留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于提升回归树的东、黄海鲐鱼渔场预报

高峰 陈新军 官文江 李纲

高峰, 陈新军, 官文江, 李纲. 基于提升回归树的东、黄海鲐鱼渔场预报[J]. 海洋学报, 2015, 37(10): 39-48. doi: 10.3969/j.issn.0253-4193.2015.10.004
引用本文: 高峰, 陈新军, 官文江, 李纲. 基于提升回归树的东、黄海鲐鱼渔场预报[J]. 海洋学报, 2015, 37(10): 39-48. doi: 10.3969/j.issn.0253-4193.2015.10.004
Gao Feng, Chen Xinjun, Guan Wenjiang, Li Gang. Fishing ground forecasting of chub mackerel in the Yellow Sea and East China Sea using boosted regression trees[J]. Haiyang Xuebao, 2015, 37(10): 39-48. doi: 10.3969/j.issn.0253-4193.2015.10.004
Citation: Gao Feng, Chen Xinjun, Guan Wenjiang, Li Gang. Fishing ground forecasting of chub mackerel in the Yellow Sea and East China Sea using boosted regression trees[J]. Haiyang Xuebao, 2015, 37(10): 39-48. doi: 10.3969/j.issn.0253-4193.2015.10.004

基于提升回归树的东、黄海鲐鱼渔场预报

doi: 10.3969/j.issn.0253-4193.2015.10.004
基金项目: 国家863项目(2012AA092301);国家发改委产业化专项(2159999);国家科技支撑计划(2013BAD13B01);上海市教委科研创新项目(14ZZ147)。

Fishing ground forecasting of chub mackerel in the Yellow Sea and East China Sea using boosted regression trees

