留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

秋季东海陆架区低氧分布特征和控制因素分析

郑杨 韦钦胜 吴林妮 辛明 翟星 孙霞 谢琳萍 王保栋

郑杨,韦钦胜,吴林妮,等. 秋季东海陆架区低氧分布特征和控制因素分析[J]. 海洋学报,2025,47(11):42–56 doi: 10.12284/hyxb2025146
引用本文: 郑杨,韦钦胜,吴林妮,等. 秋季东海陆架区低氧分布特征和控制因素分析[J]. 海洋学报,2025,47(11):42–56 doi: 10.12284/hyxb2025146
Zheng Yang,Wei Qinsheng,Wu Linni, et al. Distribution characteristics of hypoxia and controlling factors on the East China Sea shelf in autumn[J]. Haiyang Xuebao,2025, 47(11):42–56 doi: 10.12284/hyxb2025146
Citation: Zheng Yang,Wei Qinsheng,Wu Linni, et al. Distribution characteristics of hypoxia and controlling factors on the East China Sea shelf in autumn[J]. Haiyang Xuebao,2025, 47(11):42–56 doi: 10.12284/hyxb2025146

秋季东海陆架区低氧分布特征和控制因素分析

doi: 10.12284/hyxb2025146
基金项目: 国家自然科学基金(U23A2033,41876085);中央级公益性科研院所基本科研业务费专项资金资助项目(GY0220S3);联合国“海洋十年”项目“亚洲近海溶解氧和缺氧研究(Coastal Oxygen and Hypoxia in Asian Waters)”和“黑潮与边缘海的交换及生态效应(Kuroshio Edge Exchange and the Shelf Ecosystem)”。
详细信息
    作者简介:

    郑杨(2002—),男,江苏省盐城市人,主要从事海洋化学方面的调查与研究工作。E-mail:zhengyang@fio.org.cn

    通讯作者:

    韦钦胜,研究员,主要从事海洋生物地球化学和化学海洋学等方面的研究。E-mail:weiqinsheng@fio.org.cn

  • 中图分类号: P734

Distribution characteristics of hypoxia and controlling factors on the East China Sea shelf in autumn

  • 摘要: 长江口−东海陆架是全球最大的季节性低氧区之一,其对区域生物地球化学和生物生态过程具有显著影响,但目前对该低氧区在秋季消退期的变化过程和控制机制仍缺乏深入的认识。本研究利用2017年9月在东海陆架所获取的多学科调查资料,刻画了秋季该海域低氧区的空间分布和背景理化环境特征,并结合对水文动力和生物地球化学过程的分析,深入探讨了低氧区的控制因素。结果表明,秋季东海陆架中部(浙江近海40~60 m等深线范围内)存在一东北−西南向的底层溶解氧(DO)低值区(DO质量浓度 < 4 mg/L,最低值为2.52 mg/L),且低氧水在近岸侧呈现出一定的抬升趋势。该低氧区基本处于黑潮次表层水近岸分支(也称为台湾暖流底层水)的影响范围内,跃层和黑潮次表层水近岸分支外缘处的锋面限制了内部低氧水与上层水体及周围水体的氧交换,形成了东海陆架低氧区在秋季得以维持的水动力条件;黑潮次表层水近岸分支在浙江近海的涌升是导致东海陆架近岸侧中上层出现DO低值区的重要原因。秋季浙江近海低盐水的东南向离岸扩展和上升流所带来的营养盐为现场初级生产提供了重要的物质基础,进而在一定程度上影响着东海陆架低氧区的强度。同时,分析指出秋季随着黑潮次表层水近岸分支的南退与向海移动,东海陆架低氧核心区亦将进一步向南和离岸侧退缩甚至消亡。本研究可为深入认识秋季长江口−东海陆架低氧区的消退过程和控制机制等提供重要科学依据。
  • 图  1  秋季东海陆架主要流场格局(改绘自Yang等[39])和调查站位

