留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国海洋卫星遥感技术进展

林明森 何贤强 贾永君 白雁 叶小敏 龚芳

林明森,何贤强,贾永君,等. 中国海洋卫星遥感技术进展[J]. 海洋学报,2019,41(10):99–112,doi:10.3969/j.issn.0253−4193.2019.10.006
引用本文: 林明森,何贤强,贾永君,等. 中国海洋卫星遥感技术进展[J]. 海洋学报,2019,41(10):99–112,doi:10.3969/j.issn.0253−4193.2019.10.006
Lin Mingsen,He Xianqiang,Jia Yongjun, et al. Advances in marine satellite remote sensing technology in China[J]. Haiyang Xuebao,2019, 41(10):99–112,doi:10.3969/j.issn.0253−4193.2019.10.006
Citation: Lin Mingsen,He Xianqiang,Jia Yongjun, et al. Advances in marine satellite remote sensing technology in China[J]. Haiyang Xuebao,2019, 41(10):99–112,doi:10.3969/j.issn.0253−4193.2019.10.006

中国海洋卫星遥感技术进展

doi: 10.3969/j.issn.0253-4193.2019.10.006
基金项目: 国家重点研发计划(2016YFC1401000);国家杰出青年科学基金(41825014);国家自然科学基金(41406207)。
详细信息
    作者简介:

    林明森(1963—),男,福建省莆田市人,博士,从事海洋遥感、卫星地面资料处理系统建设技术、水色卫星产品处理算法与软件、散射计反演海面风场的反演方法等方面的研究。E-mail:mslin@mail.nsoas.org.cn

  • 中图分类号: P715.7

Advances in marine satellite remote sensing technology in China

  • 摘要: 新中国成立70年来,中国在海洋卫星遥感技术领域取得了丰硕成果。中国制定了长远的自主海洋卫星发展规划,构建了海洋水色、海洋动力环境和海洋监视监测三大系列的海洋卫星,逐步形成了以中国自主卫星为主导的海洋空间监测网,在中国海洋资源与环境监测、海洋防灾减灾、海洋安全管理等方面发挥了重要作用。本文回顾了中国在海洋水色、海洋微波(海洋动力环境)卫星遥感技术的发展历程,重点介绍了中国在海洋卫星遥感技术领域所取得的新成果,并对中国海洋卫星遥感技术的未来发展进行了展望。
  • 图  1  海洋一号A星示意图

    Fig.  1  Diagram of HY-1A

    图  2  海洋一号B星示意图

    Fig.  2  Diagram of HY-1B

    图  3  海洋二号A星示意图

    Fig.  3  Diagram of HY-2A

    图  4  海洋二号B星示意图

    Fig.  4  Diagram of HY-2B

    图  5  高分三号卫星观测示意图

    Fig.  5  Observation diagram of GF-3

  • [1] Jiang Xingwei, Lin Mingsen, Liu Jianqiang, et al. The HY-2 satellite and its preliminary assessment[J]. International Journal of Digital Earth, 2012, 5(3): 266−281. doi: 10.1080/17538947.2012.658685
    [2] 蒋兴伟, 林明森, 宋庆君. 中国海洋卫星雷达高度计海上定标场建设初探[J]. 海洋开发与管理, 2016, 33(5): 8−15. doi: 10.3969/j.issn.1005-9857.2016.05.002

    Jiang Xingwei, Lin Mingsen, Song Qingjun. On the construction of China’s Ocean satellite radar altimetry calibration site[J]. Ocean Development and Management, 2016, 33(5): 8−15. doi: 10.3969/j.issn.1005-9857.2016.05.002
    [3] Lin Mingsen, Jiang Xingwei. HY- 2 Ocean Dynamic Environment Mission and Payloads[C]// 2014 IGARSS, Quebec, Canada, 2014.
    [4] Zhang Haifeng, Wu Qing, Chen Ge. Validation of HY-2A remotely sensed wave heights against buoy data and Jason-2 altimeter measurements[J]. Journal of Atmospheric and Oceanic Technology, 2015, 32(6): 1270−1280. doi: 10.1175/JTECH-D-14-00194.1
    [5] Wu Qing, Chen Ge. Validation and intercomparison of HY-2A/MetOp-A/Oceansat-2 scatterometer wind products[J]. Chinese Journal of Oceanology and Limnology, 2015, 33(5): 1181−1190. doi: 10.1007/s00343-015-4160-4
    [6] Liu Mingkun, Guan Lei, Zhao Wei, et al. Evaluation of sea surface temperature from the HY-2 scanning microwave radiometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(3): 1372−1380. doi: 10.1109/TGRS.2016.2623641
    [7] 恽才兴, 蔡梦裔, 王宝全. 利用卫星象片分析长江入海悬浮泥沙扩散问题[J]. 海洋与湖沼, 1981, 12(5): 391−401.