  • 摘要: 为提高东、黄海鲐鱼渔场预报准确率、降低渔业生产成本,研究提出了一种基于提升回归树的渔场预报模型。研究采用2003—2010年我国大型灯光围网渔捞日志数据,以有网次记录的小渔区为渔场,以渔捞日志未记录的区域作为背景场随机选择假定非渔场数据,以海表水温等环境因子作为预测变量构建东、黄海鲐鱼渔场预报模型并以2011年的实际作业记录对预报模型进行精度验证。验证计算得到预报模型的AUC(area under receiver operating curve)值为0.897,表明模型的预报精度较高。模型的空间预测结果表明,预报渔场与实际作业位置基本吻合,其位置移动也与实际情况相符。这表明基于提升回归树的渔场预报模型可以用来进行东、黄海鲐鱼渔场的预报。
  • 程家骅,林龙山. 东海区鲐鱼生物学特征及其渔业现状的分析研究[J]. 海洋渔业,2004,26(2): 73-78. Cheng Jiahua,Lin Longshan. Study on the biological characteristics and status of common mackerel (Scomber japonicus Houttuyn) fishery in the East China Sea region[J]. Marine Fisheries,2004,26(2): 73-78.
    Li Gang,Chen Xinjun,Lei Lin,et al. Distribution of hotspots of chub mackerel based on remote-sensing data in coastal waters of China[J]. International Journal of Remote Sensing,2014,35(11/12): 4399-4421.
    苗振清. 东海北部鲐鲹中心渔场形成机制的统计学[J]. 水产学报,2003,27(2): 143-150. Miao Zhenqing. The statistical research on the formation mechanism of central fishing ground of Pneumatophorus japonicus and Decapterus maruadsi in the north of East China Sea[J]. Journal of Fisheries of China,2003,27(2): 143-150.
    李曰嵩,潘灵芝,严利平,等. 基于个体模型的东海鲐鱼渔场形成机制研究[J]. 海洋学报,2014,36(6): 67-74. Li Yuesong,Pan Lingzhi,Yan Liping,et al. Individual-based model study on the fishing ground of chub mackerel (Scomber japonicus) in the East China Sea[J]. Haiyang Xuebao,2014,36(6): 67-74.
    李纲,陈新军. 东海鲐鱼资源和渔场时空分布特征的研究[J]. 中国海洋大学学报,2007,37(6): 921-926. Li Gang,Chen Xinjun. Tempo-spatial characteristic analysis of the mackerel resource and its fishing ground in the East China Sea[J]. Periodical of Ocean University of China,2007,37(6): 921-926.
    郑波,陈新军,李纲. GLM和GAM模型研究东黄海鲐资源渔场与环境因子的关系[J]. 水产学报,2008,32(3): 379-386. Zheng Bo,Chen Xinjun,Li Gang. Relationship between the resource and fishing ground of mackerel and environmental factors based on GAM and GLM models in the East China Sea and Yellow Sea[J]. Journal of Fisheries of China,2008,32(3): 379-386.
    Chen Xinjun,Li Gang,Feng Bo,et al. Habitat suitability index of chub mackerel (Scomber japonicus) from July to September in the East China Sea[J]. Journal of Oceanography,2009,65(1): 93-102.
    张月霞,丘仲锋,伍玉梅,等. 基于案例推理的东海区鲐鱼中心渔场预报[J]. 海洋科学,2009,33(6): 8-11. Zhang Yuexia,Qiu Zhongfeng,Wu Yumei,et al. Predicting central fishing ground of Scomber japonica in East China Sea based on case-based reasoning[J]. Marine Sciences,2009,33(6): 8-11.
    陈峰,雷林,毛志华,等. 基于遥感水质的夏季东海鲐鱼渔情预报研究[J]. 广东海洋大学学报,2011,31(3): 56-62. Chen Feng,Lei Lin,Mao Zhihua,et al. Fishery forecasting for chub mackerel (Scomber japonicus) in summer in the East China Sea based on water quality from remote sensing[J]. Journal of Guangdong Ocean University,2011,31(3): 56-62.
    Franklin J. Mapping species distributions: spatial inference and prediction[M]. New York: Cambridge University Press,2009: 200-205.
    Hastie T,Tibshirani R,Friedman J. The elements of statistical learning: data mining,inference,and prediction[M]. New York: Springer-Verlag,2001: 299-345.
    Abeare S. Comparisons of boosted regression tree,GLM and GAM performance in the standardization of yellowfin tuna catch-rate data from the Gulf of Mexico longline fishery[D]. Baton Rouge: Louisiana State University,2009: 1-94.
    Elith J,Leathwick J R,Hastie T. A working guide to boosted regression trees[J]. Journal of Animal Ecology,2008,77(4): 802-813.
    Froeschke B F,Tissot P,Stunz G W,et al. Spatiotemporal predictive models for juvenile southern flounder in Texas estuaries[J]. North American Journal of Fisheries Management,2013,33(4): 817-828.
    Lewin W C,Mehner T,Ritterbusch D,et al. The influence of anthropogenic shoreline changes on the littoral abundance of fish species in German lowland lakes varying in depth as determined by boosted regression trees[J]. Hydrobiologia,2014,724(1): 293-306.
    Compton T J,Morrison M A,Leathwick J R,et al. Ontogenetic habitat associations of a demersal fish species,Pagrus auratus,identified using boosted regression trees[J]. Marine Ecology Progress Series,2012,462: 219-230.