    Fig.  1  Schematic diagram of main currents on the East China Sea shelf in autumn and sampling stations

    图  2  秋季东海陆架温度、盐度和密度的平面分布

    Fig.  2  Horizontal distribution of temperature, salinity and density on the East China Sea shelf during autumn

    图  3  秋季东海陆架各断面温度、盐度、密度、DO、DO饱和度、AOU、PO4-P和Chl a的垂向分布

    Fig.  3  Vertical distribution of temperature, salinity, density, DO, DO saturation, AOU, PO4-P and Chl a along each section on the East China Sea shelf during autumn

    图  4  秋季东海陆架DO、DO饱和度、AOU、PO4-P和Chl a的平面分布

    Fig.  4  Horizontal distribution of DO, DO saturation, AOU, PO4-P and Chl a on the East China Sea shelf during autumn

    图  5  秋季调查海域各环境因子间的关系

    a. 各站位底层DO质量浓度与水深;b. 底层DO质量浓度与底层温度;c. 底层DO质量浓度与底层盐度;d. 底层DO质量浓度与跃层强度(∆ρ/z);e. 30 m和50 m水层中的DO质量浓度与温度;f. 30 m和50 m水层中的DO质量浓度与密度

    Fig.  5  Relationships between environmental factors in the surveyed area during autumn

    a. Bottom DO mass concentrations and station depth; b. DO mass concentrations and temperature in bottom layer; c. DO mass concentrations and salinity in bottom layer; d. DO mass concentrations and pycnocline intensity in bottom layer (∆ρ/z); e. DO mass concentrations and temperature in 30-m and 50-m layers; f. DO mass concentrations and density in 30-m and 50-m layers

    图  6  秋季东海陆架底层(a)和KSSW影响区(b)的温度-盐度-DO聚点图

    Fig.  6  Temperature-salinity-DO scatter plots in bottom layer (a) and Kuroshio Subsurface Water (KSSW)-dominated region (b) on the East China Sea shelf during autumn

    图  7  秋季调查海域各环境因子间的关系

    a. 表层和10 m水层中的PO4-P浓度与盐度;b. 表层和10 m水层中的Chl a质量浓度与盐度;c. 50 m水层中的PO4-P浓度与温度;d. 50 m水层中的PO4-P浓度与密度;e. 底层DO质量浓度与表层Chl a质量浓度(图中所指的“KSSW近岸分支西南锋面”位置详见图2f);f. 底层DO质量浓度与底层PO4-P浓度

    Fig.  7  Relationships between environmental factors in the surveyed area during autumn

    a. PO4-P concentrations and salinity in surface and 10-m layers; b. Chl a mass concentrations and salinity in surface and 10-m layers; c. PO4-P concentrations and temperature in 50-m layer; d. PO4-P concentrations and density in 50-m layer; e. bottom DO mass concentrations and surface Chl a mass concentrations; f. DO mass concentrations and PO4-P concentrations in the bottom layer