    Yun Caixing, Cai Mengyi, Wang Baoquan. An analysis of the diffusion of suspended sediment discharged from the Changjiang River based on the satellite image[J]. Oceanologia et Limnologia Sinica, 1981, 12(5): 391−401.
    [8] 李京. 利用NOAA卫星的AVHRR数据监测杭州湾海域的悬浮泥沙含量[J]. 海洋学报, 1987, 9(1): 132−135.

    Li Jing. Monitoring suspended sediment content in Hangzhou Bay using AVHRR data of NOAA satellite[J]. Haiyang Xuebao, 1987, 9(1): 132−135.
    [9] 陈夏法. 杭州湾悬浮泥沙多时相遥感分析[J]. 环境遥感, 1989, 4(2): 128−135.

    Chen Xiafa. Multi-temporal remote sensing analysis of suspended sediment in Hangzhou Bay[J]. Remote Sensing of Environment China, 1989, 4(2): 128−135.
    [10] 黎夏. 悬浮泥沙遥感定量的统一模式及其在珠江口中的应用[J]. 环境遥感, 1992, 7(2): 106−114.

    Li Xia. An united equation for remote sensing quantitative analysis of suspended sediment and its application at Zhujiang River Estuary[J]. Remote Sensing of Environment China, 1992, 7(2): 106−114.
    [11] 陈楚群, 施平, 毛庆文. 应用TM数据估算沿岸海水表层时绿素浓度模型研究[J]. 遥感学报, 1996(3): 168−176.

    Chen Chuqun, Shi Ping, Mao Qingwen. Study on modeling chlorophyll concentration of surface coastal water using TM data[J]. Journal of Remote Sensing, 1996(3): 168−176.
    [12] 李炎, 李京. 基于海面-遥感器光谱反射率斜率传递现象的悬浮泥沙遥感算法[J]. 科学通报, 1999, 44(17): 1892−1897. doi: 10.3321/j.issn:0023-074X.1999.17.023

    Li Yan, Li Jing. Suspended sediment remote sensing algorithm based on slope transfer of spectral reflectance of sea surface-remote sensor[J]. Chinese Science Bulletin, 1999, 44(17): 1892−1897. doi: 10.3321/j.issn:0023-074X.1999.17.023
    [13] 潘德炉, Doerffer R. 中国FY-1B卫星海洋通道应用于水色遥感的潜力研究[J]. 海洋学报, 1996, 18(1): 43−50.

    Pan Delu, Doerffer R. Potential study on the application of FY-1B satellite ocean channel in water color remote sensing in China[J]. Haiyang Xuebao, 1996, 18(1): 43−50.
    [14] 潘德炉, Doerffer R, 毛天明, 等. 海洋水色卫星的辐射模拟图像研究[J]. 海洋学报, 1997, 19(6): 43−55.

    Pan Delu, Doerffer R, Mao Tianming, et al. Research on radiation images of ocean water color satellite[J]. Haiyang Xuebao, 1997, 19(6): 43−55.
    [15] 钟其英. 南海海洋光学研究现状与展望[J]. 南海研究与开发, 1989(1): 36−40.

    Zhong Qiying. Current status and prospects of marine optics in the South China Sea[J]. Nanhai Yanjiu Yu Kaifa, 1989(1): 36−40.
    [16] 唐军武, 陈清莲, 谭世祥, 等. 海洋光谱测量与数据分析处理方法[J]. 海洋通报, 1998, 17(1): 71−79.

    Tang Junwu, Chen Qinglian, Tan Shixiang, et al. Methods of oceanic spectral data measurement and analysis[J]. Marine Science Bulletin, 1998, 17(1): 71−79.
    [17] 陈清莲, 唐军武, 王项南, 等. 东海试验区水体光谱特性现场测量与数据分析[J]. 海洋技术, 1999, 18(3): 25−37.

    Chen Qinglian, Tang Junwu, Wang Xiangnan, et al. The bio-optical data measurement and analysis for East China Sea[J]. Ocean Technology, 1999, 18(3): 25−37.
    [18] 李铜基, 唐军武, 陈清莲, 等. 光谱仪测量离水辐射率的处理方法[J]. 海洋技术, 2000, 19(3): 11−16.

