Ocean drilling and major advances in marine geological and geophysical research of the South China Sea
-
摘要: 南海是西太平洋地区规模最大且具有代表性的边缘海盆地之一。经过近几十年的研究积累,尤其是通过实施5个国际大洋钻探航次(1999–2018年)与国家自然科学基金委“南海深海过程演变”重大研究计划(2011–2019年),我国科学家获得了大量宝贵的第一手资料,取得了一系列创新进展与重大突破,标志着南海海洋地质与地球物理研究正走向国际前沿。重要研究成果包括:(1)新提出南海是“板缘张裂”盆地,与经典的大西洋型陆缘模式不同;(2)大洋钻探首次获取了基底玄武岩样品,结合中国在南海首次深拖地磁测量实验,精确测定了南海海盆玄武岩年龄,揭示南海海盆从东向西分段扩张;(3)大洋钻探结果发现南海陆缘岩石圈减薄之初岩浆迅速出现,未发现缓慢破裂造成的蛇纹岩出露;(4)发现南海扩张结束后仍存在大量岩浆活动,可能受控于多种构造与地幔因素;(5)地球化学证据与地球动力学模拟都显示南海岩浆的形成受到周边俯冲带的影响。目前我国的海洋地球科学正在进入崭新的发展阶段,有望以南海为基点,开始拓展到周边大洋,通过主导大型研究计划以及建设我国大洋钻探平台,以提升我国在南海、西太平洋与印度洋海洋地质科学研究的实质性影响力与引领地位。Abstract: The South China Sea (SCS) is the largest marginal sea in the Western Pacific Ocean. Major advances in understanding SCS tectonic processes have been made in the last several decades, especially through the implementation of five international ocean drilling expeditions during 1999-2018 and the “South China Sea Deep” major research program of the National Natural Science Foundation of China (2011-2019). Critical data have been acquired and important scientific results have been obtained, which have changed our view of how the SCS marginal sea basin developed and evolved. Major progresses have been made in multiple aspects: (1) the SCS is proposed as a new type of “plate-edge rifting” model, which differs from the classic Atlantic-type “intra-plate rifting” model; (2) Ocean drilling obtained the SCS basement basalt samples for the first time, which together with the first deep-towed magnetic survey, enabled the determination of SCS basin ages and revealing that the SCS seafloor spreading propagated stepwise from east to west; (3) Magmatism appeared rapidly during thinning of lithosphere in the SCS northern margin, in sharp contrast to serpentinite exposure by relatively slow rifting of the Atlantic Ocean; (4) Magmatic activity is still significant after the cessation of SCS seafloor spreading, being controlled by multiple tectonic and mantle processes; (5) Geochemical evidence and geodynamic simulations show that the SCS magmatism is affected by the surrounding subduction zones. At present, marine geoscience research of the SCS is being extended to studies of its interaction with surrounding ocean basins. Through conducting large-scale research programs, building ocean drilling platform, and strengthening international collaboration, China’s contributions to marine geoscience research are expected to increase.