  • [1] Diaz R J, Rosenberg R. Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna[J]. Oceanography and Marine Biology: An Annual Review, 1995, 33: 245−303.
    [2] Levin L A, Ekau W, Gooday A J, et al. Effects of natural and human-induced hypoxia on coastal benthos[J]. Biogeosciences, 2009, 6(10): 2063−2098. doi: 10.5194/bg-6-2063-2009
    [3] Naqvi S W A, Bange H W, Farías L, et al. Marine hypoxia/anoxia as a source of CH4 and N2O[J]. Biogeosciences, 2010, 7(7): 2159−2190. doi: 10.5194/bg-7-2159-2010
    [4] Liu Shuangyuan, Gao Quanzhou, Wu Jiaxue, et al. The concentration of CH4, N2O and CO2 in the Pearl River estuary increased significantly due to the sediment particle resuspension and the interaction of hypoxia[J]. Science of the Total Environment, 2024, 911: 168795. doi: 10.1016/j.scitotenv.2023.168795
    [5] Diaz R J, Rosenberg R. Spreading dead zones and consequences for marine ecosystems[J]. Science, 2008, 321(5891): 926−929. doi: 10.1126/science.1156401
    [6] Breitburg D, Levin L A, Oschlies A, et al. Declining oxygen in the global ocean and coastal waters[J]. Science, 2018, 359(6371): eaam7240. doi: 10.1126/science.aam7240
    [7] Rabouille C, Conley D J, Dai Minhan, et al. Comparison of hypoxia among four river-dominated ocean margins: the Changjiang (Yangtze), Mississippi, Pearl, and Rhône rivers[J]. Continental Shelf Research, 2008, 28(12): 1527−1537. doi: 10.1016/j.csr.2008.01.020
    [8] Chen Xiaofeng, Shen Zhenyao, Li Yangyang, et al. Physical controls of hypoxia in waters adjacent to the Yangtze Estuary: a numerical modeling study[J]. Marine Pollution Bulletin, 2015, 97(1/2): 349−364.
    [9] Zhang Wenxia, Hetland R D, Ruiz V, et al. Stratification duration and the formation of bottom hypoxia over the Texas-Louisiana shelf[J]. Estuarine, Coastal and Shelf Science, 2020, 238: 106711. doi: 10.1016/j.ecss.2020.106711
    [10] Obenour D R, Michalak A M, Zhou Yuntao, et al. Quantifying the impacts of stratification and nutrient loading on hypoxia in the northern Gulf of Mexico[J]. Environmental Science & Technology, 2012, 46(10): 5489−5496.
    [11] Rabalais N N, Cai Weijun, Carstensen J, et al. Eutrophication-driven deoxygenation in the coastal ocean[J]. Oceanography, 2014, 27(1): 172−183. doi: 10.5670/oceanog.2014.21
    [12] Fennel K, Testa J M. Biogeochemical controls on coastal hypoxia[J]. Annual Review of Marine Science, 2019, 11: 105−130. doi: 10.1146/annurev-marine-010318-095138
    [13] Cheresh J, Fiechter J. Physical and biogeochemical drivers of alongshore pH and oxygen variability in the California Current System[J]. Geophysical Research Letters, 2020, 47(19): e2020GL089553. doi: 10.1029/2020GL089553
    [14] Farías L, Cornejo M. Effect of seasonal changes in bottom water oxygenation on sediment N oxides and N2O cycling in the coastal upwelling regime off central Chile (36.5°S)[J]. Progress in Oceanography, 2007, 75(3): 561−575. doi: 10.1016/j.pocean.2007.08.019
    [15] Chan F, Barth J A, Lubchenco J, et al. Emergence of anoxia in the California Current large marine ecosystem[J]. Science, 2008, 319(5865): 920. doi: 10.1126/science.1149016
    [16] 韦钦胜, 臧家业, 战闰, 等. 夏季长江口东北部上升流海域的生态环境特征[J]. 海洋与湖沼, 2011, 42(6): 899−905.

    Wei Qinsheng, Zang Jiaye, Zhan Run, et al. Characteristics of the ecological environment in the upwelling area northeast of the Changjiang River Estuary[J]. Oceanologia et Limnologia Sinica, 2011, 42(6): 899−905.
    [17] Wei Qinsheng, Yao Peng, Xu Bochao, et al. Coastal upwelling combined with the river plume regulates hypoxia in the Changjiang Estuary and adjacent inner East China Sea shelf[J]. Journal of Geophysical Research: Oceans, 2021, 126(11): e2021JC017740. doi: 10.1029/2021JC017740
    [18] Beardsley R C, Limeburner R, Yu H, et al. Discharge of the Changjiang (Yangtze River) into the East China Sea[J]. Continental Shelf Research, 1985, 4(1/2): 57−76.
    [19] Wang Baodong. Hydromorphological mechanisms leading to hypoxia off the Changjiang estuary[J]. Marine Environmental Research, 2009, 67(1): 53−58. doi: 10.1016/j.marenvres.2008.11.001
    [20] 李道季, 张经, 黄大吉, 等. 长江口外氧的亏损[J]. 中国科学(D辑), 2002, 32(8): 686−694.

