留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

洋中脊热液羽状流的分布特征及其在多金属硫化物找矿中的指示作用

陈升 陶春辉 周建平 张国堙 秦华伟 王渊 陈栋

陈升,陶春辉,周建平,等. 洋中脊热液羽状流的分布特征及其在多金属硫化物找矿中的指示作用[J]. 海洋学报,2019,41(8):1–12,doi:10.3969/j.issn.0253−4193.2019.08.001
引用本文: 陈升,陶春辉,周建平,等. 洋中脊热液羽状流的分布特征及其在多金属硫化物找矿中的指示作用[J]. 海洋学报,2019,41(8):1–12,doi:10.3969/j.issn.0253−4193.2019.08.001
Chen Sheng,Tao Chunhui,Zhou Jianping, et al. The distribution characteristics of hydrothermal plume in mid-ocean ridge and its indicative role in polymetallic sulfide prospecting[J]. Haiyang Xuebao,2019, 41(8):1–12,doi:10.3969/j.issn.0253−4193.2019.08.001
Citation: Chen Sheng,Tao Chunhui,Zhou Jianping, et al. The distribution characteristics of hydrothermal plume in mid-ocean ridge and its indicative role in polymetallic sulfide prospecting[J]. Haiyang Xuebao,2019, 41(8):1–12,doi:10.3969/j.issn.0253−4193.2019.08.001

洋中脊热液羽状流的分布特征及其在多金属硫化物找矿中的指示作用

doi: 10.3969/j.issn.0253-4193.2019.08.001
基金项目: 浙江省自然科学青年基金(LQ19D060008,LQ16D060008);国家重点研发计划课题(2018YFC0309901);国际海域资源调查与开发“十三五”项目(DY135-S1-01)及课题“硫化物合同区羽状流特征与找矿应用”(DY135-S1-1-09);国家海洋局海底科学重点实验室开放基金(KLSG1803);国家海洋局第二海洋研究所科研基金(JG1609)。
详细信息
    作者简介:

    陈升(1988—),女,浙江省武义县人,讲师,主要从事海底热液探测研究。E-mail:chensh@hdu.edu.cn

    通讯作者:

    陶春辉,研究员,主要从事海洋地球物理研究。E-mail:taochunhuimail@163.com

  • 中图分类号: P744

The distribution characteristics of hydrothermal plume in mid-ocean ridge and its indicative role in polymetallic sulfide prospecting

  • 摘要: 热液羽状流是海底热液活动的重要标志,海底多金属硫化物是热液活动的产物。现阶段洋中脊多金属硫化物勘探工作的第一步是开展热液羽状流的近底探测;综合各类异常信息,实现从发现热液活动喷口到发现矿床的突破。本文以热液羽状流为研究对象,从羽状流的近底探测、扩散机制和分布特征3个方面,概述了最新的研究进展和有待完善的方面,阐述了羽状流在洋中脊多金属硫化物找矿中的指示作用,最后总结性地指出时空连续性、参数多元化将是热液探测的发展趋势,有助于提升对热液羽状流分布特征的认识,将为热液区分布模式的研究提供更加精细的探测资料。
  • 图  1  洋中脊上已知的和未发现的热液区的数目与扩张速率的分布关系[5]

    整个柱高代表预测的热液区数目

    Fig.  1  Stacked bar histogram of known and predicted number of active vent fields as functions of spreading rate for mid-ocean ridges, distinguishing those discovered since year 2000[5]

    Entire column height represents the predicted number of vent fields

    图  2  从岩石圈到水圈多学科交叉研究的典型代表—Endeavour洋脊段[38]

    Fig.  2  The representation of interdisciplinary lithosphere to hydrosphere of the Endeavour Segment[38]

    图  3  国际海洋痕量元素及同位素生物地球化学循环研究计划(GEOTRACES)项目GP16航次在东太平洋南部15°S海域的调查站位分布和浓度等值线[45]