    Soykan C U,Eguchi T,Kohin S,et al. Prediction of fishing effort distributions using boosted regression trees[J]. Ecological Applications,2014,24(1): 71-83.
    Pearce J L,Boyce M S. Modelling distribution and abundance with presence-only data[J]. Journal of Applied Ecology,2006,43(3): 405-412.
    Barbet-Massin M,Jiguet F,Albert C H,et al. Selecting pseudo-absences for species distribution models: how,where and how many?[J]. Methods in Ecology and Evolution,2012,3(2): 327-338.
    李纲,陈新军. 夏季东海渔场鲐鱼产量与海洋环境因子的关系[J]. 海洋学研究,2009,27(1): 1-8. Li Gang,Chen Xinjun. Study on the relationship between catch of mackerel and environmental factors in the East China Sea in summer[J]. Journal of Marine Sciences,2009,27(1): 1-8.
    官文江,陈新军,高峰,等. 海洋环境对东、黄海鲐鱼灯光围网捕捞效率的影响[J]. 中国水产科学,2009,16(6): 949-958. Guan Wenjiang,Chen Xinjun,Gao Feng,et al. Environmental effects on fishing efficiency of Scomber japonicus for Chinese large lighting purse seine fishery in the Yellow and East China Seas[J]. Journal of Fishery Sciences of China,2009,16(6): 949-958.
    官文江,陈新军,李纲. 海表水温和拉尼娜事件对东海鲐鱼资源时空变动的影响[J]. 上海海洋大学学报,2011,20(1): 102-107. Guan Wenjiang,Chen Xinjun,Li Gang. Influence of sea surface temperature and La Nia event on temporal and spatial fluctuation of chub mackerel (Scomber japonicus) stock in the East China Sea[J]. Journal of Shanghai Ocean University,2011,20(1): 102-107.
    陈新军,刘必林,田思泉,等. 利用基于表温因子的栖息地模型预测西北太平洋柔鱼(Ommastrephes bartramii)渔场[J]. 海洋与湖沼,2009,40(6): 707-713. Chen Xinjun,Liu Bilin,Tian Siquan,et al. Forecasting the fishing ground of Ommastrephes bartramii with SSJ-based habitat suitability modelling in Northwestern Pacific[J]. Oceanologia et Limnologia Sinica,2009,40(6): 707-713.
    Ridgeway G. Generalized boosted regression models: A guide to the gbm package[EB/OL]. (2007-08-03)[2014-09-30]. http://ftp.ctex.org/mirrors/cran/web/packages/gbm/.
    Friedman J H. Greedy function approximation: a gradient boosting machine[J]. The Annals of Statistics,2001,29(5): 1189-1232.
    Brieman L,Friedman J,Olshen R A,et al. Classification and regression trees[M]. Belmont: Chapman & Hall/CRC,1984: 1-368.
    Friedman J H. Stochastic gradient boosting[J]. Computational Statistics & Data Analysis,2002,38(4): 367-378.
    Swets J A. Measuring the accuracy of diagnostic systems[J]. Science,1988,240(4857): 1285-1293.
    Freeman E A,Moisen G. PresenceAbsence: An R package for presence absence analysis[J]. Journal of Statistical Software,2008,23(11): 1-31.
    崔雪森,伍玉梅,张晶,等. 基于分类回归树算法的东南太平洋智利竹筴鱼渔场预报[J]. 中国海洋大学学报,2012,42(7/8): 53-59. Cui Xuesen,Wu Yumei,Zhang Jing,et al. Fishing ground forecasting of Chilean jack mackerel (Trachurus murphyi) in the Southeast Pacific Ocean based on CART decision tree[J]. Periodical of Ocean University of China,2012,42(7/8): 53-59.
    陈雪忠,樊伟,崔雪森,等. 基于随机森林的印度洋长鳍金枪鱼渔场预报[J]. 海洋学报,2013,35(1): 158-164. Chen Xuezhong,Fan Wei,Cui Xuesen,et al. Fishing ground forecasting of Thunnus alalung in Indian Ocean based on random forest[J]. Haiyang Xuebao,2013,35(1): 158-164.
    Andrade H A. The relationship between the skipjack tuna (Katsuwonus pelamis) fishery and seasonal temperature variability in the south-western Atlantic[J]. Fisheries Oceanography,2003,12(1): 10-18.
    VanDerWal J,Shoo L P,Graham C,et al. Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know?[J]. Ecological Modelling,2009,220(4): 589-594.
    陈新军,高峰,官文江,等. 渔情预报技术及模型研究进展[J]. 水产学报,2013,37(8): 1270-1280. Chen Xinjun,Gao Feng,Guan Wenjiang. et al. Review of fishery forecasting technology and its models[J]. Journal of Fisheries of China,2013,37(8): 1270-1280.
    Phillips S J,Anderson R P,Schapire R E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling,2006,190(3/4): 231-259.
  • 加载中
计量
  • 文章访问数:  1289
  • HTML全文浏览量:  13
  • PDF下载量:  1232
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-16

目录

    /

    返回文章
    返回