-
图 2 南海北部陆缘及部分大洋钻探站位
a.主要构造单元与地震剖面;b. 地震剖面解释图。剖面中侧重解释了岩浆反射,包括岩席、岩墙和岩浆底侵,伴随岩浆侵位(图来源自参考文献[14])
Fig. 2 Northern margin of the South China Sea and IODP drill sites
a. Major tectonic units and seismic sections; b. tectonic interpretation of a seismic profile, showing reflectors associated with magmatism, including sills, dikes, underplating, and intrusion (from reference [14])
图 3 南海陆缘减薄破裂中岩浆活动过程在地幔尺度的概念模型
a. 早期俯冲阶段;b.早期裂谷阶段;c.张裂晚期至扩张早期。板1和板2分别代表古南海板块的北部和南部板块(图来源自文献[14])
Fig. 3 Conceptual model of mantle and magmatic processes during thinning and rifting of the South China Sea
a. Early subduction stage; b. early rifting stage; c. late rifting to early spreading stages. Plates 1 and 2 indicate the northern and southern blocks of the ancient South China Sea plate (from reference [14])
图 7 南海东部次海盆U1431井洋中脊玄武岩中的橄榄石结晶温度,显示其类似于洋岛玄武岩,且明显高于正常洋中脊玄武岩(图来源自文献[58])
Fig. 7 The olivine crystallization temperature of the mid-ocean ridge basalt in the East Sub-basin of the South China Sea, showing temperatures similar to ocean island basalts and systematically higher than that of normal mid-ocean ridge basalts (from reference [58])
图 14 地球动力学模拟显示20 Ma时的地幔上涌:100 km处线性上涌与洋中脊扩张有关(a);500 km处圆顶状上涌与周边俯冲回转流有关(b)(图来源自文献参考[1])
Fig. 14 Geodynamic simulation showing mantle upwelling at 20 Ma: linear upwelling at 100 km depth induced by seafloor spreading(a); doom-shaped upwelling at 500 km depth possibly related to subduction return flow(b) (from reference [1])
表 1 南海大洋钻探航次
Tab. 1 IODP expeditions in the South China Sea
航次 时间 井位 岩芯长度/m 水深/m 基底岩芯/m ODP 184 1999年2–4月 1143–1148 5 463 2 037~3 294 — IODP 349 2014年2–4月 U1431–U1435 1 603 3 253~4 379 78.0 IODP 367 2017年2–4月 U1499–U1500 940 3 760~3 802 114.9 IODP 368 2017年4–6月 U1501–U1505 1 601 2 843~3 868 180.0 IODP 368X 2018年11–12月 U1503 176 3 868 47.9 总计 约8.5个月 18个 9 783 — 420.8 -
[1] Lin Jian, Xu Yigang, Sun Zhen, et al. Mantle upwelling beneath the South China Sea and links to surrounding subduction systems[J]. National Science Review, 2019. doi: 10.1093/nsr/nwz1230. [2] Briais A, Patriat P, Tapponnier P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: implications for the Tertiary tectonics of Southeast Asia[J]. Journal of Geophysical Research, 1993, 98(B4): 6299−6328. doi: 10.1029/92JB02280 [3] Li Chunfeng, Xu Xing, Lin Jian, et al. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(12): 4958−4983. doi: 10.1002/2014GC005567 [4] Sun Zhen, Jian Zhimin, Stock J M, et al. South China Sea Rifted Margin[Z]. Proceedings of the International Ocean Discovery Program, 367/368: College Station, TX (International Ocean Discovery Program), 2018. https://doi.org/10.14379/iodp.proc.367368.2018. [5] Jian Zhimin, Larsen H C, Zarikian C A, et al. Expedition 368 Preliminary Report: South China Sea Rifted Margin[Z]. International Ocean Discovery Program, 2018. https://doi.org/10.14379/iodp.pr.368.2018. [6] 汪品先. 追踪边缘海的生命史: “南海深部计划”的科学目标[J]. 科学通报, 2012, 57(24): 3093−3114.Wang Pinxian. Tracing the life history of a marginal sea—on the “South China Sea Deep” research program[J]. Chinese Science Bulletin, 2012, 57(24): 3093−3114. [7] Wang P, Prell W L, Blum P, et al. Proc. ODP, Initial Reports, 184: College Station, TX (Ocean Drilling Program)[Z]. 