    3Hexs表示减去背景海水和空气中的3He浓度所得的异常值

    Fig.  3  Interpolated concentrations and station map along the US GEOTRACES GP16 eastern Pacific zonal transect[45]

    The 3Hexs presents the total concentration of 3He deducts the background values of sea water and air

    图  4  在可探测的羽状流中,羽流示踪元素的浓度随距离变化的对比示意图[41]

    Fig.  4  An idealized comparison of how detectable plume chemistry can change over distance[41]

    图  5  热液区发生率、热液区分布间距与洋脊扩张速率间的分布规律

    红色小圈表示InterRidge数据库中统计的27段不同扩张速率的洋脊。倒三角(加拉帕格斯扩张中心的东部,eastern Galapagos Spreading Center,eGSC)、大圆圈(加拉帕格斯扩张中心的中部,center Galapagos Spreading Center,cGSC)、菱形(劳扩张中心,Eastern Lau Spreading Center,ELSC)、正方形(东太平洋海隆的北部,northern East Pacific Ridge,nEPR)分别表示Baker等[3]重新开展热液探测的4段快速、中速扩张洋脊;红色表示通过InterRidge数据库计算的热液区发生率和热液区分布间距,绿色表示通过最新热液探测资料计算的结果,紫色表示通过详细的海底摄像观测资料计算的热液区发生率和热液区分布间距;只有nEPR和sEPR(东太平洋海隆的南部,southern East Pacific Ridge,斜三角形) 开展了 详细的海底摄像观测

    Fig.  5  Hydrothermal frequency vs. spreading rate, spacing vs. spreading rate

    27 ridge sections using data from the InterRidge database (small red dots). Inverted triangle(eastern Galapagos Spreading Center, eGSC), large circle (center Galapagos Spreading Center, cGSC), diamond (Eastern Lau Spreading Center, ELSC) and square (northern East Pacific Ridge, nEPR) represent 4 segments of spreading ridge studied in Baker et al[3]. Results for these sections are from InterRidge Database (large red symbol), Baker et al[3] (green), and results from visual seafloor observations (purple). nEPR and sEPR (southern East Pacific Rise, skewed triangles) carried out detailed visual seafloor observations

    表  1  羽状流的异常分布特征及热液区发育类型

    Tab.  1  Distribution characteristics of hydrothermal plume and types of hydrothermal fields