    Li Daoji, Zhang Jing, Huang Daji, et al. Oxygen depletion off the Changjiang (Yangtze River) Estuary[J]. Science in China (Series D), 2002, 32(8): 686−694.
    [21] 李宏亮, 陈建芳, 卢勇, 等. 长江口水体溶解氧的季节变化及底层低氧成因分析[J]. 海洋学研究, 2011, 29(3): 78−87.

    Li Hongliang, Chen Jianfang, Lu Yong, et al. Seasonal variation of DO and formation mechanism of bottom water hypoxia of Changjiang River Estuary[J]. Journal of Marine Sciences, 2011, 29(3): 78−87.
    [22] 周锋, 钱周奕, 刘安琪, 等. 长江口及邻近海域底层水体低氧物理机制的研究进展[J]. 海洋学研究, 2021, 39(4): 22−38.

    Zhou Feng, Qian Zhouyi, Liu Anqi, et al. Recent progress on the studies of the physical mechanisms of hypoxia off the Changjiang (Yangtze River) Estuary[J]. Journal of Marine Sciences, 2021, 39(4): 22−38.
    [23] Chen C C, Shiah F K, Gong G C, et al. Impact of upwelling on phytoplankton blooms and hypoxia along the Chinese coast in the East China Sea[J]. Marine Pollution Bulletin, 2021, 167: 112288. doi: 10.1016/j.marpolbul.2021.112288
    [24] Wang Yingqi, Wang Kui, Wu Di, et al. Subsurface hypoxia observation in the Changjiang Estuary based on a wave-driven profiler, satellite data, and machine learning[J]. Journal of Geophysical Research: Oceans, 2025, 130(5): e2024JC022142. doi: 10.1029/2024JC022142
    [25] He Biyan, Dai Minhan, Zhai Weidong, et al. Hypoxia in the upper reaches of the Pearl River Estuary and its maintenance mechanisms: a synthesis based on multiple year observations during 2000—2008[J]. Marine Chemistry, 2014, 167: 13−24. doi: 10.1016/j.marchem.2014.07.003
    [26] Li Xiuqin, Lu Chuqian, Zhang Yafeng, et al. Low dissolved oxygen in the Pearl River estuary in summer: long-term spatio-temporal patterns, trends, and regulating factors[J]. Marine Pollution Bulletin, 2020, 151: 110814. doi: 10.1016/j.marpolbul.2019.110814
    [27] Qian Wei, Zhang Shi, Tong Chuan, et al. Long-term patterns of dissolved oxygen dynamics in the Pearl River Estuary[J]. Journal of Geophysical Research: Biogeosciences, 2022, 127(7): e2022JG006967. doi: 10.1029/2022JG006967
    [28] Guo Xianghui, Su Jianzhong, Guo Liguo, et al. Coupling of carbon and oxygen in the Pearl River plume in summer: upwelling, hypoxia, reoxygenation and enhanced acidification[J]. Journal of Geophysical Research: Oceans, 2023, 128(8): e2022JC019326. doi: 10.1029/2022JC019326
    [29] Zhai Weidong, Zhao Huade, Zheng Nan, et al. Coastal acidification in summer bottom oxygen-depleted waters in northwestern-northern Bohai Sea from June to August in 2011[J]. Chinese Science Bulletin, 2012, 57(9): 1062−1068. doi: 10.1007/s11434-011-4949-2
    [30] Zhai Weidong, Zhao Huade, Su Jilan, et al. Emergence of summertime hypoxia and concurrent carbonate mineral suppression in the central Bohai Sea, China[J]. Journal of Geophysical Research: Biogeosciences, 2019, 124(9): 2768−2785. doi: 10.1029/2019JG005120
    [31] Wei Qinsheng, Wang Baodong, Yao Qingzhen, et al. Spatiotemporal variations in the summer hypoxia in the Bohai Sea (China) and controlling mechanisms[J]. Marine Pollution Bulletin, 2019, 138: 125−134. doi: 10.1016/j.marpolbul.2018.11.041
    [32] 唐景荣, 韦钦胜, 赵宇航, 等. 2021年夏末秋初渤海和北黄海的溶解氧分布与低氧特征[J]. 海洋学报, 2025, 47(3): 13−26.