2000. http://do.org/10.2973/odp.proc.ir.184.2000. [8] Li C F, Lin J, Kulhanek D K, et al. Proceedings of the International Ocean Discovery Program, 349: College Station, TX (International Ocean Discovery Program)[Z]. 2015. https://doi.org/10.14379/iodp.proc.349.2015. [9] Lin J, Li C F, Kulhanek D K, et al. South China Sea tectonics and magnetics: constraints from IODP expedition 349 and deep-tow magnetic surveys[C]//AGU Fall Meeting Abstracts. AGU, 2014. [10] Koppers A A P. On the 40Ar/39Ar dating of low-Potassium ocean crust basalt from IODP Expedition 349, South China Sea[C]//2014 Fall Meeting Abstract. AGU, 2014. [11] Zhang Guoliang, Chen Lihui, Jackson M G, et al. Evolution of carbonated melt to alkali basalt in the South China Sea[J]. Nature Geoscience, 2017, 10(3): 229−235. doi: 10.1038/ngeo2877 [12] Childress L, Expedition 368X Scientists. Expedition 368X Preliminary Report: South China Sea rifted margin[Z]. International Ocean Discovery Program, 2019, https://doi.org/10.14379/iodp.pr.368X.2019. [13] Larsen H C, Mohn G, Nirrengarten M, et al. Rapid transition from continental breakup to igneous oceanic crust in the South China Sea[J]. Nature Geoscience, 2018, 11(10): 782−789. doi: 10.1038/s41561-018-0198-1 [14] Sun Zhen, Lin Jian, Qiu Ning, et al. The role of magmatism in thinning and breakup of the South China Sea continental margin[J]. National Science Review, 2019, doi: 10.1093/nsr/nwz116. [15] Wang Pinxian, Huang Chiyue, Lin Jian, et al. The South China Sea is not a mini-Atlantic: plate-edge rifting vs intra-plate rifting[J]. National Science Review, 2019. doi: 10.1093/nsr/nwz135. [16] Hou Wenai, Li Chunfeng, Wan Xiaoli, et al. Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation[J]. Earth and Planetary Physics, 2019, 3(4): 314−329. doi: 10.26464/epp2019033 [17] Wan Xiaoli, Li Chunfeng, Zhao Minghui, et al. Seismic velocity structure of the magnetic quiet zone and continent-ocean boundary in the northeastern South China Sea[J]. Journal of Geophysical Research, 2019. doi: 10.1029/2019JB017785. [18] Pérez-Gussinyé M, Morgan J P, Reston T J, et al. The rift to drift transition at non-volcanic margins: insights from numerical modelling[J]. Earth and Planetary Science Letters, 2006, 244(1/2): 458−473. [19] Bronner A, Sauter D, Manatschal G, et al. Magmatic breakup as an explanation for magnetic anomalies at magma-poor rifted margins[J]. Nature Geoscience, 2011, 4(8): 549−553. doi: 10.1038/ngeo1201 [20] Boillot G, Grimaud S, Mauffret A, et al. Ocean-continent boundary off the Iberian margin: a serpentinite diapir west of the Galicia Bank[J]. Earth and Planetary Science Letters, 1980, 48(1): 23−34. doi: 10.1016/0012-821X(80)90166-1 [21] Boillot G, Beslier M O, Girardeau J. Nature, structure and evolution of the ocean-continent boundary: the lesson of the west Galicia margin (Spain)[M]//Banda E, Torné M, Talwani M. Rifted Ocean-Continent Boundaries. Dordrecht: Springer, 1995: 219–229. [22] Reston T J. The formation of non-volcanic rifted margins by the progressive extension of the lithosphere: the example of the West Iberian margin[M]//Karner G, Manatschal G, Pinheiro L D. Imaging, Mapping and Modelling Continental Lithosphere Extension and Breakup. Geological Society, London, Special Publication, 2007: 77–110. [23] Whitmarsh R B, Manatschal G, Minshull T A. Evolution of magma-poor continental margins from rifting to seafloor spreading[J]. Nature, 2001, 413(6852): 150−154. doi: 10.1038/35093085 [24] Roberts D G, Backman J, Morton A C, et al. Evolution of Volcanic Rifted Margins: Synthesis of Leg 81 Results on the West Margin of Rockall Plateau[Z]. Initial Reports of the Deep Sea Drilling Project 81. Texas A & M University, Ocean Drilling Program, College Station, TX, United States. 