    序号羽状流的异常分布特征热液流体类型热液区发育类型
    温度示踪指标含量浊度及是否伴随“黑烟”典型热液区
    1>350℃高Fe,H2S;高CH4、Mn伴随“黑烟”,明显浊度异常Rainbow高温热液流体高温离散热液区
    2>350℃高Fe,H2S;低CH4、Mn伴随“黑烟”,明显浊度异常Snake Pit高温热液流体高温离散热液区
    3100~300℃高CH4;低Fe、H2S无“黑烟”,上升流:高温清澈中性浮力层:热液微生物Lost City高温清澈热液流体高温离散热液区
    4100~300℃高Fe;低H2S无“黑烟”,上升流:高温清澈中性浮力层:Fe氢氧化物EPR 9°30′N高温清澈热液流体高温离散热液区
    5<35℃,有时达100℃CH4、H2S、Fe、Mn等无“黑烟”,无明显浊度异常Endeavour 洋脊低温弥散热液流体低温弥散热液区
      注:“黑烟”指从高温热液喷口释放形成的黑色流体。
    下载: 导出CSV
  • [1] Hasenclever J, Theissen-Krah S, Rüpke L H, et al. Hybrid shallow on-axis and deep off-axis hydrothermal circulation at fast-spreading ridges[J]. Nature, 2014, 508(7497): 508−512. doi: 10.1038/nature13174
    [2] Lupton J E, Craig H. A major helium-3 source at 15°S on the East Pacific Rise[J]. Science, 1981, 214(4516): 13−18. doi: 10.1126/science.214.4516.13
    [3] Baker E T, Resing J A, Haymon R M, et al. How many vent fields? New estimates of vent field populations on ocean ridges from precise mapping of hydrothermal discharge locations[J]. Earth and Planetary Science Letters, 2016, 449: 186−196. doi: 10.1016/j.jpgl.2016.05.031
    [4] Baker E T. Exploring the ocean for hydrothermal venting: new techniques, new discoveries, new insights[J]. Ore Geology Reviews, 2017, 86: 55−69. doi: 10.1016/j.oregeorev.2017.02.006
    [5] Beaulieu S E, Baker E T, German C R. Where are the undiscovered hydrothermal vents on oceanic spreading ridges?[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 121: 202−212. doi: 10.1016/j.dsr2.2015.05.001
    [6] Beaulieu S E. InterRidge global database of active submarine hydrothermal vent fields, version 3.4[DB/OL]. [2016–10–13] http://vents-data.interridge.org/about_the_database#Version3.
    [7] Baker E T, German C R. On the global distribution of hydrothermal vent fields[M]//German C R, Lin J, Parson L M. Mid-Ocean Ridges: Hydrothermal Interactions between the Lithosphere and Oceans, Geophysical Monograph Series. Washington, D. C.: AGU, 2004, 148: 245-266.
    [8] German C R, von Damm K L. Hydrothermal process[M]//Holland H D, Turekian K K. Treatise on Geochemistry. Amsterdam: Elsevier, 2014: 181–222.
    [9] Resing J A, Sedwick P N, German C R, et al. Basin-scale transport of hydrothermal dissolved metals across the south Pacific Ocean[J]. Nature, 2015, 523(7559): 200−203. doi: 10.1038/nature14577
    [10] German C R, Legendre L L, Sander S G, et al. Hydrothermal Fe cycling and deep ocean organic carbon scavenging: model-based evidence for significant POC supply to seafloor sediments[J]. Earth and Planetary Science Letters, 2015, 419: 143−153. doi: 10.1016/j.jpgl.2015.03.012
    [11] German C R, Petersen S, Hannington M D. Hydrothermal exploration of mid-ocean ridges: where might the largest sulfide deposits be forming?[J]. Chemical Geology, 2016, 420: 114−126. doi: 10.1016/j.chemgeo.2015.11.006
    [12] 侯增谦. 现代与古代海底热水成矿作用[M]. 北京: 地质出版社, 2003.

    Hou Zengqian. Hydrothermal Systems and Metallogeny on the Modern and Ancient Sea-Floor[M]. Beijing: Geological Publishing House, 2003.
    [13] 曾志刚. 海底热液地质学[M]. 北京: 科学出版社, 2011.

    Zeng Zhigang. Submarine Hydrothermal Geology[M]. Beijing: Science Press, 2011.
    [14] 陶春辉. 洋中脊多金属硫化物勘查方法与技术[M]. 北京: 科学出版社, 2018.

    Tao Chunhui. Exploration Methods and Techniques for Polymetallic Sulfide on the Mid-Ocean Ridge[M]. Beijing: Science Press, 2018.
    [15] 叶俊. 西南印度洋超慢速扩张脊49.6°E热液区多金属硫化物成矿作用研究[D]. 北京: 中国科学院大学, 2012.

    Ye Jun. Mineralization of polymetallic sulfides on ultra-slow spreading southwest Indian ridge at 49.6°E[D]. Beijing: University of Chinese Academy of Sciences, 2012.
    [16] 吴世迎. 世界海底热液硫化物资源[M]. 北京: 海洋出版社, 2000.

    Wu Shiying. World Submarine Hydrothermal Sulfide Resources[M]. Beijing: China Ocean Press, 2000.
    [17] 李军. 现代海底热液块状硫化物矿床的资源潜力评价[J]. 海洋地质动态, 2007, 23(6): 23−30. doi: 10.3969/j.issn.1009-2722.2007.06.006