    Tang Jingrong, Wei Qinsheng, Zhao Yuhang, et al. Distributions of dissolved oxygen and hypoxic characteristics in the Bohai Sea and the northern Yellow Sea during the late summer-early autumn in 2021[J]. Haiyang Xuebao, 2025, 47(3): 13−26.
    [33] 韦钦胜, 王保栋, 陈建芳, 等. 长江口外缺氧区生消过程和机制的再认知[J]. 中国科学: 地球科学, 2015, 45(2): 187−206.

    Wei Qinsheng, Wang Baodong, Chen Jianfang, et al. Recognition on the forming-vanishing process and underlying mechanisms of the hypoxia off the Yangtze River estuary[J]. Science China Earth Sciences, 2015, 58(4): 628−648.
    [34] Zhang Wenxia, Zhou Feng, Huang Daji, et al. Mechanisms controlling interannual variability of seasonal hypoxia off the Changjiang River Estuary[J]. Journal of Geophysical Research: Oceans, 2023, 128(10): e2023JC019996. doi: 10.1029/2023JC019996
    [35] 王翠, 郭晓峰, 方婧, 等. 闽浙沿岸流扩展范围的季节特征及其对典型海湾的影响[J]. 应用海洋学学报, 2018, 37(1): 1−8.

    Wang Cui, Guo Xiaofeng, Fang Jing, et al. Characteristics of seasonal spatial expansion of Fujian and Zhejiang Coastal Current and their bay effects[J]. Journal of Applied Oceanography, 2018, 37(1): 1−8.
    [36] 许金电, 黄奖, 邱云, 等. 浙闽沿岸水的空间结构特征及生消过程[J]. 热带海洋学报, 2015, 34(1): 1−7.

    Xu Jindian, Huang Jiang, Qiu Yun, et al. Spatial structure characteristics of Zhejiang and Fujian coastal water and their evolution[J]. Journal of Tropical Oceanography, 2015, 34(1): 1−7.
    [37] Yang Dezhou, Yin Baoshu, Liu Zhiliang, et al. Numerical study on the pattern and origins of Kuroshio branches in the bottom water of southern East China Sea in summer[J]. Journal of Geophysical Research: Oceans, 2012, 117(C2): C02014.
    [38] Yang Dezhou, Yin Baoshu, Chai Fei, et al. The onshore intrusion of Kuroshio subsurface water from February to July and a mechanism for the intrusion variation[J]. Progress in Oceanography, 2018, 167: 97−115. doi: 10.1016/j.pocean.2018.08.004
    [39] Yang Dezhou, Yin Baoshu, Sun Junchuan, et al. Numerical study on the origins and the forcing mechanism of the phosphate in upwelling areas off the coast of Zhejiang province, China in summer[J]. Journal of Marine Systems, 2013, 123−124: 1−18.
    [40] Chen C T A, Wang Shulun. Carbon, alkalinity and nutrient budgets on the East China Sea continental shelf[J]. Journal of Geophysical Research: Oceans, 1999, 104(C9): 20675−20686. doi: 10.1029/1999JC900055
    [41] 宋金明, 袁华茂. 黑潮与邻近东海生源要素的交换及其生态环境效应[J]. 海洋与湖沼, 2017, 48(6): 1169−1177.