    Li Tongji, Tang Junwu, Chen Qinglian, et al. Processing method of leave water radiance measured by spectrometer[J]. Ocean Technology, 2000, 19(3): 11−16.
    [19] 曹文熙, 杨跃忠, 柯天存, 等. 水下光谱辐射计光学特性的测试与分析[J]. 热带海洋学报, 2002, 21(1): 1−10. doi: 10.3969/j.issn.1009-5470.2002.01.001

    Cao Wenxi, Yang Yuezhong, Ke Tiancun, et al. Test and analysis on optical characteristics of an underwater multi-channel spectral radiometer[J]. Journal of Tropical Oceanography, 2002, 21(1): 1−10. doi: 10.3969/j.issn.1009-5470.2002.01.001
    [20] 唐军武, 田国良, 陈清莲. 离水辐射非朗伯特性的Monte Carlo模拟及分析[J]. 海洋学报, 2000, 22(2): 48−57. doi: 10.3321/j.issn:0253-4193.2000.02.007

    Tang Junwu, Tian Guoliang, Chen Qinglian. Bidirectionality of water-leaving radiance: simulation results and its correction[J]. Haiyang Xuebao, 2000, 22(2): 48−57. doi: 10.3321/j.issn:0253-4193.2000.02.007
    [21] 张鉴, 何晓雄, 赵凤生. 利用大气–海洋系统辐射传输模拟水色遥感信息量的变化特性[J]. 量子电子学报, 2003, 20(5): 623−628. doi: 10.3969/j.issn.1007-5461.2003.05.024

    Zhang Jian, He Xiaoxiong, Zhao Fengsheng. Simulation of the properties of information relating to ocean colour remote sensing by radiative transfer in the atmosphere–ocean system[J]. Chinese Journal of Quantum Electronics, 2003, 20(5): 623−628. doi: 10.3969/j.issn.1007-5461.2003.05.024
    [22] 何贤强, 潘德炉, 白雁, 等. 基于矩阵算法的海洋–大气耦合矢量辐射传输数值计算模型[J]. 中国科学D辑: 地球科学, 2007, 50(3): 442−452.

    He Xianqiang, Pan Delu, Bai Yan, et al. Vector radiative transfer numerical model of coupled ocean–atmosphere system using matrix-operator method[J]. Science in China Series D: Earth Sciences, 2007, 50(3): 442−452.
    [23] He Xianqiang, Bai Yan, Zhu Qiankun, et al. A vector radiative transfer model of coupled ocean-atmosphere system using matrix-operator method for rough sea-surface[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111(10): 1426−1448. doi: 10.1016/j.jqsrt.2010.02.014
    [24] Gordon H R, Wang Menghua. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm[J]. Applied Optics, 1994, 33(3): 443−452. doi: 10.1364/AO.33.000443
    [25] 何贤强, 潘德炉. 海洋–大气耦合矢量辐射传输模型及其遥感应用[M]. 北京: 海洋出版社, 2010.

    He Xianqiang, Pan Delu. Ocean–Atmosphere Coupled Vector Radiation Transfer Model and its Remote Sensing Application[M]. Beijing: China Ocean Press, 2010.
    [26] He Xianqiang, Stamnes K, Bai Yan, et al. Effects of earth curvature on atmospheric correction for ocean color remote sensing[J]. Remote Sensing of Environment, 2018, 209: 118−133. doi: 10.1016/j.rse.2018.02.042
    [27] Pan Delu, Mao Zhihua. Atmospheric correction for China's coastal water color remote sensing[J]. Acta Oceanologica Sinica, 2001, 20(3): 343−354.
    [28] 丁静, 唐军武, 宋庆君, 等. 中国近岸浑浊水体大气修正的迭代与优化算法[J]. 遥感学报, 2006, 10(5): 732−741.