1984: 883–911. [25] Eldholm O, Thiede J, Taylor B. Proceedings ODP, Scientific Results, 104[Z]. Ocean Drilling Program, College Station, TX. 1989. [26] Eldholm O, Thiede J, Taylor E. Evolution of the Vøring volcanic margin[Z]. Proceedings of the Ocean Drilling Program, Scientific Results, 1989, 104: 1033–1065. [27] White R, McKenzie D. Magmatism at rift zones: the generation of volcanic continental margins and flood basalts[J]. Journal of Geophysical Research, 1989, 94(B6): 7685−7729. doi: 10.1029/JB094iB06p07685 [28] White R S. Magmatism during and after continental break-up[M]//Storey B C, Alabaster T, Pankhurst R J. Magmatism and the Causes of Continental Break-up. Geological Society, London, Special Publication, 1992, 68: 1–16. [29] Coffin M F, Eldholm O. Large igneous provinces: crustal structure, dimensions, and external consequences[J]. Reviews of Geophysics, 1994, 32(1): 1−36. doi: 10.1029/93RG02508 [30] Duncan R A, Larsen H C, Allan J F. Proceedings ODP, Initial Reports, 163[Z]. Ocean Drilling Program, College Station, TX, 1996: 279. [31] Larsen H C, Saunders A D, Clift P D. Proceedings ODP, Initial Reports, 152[Z]. Ocean Drilling Program, College Station, TX, 1994: 977. [32] Larsen H C, Saunders A D. Tectonism and volcanism at the Southeast Greenland Rifted Margin: a record of plume impact and later continental rupture[Z]. Proceedings of the Ocean Drilling Program, Scientific Results, 1998, 152: 503–534. [33] Geoffroy L, Burov E B, Werner P. Volcanic passive margins: another way to break up continents[J]. Scientific Reports, 2015, 5: 14828. doi: 10.1038/srep14828 [34] 宋海斌, 郝天珧, 江为为. 南海北部张裂边缘的类型及其形成机制探讨[C]//中国岩石力学与工程学会. 寸丹集——庆贺刘光鼎院士工作50周年学术论文集. 北京: 科学出版社, 1998: 74-81.Song Haibin, Hao Tiaoyao, Jiang Weiwei. Discussion on type and formation mechanism of the northern margin of the South China Sea[C]//Chinese Society for Rock Mechanics & Engineering. Cundanji-Congratulations on the 50th Anniversary of Academician Liu Guangding. Beijing: Science Press, 1998: 74-81. [35] 吴世敏, 周蒂, 丘学林. 南海北部陆缘的构造属性问题[J]. 高校地质学报, 2001, 7(4): 419−426. doi: 10.3969/j.issn.1006-7493.2001.04.006Wu Shimin, Zhou Di, Qiu Xuelin. Tectonic setting of the northern margin of South China Sea[J]. Geological Journal of China Universities, 2001, 7(4): 419−426. doi: 10.3969/j.issn.1006-7493.2001.04.006 [36] 阎贫, 刘海龄. 南海北部陆缘地壳结构探测结果分析[J]. 热带海洋学报, 2002, 21(2): 1−12. doi: 10.3969/j.issn.1009-5470.2002.02.001Yan Pin, Liu Hailing. Analysis on deep crust sounding results in northern margin of South China Sea[J]. Journal of Tropical Oceanography, 2002, 21(2): 1−12. doi: 10.3969/j.issn.1009-5470.2002.02.001 [37] 李家彪. 南海大陆边缘动力学: 科学实验与研究进展[J]. 地球物理学报, 2011, 54(12): 2993−3003. doi: 10.3969/j.issn.0001-5733.2011.12.002Li Jiabiao. Dynamics of the continental margins of South China Sea: scientific experiments and research progresses[J]. Chinese Journal of Geophysics, 2011, 54(12): 2993−3003. doi: 10.3969/j.issn.0001-5733.2011.12.002 [38] 郝天珧, 徐亚, 孙福利, 等. 