    Song Jinming, Yuan Huamao. Exchange and ecological effects of biogenic elements between Kuroshio and adjacent East China Sea[J]. Oceanologia et Limnologia Sinica, 2017, 48(6): 1169−1177.
    [42] Xu Lingjing, Yang Dezhou, Benthuysen J A, et al. Key dynamical factors driving the Kuroshio subsurface water to reach the Zhejiang coastal area[J]. Journal of Geophysical Research: Oceans, 2018, 123(12): 9061−9081. doi: 10.1029/2018JC014219
    [43] 赵瑞祥, 刘志亮. 台湾东北部黑潮次表层水入侵的季节变化规律[J]. 海洋学报, 2014, 36(1): 20−27.

    Zhao Ruixiang, Liu Zhiliang. The seasonal variation of the Kuroshio subsurface water intrusion northeast of Taiwan[J]. Haiyang Xuebao, 2014, 36(1): 20−27.
    [44] Zhou Peng, Song Xiuxian, Yuan Yongquan, et al. Intrusion pattern of the Kuroshio Subsurface Water onto the East China Sea continental shelf traced by dissolved inorganic iodine species during the spring and autumn of 2014[J]. Marine Chemistry, 2017, 196: 24−34. doi: 10.1016/j.marchem.2017.07.006
    [45] Lie H J, Cho C H, Lee J H, et al. Structure and eastward extension of the Changjiang River plume in the East China Sea[J]. Journal of Geophysical Research: Oceans, 2003, 108(C3): 3077.
    [46] Liu Zhiqiang, Gan Jianping, Wu H, et al. Advances on coastal and estuarine circulations around the Changjiang Estuary in the recent decades (2000—2020)[J]. Frontiers in Marine Science, 2021, 8: 615929. doi: 10.3389/fmars.2021.615929
    [47] Miao Yanyi, Wang Bin, Li Dewang, et al. Observational studies of the effects of wind mixing and biological process on the vertical distribution of dissolved oxygen off the Changjiang Estuary[J]. Frontiers in Marine Science, 2023, 10: 1081688. doi: 10.3389/fmars.2023.1081688
    [48] 周锋, 黄大吉, 倪晓波, 等. 影响长江口毗邻海域低氧区多种时间尺度变化的水文因素[J]. 生态学报, 2010, 30(17): 4728−4740.

    Zhou Feng, Huang Daji, Ni Xiaobo, et al. Hydrographic analysis on the multi-time scale variability of hypoxia adjacent to the Changjiang River Estuary[J]. Acta Ecologica Sinica, 2010, 30(17): 4728−4740.
    [49] 韦钦胜, 王保栋, 于志刚, 等. 夏季长江口外缺氧频发的机制及酸化问题初探[J]. 中国科学: 地球科学, 2017, 47(1): 114−134.

    Wei Qinsheng, Wang Baodong, Yu Zhigang, et al. Mechanisms leading to the frequent occurrences of hypoxia and a preliminary analysis of the associated acidification off the Changjiang estuary in summer[J]. Science China Earth Sciences, 2017, 60(2): 360−381.
    [50] Wei Qinsheng, Yuan Yongquan, Song Shuqun, et al. Spatial variability of hypoxia and coupled physical-biogeochemical controls off the Changjiang (Yangtze River) Estuary in summer[J]. Frontiers in Marine Science, 2022, 9: 987368. doi: 10.3389/fmars.2022.987368
    [51] 韦钦胜, 于志刚, 夏长水, 等. 夏季长江口外低氧区的动态特征分析[J]. 海洋学报, 2011, 33(6): 100−109.

    Wei Qinsheng, Yu Zhigang, Xia Changshui, et al. A preliminary analysis on the dynamic characteristics of the hypoxic zone adjacent to the Changjiang Estuary in summer[J]. Haiyang Xuebao, 2011, 33(6): 100−109.
    [52] Wang Baodong, Wei Qinsheng, Chen Jianfang, et al. Annual cycle of hypoxia off the Changjiang (Yangtze River) Estuary[J]. Marine Environmental Research, 2012, 77: 1−5. doi: 10.1016/j.marenvres.2011.12.007
    [53] 张以恳, 翁学传, 张启龙, 等. 台湾海峡的底层流[J]. 海洋与湖沼, 1991, 22(2): 124−131.