    Ding Jing, Tang Junwu, Song Qingjun, et al. Atmospheric correction for Chinese coastal turbid waters using iteration and optimization method[J]. Journal of Remote Sensing, 2006, 10(5): 732−741.
    [29] He Xianqiang, Bai Yan, Pan Delu, et al. Atmospheric correction of satellite ocean color imagery using the ultraviolet wavelength for highly turbid waters[J]. Optics Express, 2012, 20(18): 20754−20770. doi: 10.1364/OE.20.020754
    [30] Mao Zhihua, Chen Jianyu, Hao Zengzhou, et al. A new approach to estimate the aerosol scattering ratios for the atmospheric correction of satellite remote sensing data in coastal regions[J]. Remote Sensing of Environment, 2013, 132: 186−194. doi: 10.1016/j.rse.2013.01.015
    [31] He Quanjun, Chen Chuqun. A new approach for atmospheric correction of MODIS imagery in turbid coastal waters: a case study for the Pearl River Estuary[J]. Remote Sensing Letters, 2014, 5(3): 249−257. doi: 10.1080/2150704X.2014.898192
    [32] Chen Jun, Lee Z, Hu Chuanmin, et al. Improving satellite data products for open oceans with a scheme to correct the residual errors in remote sensing reflectance[J]. Journal of Geophysical Research: Oceans, 2016, 121(6): 3866−3886. doi: 10.1002/2016JC011673
    [33] Pan Yanli, Tang Danling, Weng Dehe. Evaluation of the SeaWiFS and MODIS chlorophyll a algorithms used for the Northern South China Sea during the summer season[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2010, 21(6): 997−1005. doi: 10.3319/TAO.2010.02.11.01(Oc)
    [34] Cui Tingwei, Zhang Jie, Groom S, et al. Validation of MERIS ocean-color products in the Bohai Sea: a case study for turbid coastal waters[J]. Remote Sensing of Environment, 2010, 114(10): 2326−2336. doi: 10.1016/j.rse.2010.05.009
    [35] Zhang Yuanzhi, Lin Hui, Chen Chuqun, et al. Estimation of chlorophyll-a concentration in estuarine waters: case study of the Pearl River Estuary, South China Sea[J]. Environmental Research Letters, 2011, 6(2): 024016. doi: 10.1088/1748-9326/6/2/024016
    [36] Shang Shaoling, Lee Z, Wei Guomei. Characterization of MODIS-derived euphotic zone depth: results for the China Sea[J]. Remote Sensing of Environment, 2011, 115(1): 180−186. doi: 10.1016/j.rse.2010.08.016
    [37] Shen Fang, Verhoef W, Zhou Yunxuan, et al. Satellite estimates of wide-range suspended sediment concentrations in Changjiang (Yangtze) Estuary using MERIS data[J]. Estuaries and Coasts, 2010, 33(6): 1420−1429. doi: 10.1007/s12237-010-9313-2
    [38] Mao Zhihua, Chen Jianyu, Pan Delu, et al. A regional remote sensing algorithm for total suspended matter in the East China Sea[J]. Remote Sensing of Environment, 2012, 124: 819−831. doi: 10.1016/j.rse.2012.06.014
    [39] Qiu Zhongfeng, Su Yuanyuan, Yang Anan, et al. An approach for estimating absorption and backscattering coefficients from MERIS in the Bohai Sea[J]. International Journal of Remote Sensing, 2014, 35(24): 8169−8187. doi: 10.1080/01431161.2014.980919
    [40] He Xianqiang, Bai Yan, Pan Delu, et al. Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters[J]. Remote Sensing of Environment, 2013, 133: 225−239. doi: 10.1016/j.rse.2013.01.023
    [41] Chen Jun, Quan Wenting, Cui Tingwei, et al. Remote sensing of absorption and scattering coefficient using neural network model: development, validation, and application[J]. Remote Sensing of Environment, 2014, 149: 213−226. doi: 10.1016/j.rse.2014.04.013
    [42] 崔万松, 潘德炉, 白雁, 等. 南海北部表层颗粒有机碳的季节和年际变化遥感分析[J]. 海洋学报, 2017, 39(3): 122−134.