南海共轭大陆边缘构造属性的综合地球物理研究[J]. 地球物理学报, 2011, 54(12): 3098−3116. doi: 10.3969/j.issn.0001-5733.2011.12.011Hao Tianyao, Xu Ya, Sun Fuli, et al. Integrated geophysical research on the tectonic attribute of conjugate continental margin of South China Sea[J]. Chinese Journal of Geophysics, 2011, 54(12): 3098−3116. doi: 10.3969/j.issn.0001-5733.2011.12.011 [39] 李三忠, 索艳慧, 刘鑫, 等. 南海的基本构造特征与成因模型: 问题与进展及论争[J]. 海洋地质与第四纪地质, 2012, 32(6): 35−53.Li Sanzhong, Suo Yanhui, Liu Xin, et al. Basic structural pattern and tectonic models of the South China Sea: problems, advances and controversies[J]. Marine Geology and Quaternary Geology, 2012, 32(6): 35−53. [40] Yu Mengming, Yan Yi, Huang Chiyue, et al. Opening of the South China Sea and upwelling of the Hainan Plume[J]. Geophysical Research Letters, 2018, 45(6): 2600−2609. doi: 10.1002/2017GL076872 [41] Fan Chaoyan, Xia Shaohong, Zhao Fang, et al. New insights into the magmatism in the northern margin of the South China Sea: spatial features and volume of intraplate seamounts[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(6): 2216−2239. doi: 10.1002/2016GC006792 [42] 任建业, 庞雄, 于鹏, 等. 南海北部陆缘深水–超深水盆地成因机制分析[J]. 地球物理学报, 2018, 61(12): 4901−4920. doi: 10.6038/cjg2018L0558Ren Jianye, Pang Xiong, Yu Peng, et al. Characteristics and formation mechanism of deepwater and ultra-deepwater basins in the northern continental margin of the South China Sea[J]. Chinese Journal of Geophysics, 2018, 61(12): 4901−4920. doi: 10.6038/cjg2018L0558 [43] Zhao Minghui, He Enyuan, Sibuet J C, et al. Postseafloor spreading volcanism in the central east South China Sea and its formation through an extremely thin oceanic crust[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(3): 621−641. doi: 10.1002/2017GC007034 [44] Xie Xinong, Huang Chiyue, Shao Lei. Preface to the special issue “Tectonics and depositional infilling of western Pacific marginal sea”[J]. Marine Geophysical Research, 2019, 40(2): 97−98. doi: 10.1007/s11001-019-09386-6 [45] Xie Xinong, Ren Jianye, Pang Xiong, et al. Stratigraphic architectures and associated unconformities of Pearl River Mouth basin during rifting and lithospheric breakup of the South China Sea[J]. Marine Geophysical Research, 2019, 40(2): 129−144. doi: 10.1007/s11001-019-09378-6 [46] Taylor B, Hayes D E. The tectonic evolution of the South China Sea Basin[M]//The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. Washington: American Geophysical Union, 1980, 23: 89–104. [47] Taylor B, Hayes D E. Origin and history of the South China Sea basin[M]//The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2. Washington: American Geophysical Union, 1983, 27: 23–56. [48] 姚伯初. 南海海盆海底扩张年代之探讨[J]. 南海地质研究, 1998, 10: 23−33.Yao Bochu. Arguments on the sea floor spreading ages of South China Sea basin[J]. Geological Research of South China Sea, 1998, 10: 23−33. [49] Pautot G, Rangin C, Briais A, et al. Spreading direction in the central South China Sea[J]. Nature, 1986, 321(6066): 150−154. doi: 10.1038/321150a0 [50] Barckhausen U, Roeser H A. Seafloor spreading anomalies in the South China Sea revisited[M]//Continent-Ocean Interactions within East Asian Marginal Seas. Washington, DC: AGU, 2004, 149: 121–125. [51] Hsu S K, Yeh Y, Doo W B, et al. New bathymetry and magnetic lineations identifications in the