    Zhang Yiken, Weng Xuechuan, Zhang Qilong, et al. Bottom current in Taiwan Strait[J]. Oceanologia et Limnologia Sinica, 1991, 22(2): 124−131.
    [54] Qi Jifeng, Yin Baoshu, Zhang Qilong, et al. Seasonal variation of the Taiwan Warm Current Water and its underlying mechanism[J]. Chinese Journal of Oceanology and Limnology, 2017, 35(5): 1045−1060. doi: 10.1007/s00343-017-6018-4
    [55] 杨德周, 尹宝树, 侯一筠, 等. 黑潮入侵东海陆架途径及其影响研究进展[J]. 海洋与湖沼, 2017, 48(6): 1196−1207.

    Yang Dezhou, Yin Baoshu, Hou Yijun, et al. Advance in research on Kuroshio intrusion and its ecological influence on the continental shelf of East China Sea[J]. Oceanologia et Limnologia Sinica, 2017, 48(6): 1196−1207.
    [56] 苏育嵩, 李凤歧, 马鹤来, 等. 东海北部区域底层冷水团的形成及其季节变化[J]. 青岛海洋大学学报, 1989, 19(1): 1−14.

    Su Yusong, Li Fengqi, Ma Helai, et al. Formation and seasonal variation of bottom cold water mass in northern area of the East China Sea[J]. Journal of Ocean University of Qingdao, 1989, 19(1): 1−14.
    [57] 于非, 张志欣, 刁新源, 等. 黄海冷水团演变过程及其与邻近水团关系的分析[J]. 海洋学报, 2006, 28(5): 26−34.

    Yu Fei, Zhang Zhixin, Diao Xinyuan, et al. Analysis of evolution of the Huanghai Sea Cold Water Mass and its relationship with adjacent water masses[J]. Haiyang Xuebao, 2006, 28(5): 26−34.
    [58] Grasshoff K, Kremling K, Ehrhardt M. Methods of Seawater Analysis[M]. New York: Wiley-VCH, 1999.
    [59] Weiss R F. The solubility of nitrogen, oxygen and argon in water and seawater[J]. Deep Sea Research and Oceanographic Abstracts, 1970, 17(4): 721−735. doi: 10.1016/0011-7471(70)90037-9
    [60] Pytkowicx R M. On the apparent oxygen utilization and the preformed phosphate in the oceans[J]. Limnology and Oceanography, 1971, 16(1): 39−42. doi: 10.4319/lo.1971.16.1.0039
    [61] Zhang Jing, Yu Zhigang, Liu Sumei, et al. Dynamics of nutrient elements in three estuaries of North China: the Luanhe, Shuangtaizihe, and Yalujiang[J]. Estuaries, 1997, 20(1): 110−123. doi: 10.2307/1352725
    [62] Parsons T R, Maita Y, Lalli C M. A Manual of Chemical and Biological Methods for Seawater Analysis[M]. Oxford: Pergamon Press, 1984.
    [63] Simpson J H, Bowers D. Models of stratification and frontal movement in shelf seas[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1981, 28(7): 727−738. doi: 10.1016/0198-0149(81)90132-1
    [64] Simpson J H, Sharples J. Introduction to the Physical and Biological Oceanography of Shelf Seas[M]. Cambridge: Cambridge University Press, 2012.
    [65] Wei Qinsheng, Xin Ming, Meng Qicheng, et al. Upwelling regulates nutrient supply and phytoplankton chlorophyll-a regime on the East China Sea shelf during late summer[J]. Journal of Geophysical Research: Oceans, 2024, 129(8): e2023JC020569. doi: 10.1029/2023JC020569
    [66] Lian Ergang, Yang Shouye, Wu Hui, et al. Kuroshio subsurface water feeds the wintertime Taiwan Warm Current on the inner East China Sea shelf[J]. Journal of Geophysical Research: Oceans, 2016, 121(7): 4790−4803. doi: 10.1002/2016JC011869
    [67] Su Jilan, Pan Yuqiu. On the shelf circulation north of Taiwan[J]. Acta Oceanologica Sinica, 1987, 6(S1): 1−20.
    [68] 韦钦胜, 王辉武, 葛人峰, 等. 黄海和东海分界线附近水文、化学特征的季节性演替[J]. 海洋与湖沼, 2013, 44(5): 1170−1181.