    Cui Wansong, Pan Delu, Baiyan, et al. Satellite views of the seasonal and interannual variations of the particulate organic carbon in the northern South China Sea[J]. Haiyang Xuebao, 2017, 39(3): 122−134.
    [43] He Xianqiang, Bai Yan, Wei Jun, et al. Ocean color retrieval from MWI onboard the Tiangong-2 Space Lab: preliminary results[J]. Optics Express, 2017, 25(20): 23955−23973. doi: 10.1364/OE.25.023955
    [44] Dong Qiang, Shang Shaoling, Lee Z. An algorithm to retrieve absorption coefficient of chromophoric dissolved organic matter from ocean color[J]. Remote Sensing of Environment, 2013, 128: 259−267. doi: 10.1016/j.rse.2012.10.013
    [45] Lin Junfang, Cao Wenxi, Wang Guifeng, et al. Approach for determining the contributions of phytoplankton, colored organic material, and nonalgal particles to the total spectral absorption in marine waters[J]. Applied Optics, 2013, 52(18): 4249−4257. doi: 10.1364/AO.52.004249
    [46] Wang Shengqiang, Qiu Zhongfeng, Sun Deyong, et al. Light beam attenuation and backscattering properties of particles in the Bohai Sea and Yellow Sea with relation to biogeochemical properties[J]. Journal of Geophysical Research: Oceans, 2016, 121(6): 3955−3969. doi: 10.1002/2016JC011727
    [47] Lin Junfang, Cao Wenxi, Zhou Wen, et al. Novel method for quantifying the cell size of marine phytoplankton based on optical measurements[J]. Optics Express, 2014, 22(9): 10467−10476. doi: 10.1364/OE.22.010467
    [48] Qiu Zhongfeng, Sun Deyong, Hu Chuanmin, et al. Variability of particle size distributions in the Bohai Sea and the Yellow Sea[J]. Remote Sensing, 2016, 8(11): 949−968. doi: 10.3390/rs8110949
    [49] Sun Deyong, Huan Yu, Qiu Zhongfeng, et al. Remote-sensing estimation of phytoplankton size classes from GOCI satellite measurements in Bohai Sea and Yellow Sea[J]. Journal of Geophysical Research: Oceans, 2017, 122(10): 8309−8325. doi: 10.1002/2017JC013099
    [50] Zhang Hailong, Wang Shengqiang, Qiu Zhongfeng, et al. Phytoplankton size class in the East China Sea derived from MODIS satellite data[J]. Biogeosciences, 2018, 15(13): 4271−4289. doi: 10.5194/bg-15-4271-2018
    [51] Shang Shaoling, Wu Jingyu, Huang Bangqin, et al. A new approach to discriminate dinoflagellate from diatom blooms from space in the East China Sea[J]. Journal of Geophysical Research: Oceans, 2014, 119(7): 4653−4668. doi: 10.1002/2014JC009876
    [52] Tao Bangyi, Mao Zhihua, Lei Hui, et al. A novel method for discriminating Prorocentrum donghaiense from diatom blooms in the East China Sea using MODIS measurements[J]. Remote Sensing of Environment, 2015, 158: 267−280. doi: 10.1016/j.rse.2014.11.004
    [53] Pan Delu, Liu Qiong, Bai Yan. Review and suggestions for estimating particulate organic carbon and dissolved organic carbon inventories in the ocean using remote sensing data[J]. Acta Oceanologica Sinica, 2014, 33(1): 1−10. doi: 10.1007/s13131-014-0419-4
    [54] Bai Yan, Pan Delu, Cai Weijun, et al. Remote sensing of salinity from satellite-derived CDOM in the Changjiang River dominated East China Sea[J]. Journal of Geophysical Research: Oceans, 2013, 118(1): 227−243. doi: 10.1029/2012JC008467
    [55] Bai Yan, He Xianqiang, Pan Delu, et al. Summertime Changjiang River plume variation during 1998-2010[J]. Journal of Geophysical Research: Oceans, 2014, 119(9): 6238−6257. doi: 10.1002/2014JC009866
    [56] Bai Yan, Cai Weijun, He Xianqiang, et al. A mechanistic semi-analytical method for remotely sensing sea surface pCO2 in river-dominated coastal oceans: a case study from the East China Sea[J]. Journal of Geophysical Research: Oceans, 2015, 120(3): 2331−2349. doi: 10.1002/2014JC010632
    [57] Yang Jingsong, Ren Lin, Zheng Gang. The first quantitative ocean remote sensing by using Chinese interferometric imaging radar altimeter onboard TG-2[J]. Acta Oceanologica Sinica, 2017, 36(2): 122−123.
    [58] Cui Qianfang, He Xianqiang, Liu Qiong, et al. Estimation of lateral DOC transport in marginal sea based on remote sensing and numerical simulation[J]. Journal of Geophysical Research: Oceans, 2018, 123(8): 5525−5542. doi: 10.1029/2018JC014079
    [59] Li Teng, Bai Yan, He Xianqiang, et al. Satellite-based estimation of particulate organic carbon export in the northern South China Sea[J]. Journal of Geophysical Research: Oceans, 2018, 123(11): 8227−8246. doi: 10.1029/2018JC014201
    [60] 李豪, 何贤强, 陶邦一, 等. 大太阳天顶角下水色卫星叶绿素遥感探测能力研究[J]. 海洋学报, 2018, 40(11): 128−140.

    Li Hao, He Xianqiang, Tao Bangyi, et al. Research on chlorophyll detection ability under high solar zenith angle[J]. Haiyang Xuebao, 2018, 40(11): 128−140.
    [61] 罗建美, 霍永伟, 韩晓庆. 基于HJ卫星的近岸Ⅱ类水体叶绿素a浓度定量遥感反演研究——以滦河口北部海域为例[J]. 海洋学报, 2017, 39(4): 117−129.