    Li Jun. Assessment of potential resources of modern submarine hydrothermal massive sulfide deposits[J]. Marine Geology Letters, 2007, 23(6): 23−30. doi: 10.3969/j.issn.1009-2722.2007.06.006
    [18] Hannington M, Jamieson J, Monecke T, et al. The abundance of seafloor massive sulfide deposits[J]. Geology, 2011, 39(12): 1155−1158. doi: 10.1130/G32468.1
    [19] Fouquet Y, Marcoux E. Lead isotope systematics in Pacific hydrothermal sulfide deposits[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B4): 6025−6040. doi: 10.1029/94JB02646
    [20] Gamo T, Chiba H, Yamanaka T, et al. Chemical characteristics of newly discovered black smoker fluids and associated hydrothermal plumes at the Rodriguez Triple Junction, Central Indian Ridge[J]. Earth and Planetary Science Letters, 2001, 193(3/4): 371−379.
    [21] Petersen S, Kuhn K, Kuhn T, et al. The geological setting of the ultramafic-hosted Logatchev hydrothermal field (14° 45′ N, Mid-Atlantic Ridge) and its influence on massive sulfide formation[J]. Lithos, 2009, 112(1/2): 40−56.
    [22] Cherkashov G, Poroshina I, Stepanova T, et al. Seafloor massive sulfides from the northern equatorial Mid-Atlantic Ridge: new discoveries and perspectives[J]. Marine Georesources & Geotechnology, 2010, 28(3): 222−239.
    [23] Buschette M J, Piercey S J. Hydrothermal alteration and lithogeochemistry of the boundary volcanogenic massive sulphide deposit, central Newfoundland, Canada[J]. Canadian Journal of Earth Sciences, 2016, 53(5): 506−527. doi: 10.1139/cjes-2015-0237
    [24] Tao Chunhui, Li Huaiming, Jin Xiaobing, et al. Seafloor hydrothermal activity and polymetallic sulfide exploration on the southwest Indian ridge[J]. Chinese Science Bulletin, 2014, 59(19): 2266−2276. doi: 10.1007/s11434-014-0182-0
    [25] Rona P A, Bemis K G, Xu Guangyu, et al. Estimations of heat transfer from Grotto’s north tower: a NEPTUNE Observatory case study[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 121: 95−111. doi: 10.1016/j.dsr2.2015.05.010
    [26] Tivey M A, Dyment J R M. The magnetic signature of hydrothermal systems in slow spreading environments[M]//Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington, D. C. : AGU, 2010, 188: 43-66.
    [27] Lupton J E, Delaney J R, Johnson H P, et al. Entrainment and vertical transport of deep-ocean water by buoyant hydrothermal plumes[J]. Nature, 1985, 316(6029): 621−623. doi: 10.1038/316621a0
    [28] Gamo T, Masuda H, Yamanaka T, et al. Discovery of a new hydrothermal venting site in the southernmost Mariana Arc: Al-rich hydrothermal plumes and white smoker activity associated with biogenic methane[J]. Geochemical Journal, 2004, 38(6): 527−534. doi: 10.2343/geochemj.38.527
    [29] 王晓媛, 武力, 曾志刚, 等. 海底热液柱温度异常自动化计算方法探讨[J]. 海洋学报, 2012, 34(2): 185−191.

    Wang Xiaoyuan, Wu Li, Zeng Zhigang, et al. Automatic calculation on the temperature anomaly of a marine hydrothermal plume[J]. Haiyang Xuebao, 2012, 34(2): 185−191.
    [30] Baker E T, Milburn H B. MAPR: a new instrument for hydrothermal plume mapping[J]. Ridge Events, 1997, 8: 23−25.
    [31] Chin C S, Coale K H, Elrod V A, et al. In situ observations of dissolved iron and manganese in hydrothermal vent plumes, Juan de Fuca Ridge[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B3): 4969−4984. doi: 10.1029/93JB02036
    [32] Charlou J L, Rona P, Bougault H. Methane anomalies over TAG hydrothermal field on Mid Atlantic Ridge[J]. Journal of Marine Research, 1987, 45(2): 461−472. doi: 10.1357/002224087788401179
    [33] 陈升. 洋中脊热液羽状流找矿标志研究[D]. 长春: 吉林大学, 2016.