northernmost South China Sea and their tectonic implications[J]. Marine Geophysical Researches, 2004, 25(1/2): 29−44. [52] Li Chunfeng, Wang Jian, Lin Jian, et al. Thermal evolution of the North Atlantic lithosphere: new constraints from magnetic anomaly inversion with a fractal magnetization model[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(12): 5078−5105. doi: 10.1002/2013GC004896 [53] Ding Weiwei, Sun Zhen, Dadd K, et al. Structures within the oceanic crust of the central South China Sea basin and their implications for oceanic accretionary processes[J]. Earth and Planetary Science Letters, 2018, 488: 115−125. doi: 10.1016/j.jpgl.2018.02.011 [54] Sun Zhen, Ding Weiwei, Zhao Xixi, et al. The latest spreading periods of the South China Sea: new constraints from macrostructure analysis of IODP Expedition 349 cores and geophysical data[J]. Journal of Geophysical Research, 2019, doi: 10.1029/2019JB017584. [55] Li Jiabiao, Ding Weiwei, Wu Ziyin, et al. The propagation of seafloor spreading in the southwestern subbasin, South China Sea[J]. Chinese Science Bulletin, 2012, 57(24): 3182−3191. doi: 10.1007/s11434-012-5329-2 [56] Le Pourhiet L, Chamot-Rooke N, Delescluse M, et al. Continental break-up of the South China Sea stalled by far-field compression[J]. Nature Geoscience, 2018, 11(8): 605−609. doi: 10.1038/s41561-018-0178-5 [57] Zhang Guoliang, Luo Qing, Zhao Jian, et al. Geochemical nature of sub-ridge mantle and opening dynamics of the South China Sea[J]. Earth and Planetary Science Letters, 2018, 489: 145−155. doi: 10.1016/j.jpgl.2018.02.040 [58] Yang Fan, Huang Xiaolong, Xu Yigang, et al. Plume-ridge interaction in the South China Sea: thermometric evidence from Hole U1431E of IODP Expedition 349[J]. Lithos, 2019, 324–325: 466−478. doi: 10.1016/j.lithos.2018.11.031 [59] Yang Fan, Huang Xiaolong, Xu Yigang, et al. Magmatic processes associated with oceanic crustal accretion at slow-spreading ridges: evidence from plagioclase in mid-ocean ridge basalts from the South China Sea[J]. Journal of Petrology, 2019, 60(6): 1135−1162. doi: 10.1093/petrology/egz027 [60] Xia Shaohong, Zhao Fang, Zhao Dapeng, et al. Crustal plumbing system of post-rift magmatism in the northern margin of South China Sea: new insights from integrated seismology[J]. Tectonophysics, 2018, 744: 227−238. doi: 10.1016/j.tecto.2018.07.002 [61] He Enyuan, Zhao Minghui, Qiu Xuelin, et al. Crustal structure across the post-spreading magmatic ridge of the East Sub-basin in the South China Sea: tectonic significance[J]. Journal of Asian Earth Sciences, 2016, 121: 139−152. doi: 10.1016/j.jseaes.2016.03.003 [62] Zhang Jie, Li Jiabiao, Ruan Aiguo, et al. The velocity structure of a fossil spreading centre in the Southwest Sub-basin, South China Sea[J]. Geological Journal, 2016, 51: 548−561. doi: 10.1002/gj.2778 [63] Yan Quanshu, Shi Xuefa, Metcalfe I, et al. Hainan mantle plume produced late Cenozoic basaltic rocks in Thailand, Southeast Asia[J]. Scientific Reports, 2018, 8(1): 2640. doi: 10.1038/s41598-018-20712-7 [64] Yan Quanshu, Castillo P, Shi Xuefa, et al. Geochemistry and petrogenesis of volcanic rocks from Daimao Seamount (South China Sea) and their tectonic implications[J]. Lithos, 2015, 218-219: 117−126. doi: 10.1016/j.lithos.2014.12.023 [65] Xia Shaohong, Zhao Dapeng, Sun