    Luo Jianmei, Huo Yongwei, Han Xiaoqing. Inversion of chlorophyll a concentration in offshore Ⅱ waters using HJ satellite data——Example in the north of the Luanhe Delta[J]. Haiyang Xuebao, 2017, 39(4): 117−129.
    [62] Lou Xiulin, Hu Chuanmin. Diurnal changes of a harmful algal bloom in the East China Sea: observations from GOCI[J]. Remote Sensing of Environment, 2014, 140: 562−572. doi: 10.1016/j.rse.2013.09.031
    [63] Hu Zifeng, Wang Dongping, Pan Delu, et al. Mapping surface tidal currents and Changjiang plume in the East China Sea from Geostationary Ocean Color Imager[J]. Journal of Geophysical Research: Oceans, 2016, 121(3): 1563−1572. doi: 10.1002/2015JC011469
    [64] 吕从民, 顾逸东, 林宝军, 等. 神舟四号飞船综合精密定轨[J]. 中国科学E辑: 技术科学, 2004, 34(9): 1061−1068.

    Lü Congmin, Gu Yidong, Lin Baojun, et al. Integrated precise orbit determination of Shenzhou IV unmanned spacecraft[J]. Science in China Series E: Technological Sciences, 2004, 34(9): 1061−1068.
    [65] 许可, 刘和光, 姜景山. 神舟4号雷达高度计在轨工作模式及实时数据处理[J]. 遥感技术与应用, 2005, 20(1): 162−165. doi: 10.3969/j.issn.1004-0323.2005.01.030

    Xu Ke, Liu Heguang, Jiang Jingshan. The operational modes and the real time processing of the SZ-4 radar altimeter[J]. Remote Sensing Technology and Application, 2005, 20(1): 162−165. doi: 10.3969/j.issn.1004-0323.2005.01.030
    [66] 纪永刚, 张杰, 张有广, 等. 神舟四号高度计波形数据预处理和信息提取[J]. 海洋与湖沼, 2007, 38(6): 487−494. doi: 10.3321/j.issn:0029-814x.2007.06.002

    Ji Yonggang, Zhang Jie, Zhang Youguang, et al. The pretreatment and information retrieval of waveform data of Chinese spacecraft Shenzhou-4 borne altimeter[J]. Oceanologia et Limnologia Sinica, 2007, 38(6): 487−494. doi: 10.3321/j.issn:0029-814x.2007.06.002
    [67] 林明森. 海洋动力环境微波遥感信息提取技术与应用[M]. 北京: 海洋出版社, 2019.

    Lin Mingsen. Microwave Remote Sensing Information Extraction Technology and Application in Ocean Dynamic Environment[M]. Beijing: China Ocean Press, 2019.
    [68] Jiang M, Xu K, Liu Y. Calibration and validation of reprocessed HY-2A altimeter wave height measurements using data from buoys, Jason-2, Cryosat-2 and SARAL/Altika[J]. Journal of Atmospheric and Oceanic Technology, 2018: JTECH-D-17-0151.1.
    [69] 杨俊钢, 张杰, 王桂忠. 北极海域海面风场和海浪遥感观测能力分析[J]. 海洋学报, 2018, 40(11): 105−115.

    Yang Jungang, Zhang Jie, Wang Guizhong. Analysis of Arctic seas surface wind field and ocean wave remote sensing observation capability[J]. Haiyang Xuebao, 2018, 40(11): 105−115.
    [70] 郭迎婷, 苗洪利, 张国首, 等. 雷达高度计海况偏差估计神经网络模型研究[J]. 海洋学报, 2017, 38(7): 126−132.

    Guo Yingting, Miao Hongli, Zhang Guoshou, et al. Study on neural network model of estimating the sea state bias for radar altimeters[J]. Haiyang Xuebao, 2017, 38(7): 126−132.
    [71] 贾永君, 刘建强, 林明森, 等. 海洋二号卫星3个主要载荷风速测量比较[J]. 中国工程科学, 2014, 16(6): 27−32. doi: 10.3969/j.issn.1009-1742.2014.06.004

    Jia Yongjun, Liu Jianqiang, Lin Mingsen, et al. Comparison of wind speed from 3 main payloads of HY-2 satellite[J]. Engineering Sciences, 2014, 16(6): 27−32. doi: 10.3969/j.issn.1009-1742.2014.06.004
    [72] 王志雄. HY-2A卫星微波散射计海面风场反演算法改进[D]. 青岛: 中国海洋大学, 2014.

    Wang Zhixiong. The improvement of HY-2 SCAT wind rerrieval algorithm based on MSS and 2DVAR method[D]: Qingdao: Ocean University of China, 2014.
    [73] 王磊, 王萍, 孟俊敏, 等. 基于雷达高度计增益自动控制数据的风速反演算法研究[J]. 海洋学报, 2012, 34(3): 55−60.