    Chen Sheng. The study of hydrothermal plume ore-prospecting criteria on the mid-ocean ridges[D]. Changchun: Jilin University, 2016.
    [34] Chen Yongshun, Lin Jian. High sensitivity of ocean ridge thermal structure to changes in magma supply: the Galapagos Spreading Center[J]. Earth and Planetary Science Letters, 2004, 221(1/4): 263−273.
    [35] Baker E T, Chen Y J, Morgan J P. The relationship between near-axis hydrothermal cooling and the spreading rate of mid-ocean ridges[J]. Earth and Planetary Science Letters, 1996, 142(1/2): 137−145.
    [36] Dick H J B, Lin Jian, Schouten H. An ultraslow-spreading class of ocean ridge[J]. Nature, 2003, 426(6965): 405−412. doi: 10.1038/nature02128
    [37] 杨作升, 范德江, 李云海, 等. 热液羽状流研究进展[J]. 地球科学进展, 2006, 21(10): 999−1007. doi: 10.3321/j.issn:1001-8166.2006.10.002

    Yang Zuosheng, Fan Dejiang, Li Yunhai, et al. Advances in hydrothermal plumes study[J]. Advances in Earth Science, 2006, 21(10): 999−1007. doi: 10.3321/j.issn:1001-8166.2006.10.002
    [38] Kelley D S, Delaney J R, Juniper S K. Establishing a new era of submarine volcanic observatories: cabling Axial Seamount and the Endeavour Segment of the Juan de Fuca Ridge[J]. Marine Geology, 2014, 352: 426−450. doi: 10.1016/j.margeo.2014.03.010
    [39] Tivey M K. Generation of seafloor hydrothermal vent fluids and associated mineral deposits[J]. Oceanography, 2007, 20(1): 50−65. doi: 10.5670/oceanog
    [40] Warren B A. Transpacific hydrographic sections at Lats. 43°S and 28°S: the SCORPIO expedition-II. Deep water[J]. Deep Sea Research and Oceanographic Abstracts, 1973, 20(1): 9−38. doi: 10.1016/0011-7471(73)90040-5
    [41] Tao Chunhui, Chen Sheng, Baker E T, et al. Hydrothermal plume mapping as a prospecting tool for seafloor sulfide deposits: a case study at the Zouyu-1 and Zouyu-2 hydrothermal fields in the southern Mid-Atlantic Ridge[J]. Marine Geophysical Research, 2017, 38(1/2): 3−16.
    [42] Coogan L A, Attar A, Mihaly S F, et al. Near-vent chemical processes in a hydrothermal plume: Insights from an integrated study of the Endeavour segment[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(4): 1641−1660. doi: 10.1002/2016GC006747
    [43] Ray D, Kamesh Raju K A, Baker E T, et al. Hydrothermal plumes over the Carlsberg Ridge, Indian Ocean[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(1): Q01009.
    [44] Han C, Wu G, Ye Y, et al. Active hydrothermal and non-active massive sulfide mound investigation using a new multi-parameter chemical sensor[C]//Testing and Measurement: Techniques and Applications. Proceedings of the 2015 International Conference on Testing and Measurement: Techniques and Applications (TMTA 2015). AGU, 2015: 183–186.
    [45] Fitzsimmons J N, John S G, Marsay C M, et al. Iron persistence in a distal hydrothermal plume supported by dissolved-particulate exchange[J]. Nature Geoscience, 2017, 10(3): 195−201. doi: 10.1038/ngeo2900
    [46] Sander S G, Koschinsky A. Metal flux from hydrothermal vents increased by organic complexation[J]. Nature Geoscience, 2011, 4(3): 145−150. doi: 10.1038/ngeo1088
    [47] Charlou J L, Donval J P. Hydrothermal methane venting between 12°N and 26°N along the Mid-Atlantic Ridge[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B6): 9625−9642. doi: 10.1029/92JB02047
