]. Organic & Biomolecular Chemistry, 2017, 15(5): 1155−1163. [34] Shi Yutong, Pan Chengqian, Wang Kuiwu, et al. Synthetic multispecies microbial communities reveals shifts in secondary metabolism and facilitates cryptic natural product discovery[J]. Environmental Microbiology, 2017, 19(9): 3606−3618. doi: 10.1111/1462-2920.13858 [35] Pan Chengqian, Shi Yuotong, Auckloo B N, et al. Four verrucosidin derivatives isolated from the hydrothermal vent sulfur-derived fungus Penicillium sp. Y-50-10[J]. Chemistry of Natural Compounds, 2018, 54(2): 253−256. doi: 10.1007/s10600-018-2316-0 [36] Shi Yutong, Pan Chengqian, Cen Suoyu, et al. Comparative metabolomics reveals defence-related modification of citrinin by Penicillium citrinum within a synthetic Penicillium–Pseudomonas community[J]. Environmental Microbiology, 2019, 21(1): 496−510. doi: 10.1111/1462-2920.14482 [37] Ye Panpan, Shen Ling, Jiang Wei, et al. Zn-driven discovery of a hydrothermal vent fungal metabolite clavatustide C, and an experimental study of the anti-cancer mechanism of Clavatustide B[J]. Marine Drugs, 2014, 12(6): 3203−3217. doi: 10.3390/md12063203 [38] Ding Chihong, Wu Xiaodan, Auckloo B N, et al. An unusual stress metabolite from a hydrothermal vent fungus Aspergillus sp. WU 243 induced by cobalt[J]. Molecules, 2016, 21(1): 105. doi: 10.3390/molecules21010105 [39] Pan Chengqian, Shi Yutong, Auckloo B N, et al. Isolation and antibiotic screening of fungi from a hydrothermal vent site and characterization of secondary metabolites from a Penicillium isolate[J]. Marine Biotechnology, 2017, 19(5): 469−479. doi: 10.1007/s10126-017-9765-5