    Wang Lei, Wang Ping, Meng Junmin, et al. An inversion algorithm research of altimeter wind speed based on automatic gain control[J]. Haiyang Xuebao, 2012, 34(3): 55−60.
    [74] 王振占, 鲍靖华, 李芸, 等. 海洋二号卫星扫描辐射计海洋参数反演算法研究[J]. 中国工程科学, 2014, 16(6): 70−82. doi: 10.3969/j.issn.1009-1742.2014.06.011

    Wang Zhenzhan, Bao Jinghua, Li Yun, et al. Study on retrieval algorithm of ocean parameters for the HY-2 scanning microwave radiometer[J]. Engineering Sciences, 2014, 16(6): 70−82. doi: 10.3969/j.issn.1009-1742.2014.06.011
    [75] 孙广轮, 关道明, 赵冬至, 等. 星载微波遥感观测海表温度的研究进展[J]. 遥感技术与应用, 2013, 28(4): 721−730. doi: 10.11873/j.issn.1004-0323.2013.4.721

    Sun Guanglun, Guan Daoming, Zhao Dongzhi, et al. Research on observing sea surface temperature (SST) based on microwave remote sensing by satellite[J]. Remote Sensing Technology and Application, 2013, 28(4): 721−730. doi: 10.11873/j.issn.1004-0323.2013.4.721
    [76] 石立坚, 王其茂, 邹斌, 等. 利用海洋(HY-2)卫星微波辐射计数据反演北极区域海冰密集度[J]. 极地研究, 2014, 26(4): 410−417.

    Shi Lijian, Wang Qimao, Zou Bin, et al. Arctic sea ice concentration retrieval using HY-2 radiometer data[J]. Chinese Journal of Polar Research, 2014, 26(4): 410−417.
    [77] 吴展开, 王星东, 王玉华, 等. 一种改进的ASI海冰密集度反演算法制造技术: 14130730[P]. 2018-04-10.

    Wu Zhankai, Wang Xingdong, Wang Yuhua, et al. An improved ASI sea ice density inversion algorithm manufacturing technology: 14130730[P]. 2018-04-10.
    [78] 张有广, 林明森. 卫星高度计海上定标场及定标方法研究进展[J]. 海洋通报, 2007, 26(3): 87−92, 116. doi: 10.3969/j.issn.1001-6392.2007.03.013

    Zhang Youguang, Lin Mingsen. Research progress of calibration site and calibration method of satellite altimeter[J]. Marine Science Bulletin, 2007, 26(3): 87−92, 116. doi: 10.3969/j.issn.1001-6392.2007.03.013
    [79] Liu Qiong, Pan Delu, Bai Yan, et al. Estimating dissolved organic carbon inventories in the East China Sea using remote-sensing data[J]. Journal of Geophysical Research: Oceans, 2014, 119(10): 6557−6574. doi: 10.1002/2014JC009868
    [80] 闫龙浩, 陈春涛, 翟万林, 等. GPS浮标测高精度影响因素研究[J]. 中国工程科学, 2014, 16(6): 102−108. doi: 10.3969/j.issn.1009-1742.2014.06.015

    Yan Longhao, Chen Chuntao, Zhai Wanlin, et al. Influencing factors research of GPS buoy measurement precision[J]. Engineering Sciences, 2014, 16(6): 102−108. doi: 10.3969/j.issn.1009-1742.2014.06.015
    [81] 杨磊, 周兴华, 徐全军, 等. 卫星高度计定标现状[J]. 遥感学报, 2019, 23(3): 392−407.

    Yang Lei, Zhou Xinghua, Xu Quanjun, et al. Research status of satellite altimeter calibration[J]. Journal of Remote Sensing, 2019, 23(3): 392−407.
    [82] 周武, 林明森, 李延民, 等. 海洋二号扫描微波辐射计冷空定标和地球物理参数反演研究[J]. 中国工程科学, 2014, 15(7): 75−80.

    Zhou Wu, Lin Mingsen, Li Yanmin, et al. Study of cold sky calibration and geophysical parameters retrieval for HY-2A satellite scanning microwave radiometer[J]. Engineering Sciences, 2014, 15(7): 75−80.
    [83] 朱俊, 王家松, 陈建荣, 等. HY-2卫星DORIS厘米级精密定轨[J]. 宇航学报, 2013, 34(2): 163−169. doi: 10.3873/j.issn.1000-1328.2013.02.003

    Zhu Jun, Wang Jiasong, Chen Jianrong, et al. Centimeter precise orbit determination for HY-2 Via DORIS[J]. Journal of Astronautics, 2013, 34(2): 163−169. doi: 10.3873/j.issn.1000-1328.2013.02.003
    [84] 林明森, 王晓慧, 彭海龙, 等. HY-2卫星双频GPS精密定轨技术[J]. 中国工程科学, 2014, 16(6): 97−101. doi: 10.3969/j.issn.1009-1742.2014.06.014

    Lin Mingsen, Wang Xiaohui, Peng Hailong, et al. Precise orbit determination technology based on dual-frequency GPS solution for HY-2 satellite[J]. Engineering Science, 2014, 16(6): 97−101. doi: 10.3969/j.issn.1009-1742.2014.06.014
    [85] 范磊, 施闯, 李敏. 利用超快速精密星历约束的北斗卫星实时精密定轨[J]. 大地测量与地球动力学, 2018, 38(9): 937−942.