    [48] You O R, Son S K, Baker E T, et al. Bathymetric influence on dissolved methane in hydrothermal plumes revealed by concentration and stable carbon isotope measurements at newly discovered venting sites on the central Indian Ridge (11–13 S)[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2014, 91: 17−26. doi: 10.1016/j.dsr.2014.05.011
    [49] Sudarikov S M, Roumiantsev A B. Structure of hydrothermal plumes at the Logatchev vent field, 14°45′N, Mid-Atlantic Ridge: evidence from geochemical and geophysical data[J]. Journal of Volcanology and Geothermal Research, 2000, 101(3/4): 245−252.
    [50] German C R, Yoerger D R, Jakuba M, et al. Hydrothermal exploration by AUV: progress to-date with ABE in the Pacific, Atlantic & Indian Oceans[C]//2008 IEEE/OES Autonomous Underwater Vehicles. Woods Hole, MA, USA: IEEE, 2008: 1–5.
    [51] Stranne C, Sohn R A, Liljebladh B, et al. Analysis and modeling of hydrothermal plume data acquired from the 85°E segment of the Gakkel Ridge[J]. Journal of Geophysical Research: Oceans, 2010, 115(C6): C06028.
    [52] Larson B I, Lang S Q, Lilley M D, et al. Stealth export of hydrogen and methane from a low temperature serpentinization system[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 121: 233−245. doi: 10.1016/j.dsr2.2015.05.007
    [53] Son J, Pak S J, Kim J, et al. Tectonic and magmatic control of hydrothermal activity along the slow-spreading central Indian Ridge, 8° S-17° S[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(5): 2011−2020. doi: 10.1002/2013GC005206
    [54] Bemis K G, Silver D, Xu Guangyu, et al. The path to COVIS: a review of acoustic imaging of hydrothermal flow regimes[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 121: 159−176. doi: 10.1016/j.dsr2.2015.06.002
    [55] Xu Guangyu, Jackson D R, Bemis K G, et al. Long-term, quantitative observations of seafloor hydrothermal venting using an imaging sonar[J]. The Journal of the Acoustical Society of America, 2017, 142(4): 2504.
    [56] Rona P A, Bemis K G, Silver D, et al. Acoustic imaging, visualization, and quantification of buoyant hydrothermal plumes in the ocean[J]. Marine Geophysical Researches, 2002, 23(2): 147−168. doi: 10.1023/A:1022481315125
    [57] Morton B R, Taylor G I, Turner J S. Turbulent gravitational convection from maintained and instantaneous sources[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1956, 234(1196): 1−23. doi: 10.1098/rspa.1956.0011
    [58] Turner J S, Campbell I H. A laboratory and theoretical study of the growth of “black smoker” chimneys[J]. Earth and Planetary Science Letters, 1987, 82(1/2): 36−48.
    [59] Tyler P A, Young C M. Dispersal at hydrothermal vents: a summary of recent progress[J]. Hydrobiologia, 2003, 503(1/3): 9−19.
    [60] 李江海, 牛向龙, 冯军. 海底黑烟囱的识别研究及其科学意义[J]. 地球科学进展, 2004, 19(1): 17−25. doi: 10.3321/j.issn:1001-8166.2004.01.003

    Li Jianghai, Niu Xianglong, Feng Jun. The identification of the fossil black smoker chimney and it’s implication for scientific research[J]. Advance in Earth Sciences, 2004, 19(1): 17−25. doi: 10.3321/j.issn:1001-8166.2004.01.003
    [61] 栾锡武, 赵一阳, 秦蕴珊. 热液柱的形态研究[J]. 热带海洋学报, 2002, 21(2): 91−97. doi: 10.3969/j.issn.1009-5470.2002.02.011

    Luan Xiwu, Zhao Yiyang, Qin Yunshan. A study on shape of hydrothermal plume[J]. Journal of Tropical Oceanography, 2002, 21(2): 91−97. doi: 10.3969/j.issn.1009-5470.2002.02.011
    [62] 夏建新, 韩凝, 任华堂. 深海热液活动环境场参数及模型分析[J]. 地学前缘, 2009, 16(6): 48−54. doi: 10.3321/j.issn:1005-2321.2009.06.005