Jinlong, et al. Teleseismic imaging of the mantle beneath southernmost China: new insights into the Hainan plume[J]. Gondwana Research, 2016, 36: 46−56. doi: 10.1016/j.gr.2016.05.003 [66] Song Xiaoxiao, Li Chunfeng, Yao Yongjian, et al. Magmatism in the evolution of the South China Sea: geophysical characterization[J]. Marine Geology, 2017, 394: 4−15. doi: 10.1016/j.margeo.2017.07.021 [67] Simmons N A, Myers S C, Johannesson G, et al. LLNL-G3Dv3: global P wave tomography model for improved regional and teleseismic travel time prediction[J]. Journal of Geophysical Research, 2012, 117(B10): B10302. [68] Huang Jinli. P-and S-wave tomography of the Hainan and surrounding regions: insight into the Hainan plume[J]. Tectonophysics, 2014, 633: 176−192. doi: 10.1016/j.tecto.2014.07.007 [69] Liu Jianqiang, Ren Zhongyuan, Nichols A R L, et al. Petrogenesis of Late Cenozoic basalts from North Hainan Island: constraints from melt inclusions and their host olivines[J]. Geochimica et Cosmochimica Acta, 2015, 152: 89−121. doi: 10.1016/j.gca.2014.12.023 [70] Wang Xinyang, Zhao Dapeng, Li Jiabiao. The 2013 Wyoming upper mantle earthquakes: tomography and tectonic implications[J]. Journal of Geophysical Research, 2016, 121(9): 6797−6808. [71] Wei S S, Chen Y J. Seismic evidence of the Hainan mantle plume by receiver function analysis in southern China[J]. Geophysical Research Letters, 2016, 43(17): 8978−8985. doi: 10.1002/2016GL069513 [72] Liu Hao, Chen Fei, Leng Wei, et al. Crustal footprint of the Hainan plume beneath southeast China[J]. Journal of Geophysical Research, 2018, 123(4): 3065−3079. [73] Yu Youqiang, Gao S S, Liu K H, et al. Mantle transition zone discontinuities beneath the Indochina Peninsula: implications for slab subduction and mantle upwelling[J]. Geophysical Research Letters, 2017, 44(14): 7159−7167. doi: 10.1002/2017GL073528 [74] Zhang Nan, Li Zhengxiang. Formation of mantle “lone plumes” in the global downwelling zone—A multiscale modelling of subduction-controlled plume generation beneath the South China Sea[J]. Tectonophysics, 2018, 723: 1−13. doi: 10.1016/j.tecto.2017.11.038 [75] Zhou Zhiyuan, Lin Jian. Geodynamic modeling of mantle evolution of the South China Sea and surrounding subduction systems[C]//AGU Fall Meeting Abstracts. AGU, 2018. [76] Yu Youqiang, Gao S S, Liu K H, et al. Characteristics of the mantle flow system beneath the Indochina Peninsula revealed by teleseismic shear wave splitting analysis[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(5): 1519−1532. doi: 10.1029/2018GC007474 [77] Sandwell D T, Müller R D, Smith W H F, et al. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure[J]. Science, 2014, 346(6205): 65−67. doi: 10.1126/science.1258213 [78] Hayes G P, Moore G L, Portner D E, et al. Slab2, a comprehensive subduction zone geometry model[J]. Science, 2018, 362(6410): 58−61. doi: 10.1126/science.aat4723 [79] Shi Xiaobin, Kirby J, Yu Chuanhai, et al. Spatial variations in the effective elastic thickness of the lithosphere in Southeast Asia[J]. Gondwana Research, 2017, 42: 49−62. doi: 10.1016/j.gr.2016.10.005 [80] Park S H, Langmuir C H, Sims K W W, et al. An isotopically distinct Zealandia–Antarctic mantle domain in the Southern Ocean[J]. Nature Geoscience, 2019, 12(3): 206−214. doi: 10.1038/s41561-018-0292-4