    Fan Lei, Shi Chuang, Li Min. Beidou satellite real-time precise orbit determination using ultra-rapid ephemeris’ constraint[J]. Journal of Geodesy and Geodynamics, 2018, 38(9): 937−942.
    [86] 徐延东, 张彦敏, 王运华. 一种基于同极化SAR数据的海浪参数反演方法: CN201810278250.X.[P]. 2018-10-12.

    Xu Yandong, Zhang Yanmin, Wang Yunhua. A wave parameter inversion method based on same polarization SAR data: CN201810278250.X.[P]. 2018-10-12.
    [87] 张政. 合成孔径雷达提取海面风、浪参数的研究[D]. 杭州: 浙江海洋大学, 2017.

    Zhang Zheng. The research of retrieving sea surface wind and ocean wave parameters from synthetic aperture radar[D]. Hangzhou: Zhejiang Ocean University, 2017.
    [88] Lin Mingsen, Ye Xiaomin, Yuan Xinzhe. The first quantitative joint observation of typhoon by Chinese GF-3 SAR and HY-2A microwave scatterometer[J]. Acta Oceanologica Sinica, 2017, 36(11): 1−3. doi: 10.1007/s13131-017-1133-9
    [89] 宋小霞, 王静, 储小青. 基于多普勒频移的SAR海表流场反演[J]. 遥感技术与应用, 2019, 34(2): 293−302.

    Song Xiaoxia, Wang Jing, Chu Xiaoqing. Estimation of sea surface velocities from SAR images using the Doppler shift[J]. Remote Sensing Technology and Application, 2019, 34(2): 293−302.
    [90] 邹亚荣, 梁超, 陈江麟, 等. 基于SAR的海上溢油监测最佳探测参数分析[J]. 海洋学报, 2011, 33(1): 36−44.

    Zou Yarong, Liang Chao, Chen Jianglin, et al. An optimal parametric analysis of monitormg oil spill based on SAR[J]. Haiyang Xuebao, 2011, 33(1): 36−44.
    [91] 邹亚荣, 邹斌, 梁超, 等. 多元指标的海上溢油信息提取[J]. 地球信息科学学报, 2012, 14(2): 265−269.

    Zou Yarong, Zou Bin, Liang Chao, et al. Multiple index information extraction of marine oil spills[J]. Journal of Geo-Information Science, 2012, 14(2): 265−269.
    [92] Leng Xiangguang, Ji Kefeng, Yang Kai, et al. A bilateral CFAR algorithm for ship detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1536−1540. doi: 10.1109/LGRS.2015.2412174
    [93] Wei Jujie, Li Pingxiang, Yang Jie, et al. A new automatic ship detection method using L-band polarimetric SAR imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2017, 7(4): 1383−1393.
    [94] Wang Chao, Zhang Hong, Wu Fan, et al. A novel hierarchical ship classifier for COSMO-SkyMed SAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(2): 484−488. doi: 10.1109/LGRS.2013.2268875
    [95] 刘小楠. 海上小目标检测方法研究[D]. 北京: 北京化工大学, 2017.

    Liu Xiaonan. Research on detection method of the small targets at sea[D]. Beijing: Beijing University of Chemical Technology, 2017.
    [96] 李晨波. SAR图像海上目标类型识别算法研究[D]. 呼和浩特:内蒙古大学, 2016.

    Li Chenbo. Research on marine target recognitlon algorithm from SAR image[D]. Huhhot:Inner Mongolia University, 2017.
    [97] 贾丹丹, 陈正华, 张威, 等. 南海珊瑚礁区34年卫星遥感海表温度变化的时空特征分析[J]. 海洋学报, 2018, 40(3): 112−120.

    Jia Dandan, Chen Zhenghua, Zhang Wei, et al. Analysis of temporal and spatial characteristics of sea surface temperature variabilities over the past 34 years in coral reef areas of the South China Sea[J]. Haiyang Xuebao, 2018, 40(3): 112−120.
  • 加载中
图(5)
计量
  • 文章访问数:  1950
  • HTML全文浏览量:  238
  • PDF下载量:  507
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-31
  • 修回日期:  2019-08-23
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2019-10-25

目录

    /

    返回文章
    返回