    Xia Jianxin, Han Ning, Ren Huatang. Parameters and model analysis for the deep-sea hydrothermal plume[J]. Earth Science Frontiers, 2009, 16(6): 48−54. doi: 10.3321/j.issn:1005-2321.2009.06.005
    [63] German C R, Richards K J, Rudnicki M D, et al. Topographic control of a dispersing hydrothermal plume[J]. Earth and Planetary Science Letters, 1998, 156(3/4): 267−273.
    [64] Goodman J C, Collins G C, Marshall J, et al. Hydrothermal plume dynamics on Europa: implications for chaos formation[J]. Journal of Geophysical Research: Planets, 2004, 109(E3): E03008.
    [65] Wichers S. Verification of numerical models for hydrothermal plume water through field measurements at TAG[D]. Cambridge, MA: Massachusetts Institute of Technology, 2005.
    [66] Hoshino K, Yamamoto Y, Gu Xiangping, et al. Preliminary examinations of the ore-forming process by fluid mixing-a test of MIX99[J]. Resource Geology, 2000, 50(3): 185−190. doi: 10.1111/rge.2000.50.issue-3
    [67] 张巍, 赵亮, 贺治国, 等. 线性层结盐水中的羽流运动特性[J]. 水科学进展, 2016, 27(4): 602−608.

    Zhang Wei, Zhao Liang, He Zhiguo, et al. Characteristics of plumes in linearly stratified salt-water[J]. Advances in Water Science, 2016, 27(4): 602−608.
    [68] Jiang Houshou, Breier J A. Physical controls on mixing and transport within rising submarine hydrothermal plumes: a numerical simulation study[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2014, 92: 41−55. doi: 10.1016/j.dsr.2014.06.006
    [69] Baker E T, Hémond C, Briais A, et al. Correlated patterns in hydrothermal plume distribution and apparent magmatic budget along 2500 km of the southeast Indian Ridge[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(8): 3198−3211. doi: 10.1002/2014GC005344
    [70] Francheteau J, Ballard R D. The East Pacific Rise near 21°N, 13°N and 20°S: inferences for along-strike variability of axial processes of the mid-ocean ridge[J]. Earth and Planetary Science Letters, 1983, 64(1): 93−116. doi: 10.1016/0012-821X(83)90055-9
    [71] Baker E T, German C R, Elderfield H. Hydrothermal plumes over spreading-center axes: global distributions and geological inferences[M]//Humphris S E, Zierenberg R A, Mullineaux L S, et al. Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions, Geophysical Monograph Series. Washington, D. C. : AGU, 1995, 91: 47–71.
    [72] German C R, Parson L M. Distributions of hydrothermal activity along the Mid-Atlantic Ridge: interplay of magmatic and tectonic controls[J]. Earth and Planetary Science Letters, 1998, 160(3/4): 327−341.
    [73] Baker E T. Relationships between hydrothermal activity and axial magma chamber distribution, depth, and melt content[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(6): Q06009.
    [74] Fisher A T, Becker K. Channelized fluid flow in oceanic crust reconciles heat-flow and permeability data[J]. Nature, 2000, 403(6765): 71−74. doi: 10.1038/47463
    [75] Haymon R M, White S M. Fine-scale segmentation of volcanic/hydrothermal systems along fast-spreading ridge crests[J]. Earth and Planetary Science Letters, 2004, 226(3/4): 367−382.
    [76] Auzende J M, Ballu V, Batiza R, et al. Recent tectonic, magmatic, and hydrothermal activity on the East Pacific Rise between 17° S and 19° S: submersible observations[J]. Journal of Geophysical Research: Solid Earth, 1996, 101(B8): 17995−18010. doi: 10.1029/96JB01209
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  385
  • HTML全文浏览量:  17
  • PDF下载量:  258
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-09
  • 修回日期:  2019-02-11
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2019-08-25

目录

    /

    返回文章
    返回