    Wei Qinsheng, Wang Huiwu, Ge Renfeng, et al. Chemical hydrography and seasonal succession in the border between Yellow Sea and East China Sea[J]. Oceanologia et Limnologia Sinica, 2013, 44(5): 1170−1181.
    [69] Qian Wei, Dai Minhan, Xu Min, et al. Non-local drivers of the summer hypoxia in the East China Sea off the Changjiang Estuary[J]. Estuarine, Coastal and Shelf Science, 2017, 198: 393−399. doi: 10.1016/j.ecss.2016.08.032
    [70] Wang Hongjie, Dai Minhan, Liu Jinwen, et al. Eutrophication-driven hypoxia in the East China Sea off the Changjiang Estuary[J]. Environmental Science & Technology, 2016, 50(5): 2255−2263.
    [71] Dai Minhan, Zhao Yangyang, Chai Fei, et al. Persistent eutrophication and hypoxia in the coastal ocean[J]. Cambridge Prisms: Coastal Futures, 2023, 1: e19. doi: 10.1017/cft.2023.7
    [72] 吴林妮, 韦钦胜, 辛明, 等. 春季东海营养盐的空间分布格局和控制机制[J]. 海洋科学进展, 2023, 41(4): 622−636.

    Wu Linni, Wei Qinsheng, Xin Ming, et al. Spatial distribution patterns of nutrients and controlling mechanisms in the East China Sea during spring[J]. Advances in Marine Science, 2023, 41(4): 622−636.
    [73] Ding Hui, Wei Qinsheng, Xin Ming, et al. An inner shelf penetrating front and its potential biogeochemical effects in the East China Sea during October[J]. Acta Oceanologica Sinica, 2024, 43(11): 1−11. doi: 10.1007/s13131-024-2432-6
    [74] Dong Shuhang, Liu Sumei, Ren Jingling, et al. Nutrient dynamics and cross shelf transport in the East China Sea[J]. Acta Oceanologica Sinica, 2024, 43(10): 48−62. doi: 10.1007/s13131-024-2419-3
    [75] Wang Baodong, Wang Xiulin. Chemical hydrography of coastal upwelling in the East China Sea[J]. Chinese Journal of Oceanology and Limnology, 2007, 25(1): 16−26. doi: 10.1007/s00343-007-0016-x
    [76] Hong Huasheng, Chai Fei, Zhang Caiyuan, et al. An overview of physical and biogeochemical processes and ecosystem dynamics in the Taiwan Strait[J]. Continental Shelf Research, 2011, 31(6): S3−S12. doi: 10.1016/j.csr.2011.02.002
    [77] Zhou Feng, Chai Fei, Huang Daji, et al. Coupling and decoupling of high biomass phytoplankton production and hypoxia in a highly dynamic coastal system: the Changjiang (Yangtze River) Estuary[J]. Frontiers in Marine Science, 2020, 7: 259. doi: 10.3389/fmars.2020.00259
  • 加载中
图(7)
计量
  • 文章访问数:  192
  • HTML全文浏览量:  115
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-01
  • 修回日期:  2025-10-14
  • 网络出版日期:  2025-10-25
  • 刊出日期:  2025-11-30

目录

    /

    返回文章
    返回