留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南北黄海绿潮的差异性研究:从时空分布和基因测序角度

阚宏煜 吴孟泉 唐疑杰 邹敏 刘丽娟 梁峰 陈刚 吕金怡 刘龙兴

阚宏煜,吴孟泉,唐疑杰,等. 南北黄海绿潮的差异性研究:从时空分布和基因测序角度[J]. 海洋学报,2025,47(11):108–120 doi: 10.12284/hyxb2025140
引用本文: 阚宏煜,吴孟泉,唐疑杰,等. 南北黄海绿潮的差异性研究:从时空分布和基因测序角度[J]. 海洋学报,2025,47(11):108–120 doi: 10.12284/hyxb2025140
Kan Hongyu,Wu Mengquan,Tang Yijie, et al. A comparative analysis of green tides in the North Yellow Sea and South Yellow Sea: perspectives from spatiotemporal distribution and genetic sequencing[J]. Haiyang Xuebao,2025, 47(11):108–120 doi: 10.12284/hyxb2025140
Citation: Kan Hongyu,Wu Mengquan,Tang Yijie, et al. A comparative analysis of green tides in the North Yellow Sea and South Yellow Sea: perspectives from spatiotemporal distribution and genetic sequencing[J]. Haiyang Xuebao,2025, 47(11):108–120 doi: 10.12284/hyxb2025140

南北黄海绿潮的差异性研究:从时空分布和基因测序角度

doi: 10.12284/hyxb2025140
基金项目: 高分辨率对地观测系统国家科技重大专项(79-Y50-G18-9001-22/23) ;国家自然科学基金(42071385) ;山东省科技型中小企业技术创新能力提升工程项目(2022TSGC237);烟台市智慧城市创新实验室研究课题(202310-04-ZHCS-01)。
详细信息
    作者简介:

    阚宏煜(2002—),男,山东省临沂市人,研究方向为海洋遥感。E-mail:106706908@qq.com

    通讯作者:

    吴孟泉,教授,硕士研究生导师,博士,研究方向为海洋环境遥感、空间分析及3S应用研究。E-mail:ld_wmq@ldu.edu.cn

  • 中图分类号: P714

A comparative analysis of green tides in the North Yellow Sea and South Yellow Sea: perspectives from spatiotemporal distribution and genetic sequencing

  • 摘要: 2008年以来南黄海持续遭遇浒苔绿潮灾害,2009年以来北黄海也频发大型藻类堆积的现象。大规模绿潮暴发严重破坏海洋生态,对近海生态平衡和经济结构造成威胁,然而对南北黄海绿潮的暴发差异研究甚少。本文基于多源遥感数据、无人机监测和分子生物学方法,从时空分布格局和遗传基础两个互补维度,系统性地对比研究了南北黄海浒苔的差异性。研究结果显示:(1)暴发时间和暴发规模显著性差异。南黄海浒苔群落最早出现于5月份,最大覆盖面积通常出现在6月中下旬,至7−8月间逐渐消失,整个生命周期持续约为50~90 d。北黄海浒苔为本土生浒苔,6月底至7月初出现在烟台近海,8月份逐渐消失,较南黄海浒苔覆盖面积小、持续时间短;近年南黄海浒苔暴发面积均大于200 km2,北黄海浒苔暴发面积大致保持在2000 m2以内,显著小于南黄海海域。(2)2018−2024年南黄海浒苔的迁移路径可归纳为北向漂移型和先北后南型两类。在空间分布格局上,南黄海浒苔藻华呈现大规模连片聚集特征,而北黄海则表现为局部零星分布。南黄海浒苔起源于苏北浅滩,借季风与海流北迁至山东半岛南部聚集;北黄海浒苔主要集中在烟台市开发区金沙滩、莱山区逛荡河入海口等区域,无大范围漂移;(3)ITS基因测序表明,烟台近岸北黄海浒苔属于一种新的遗传品系(ITS JST3),其浅绿色短小丛生状形态、发育不完善气囊结构显著区别于南黄海浒苔。本研究从宏观时空格局与微观遗传基础相结合的维度,系统证实了南北黄海绿潮为驱动机制不同的独立生态事件,对绿潮的分区精准防控具有重要指导意义。
  • 图  1  研究区位置分别为烟台市(a)、海阳市(b)、日照市(c)无人机实地观测影像

    Fig.  1  Location of study area are drone field observation images from Yantai City (a), Haiyang City (b), and Rizhao City (c), respectively

    图  2  浒苔、植被、海水的光谱反射率曲线

    Fig.  2  Spectral reflectance curves of Ulva prolifera, terrestrial vegetation, and seawater

    图  3  南黄海浒苔时空分布(以2024年为例)

    图中白色区域表示云覆盖,该区域无法进行有效光学观测

    Fig.  3  Spatiotemporal distribution of Ulva prolifera in the South Yellow Sea (2024 representative case)

    Areas with white diagonal lines indicate cloud cover, where valid optical observation was not possible

    图  4  2024年6月26日烟台开发区金沙滩(a、b)2024年7月5日烟台市莱山区(c、d)

    Fig.  4  Golden Beach, Yantai Development Zone (26 June 2024) (a, b) Laishan District, Yantai City (5 July 2024) (c, d)

    图  5  2018−2024年南黄海浒苔的漂移路径

    Fig.  5  Drift trajectories of Ulva prolifera in the South Yellow Sea (2018–2024)

    图  6  2018−2024年南北黄海浒苔最大覆盖面积趋势图

    Fig.  6  Interannual variation in maximum coverage area of Ulva prolifera in North Yellow Sea and South Yellow Sea (2018–2024)

    图  7  南北黄海浒苔ITS 系统发育树

    ▲表示北黄海浒苔优势种

    Fig.  7  Phylogenetic tree based on ITS sequences of Ulva prolifera from North Yellow Sea and South Yellow Sea

    ▲ denotes dominant species in North Yellow Sea

    图  8  南黄海浒苔ITS序列系统发育树[37]

    Ulva prolifera FJ002301为2008 年黄海绿潮优势种

    Fig.  8  Phylogenetic reconstruction of ITS sequences for Ulva prolifera in South Yellow Sea[37]

    Ulva prolifera FJ002301 was identified as the dominant species during the 2008 Yellow Sea green tide event

    表  1  2018−2024年遥感影像成像日期

    Tab.  1  Acquisition dates of remote sensing images from 2018 to 2024

    年份 GF-1数据 HJ-1/2数据 Sentinel-2数据 HY-1C数据
    2018 7月27日 6月8日,6月11日,6月21日,6月29日,7月3日,7月6日,7月16日,
    7月21日,8月2日,8月7日,8月10日
    2019 7月3日,7月21日 5月9日,5月20日,5月29日,6月2日,6月3日,6月10日,6月18日,
    6月23日,7月1日,7月8日,7月10日,7月26日,8月5日,8月7日
    2020 7月25日,8月4日 5月18日,5月23日,5月26日,6月1日,6月4日,6月21日,6月25日,
    7月1日,7月10日,7月15日
    2021 7月10日,7月25日 5月21日,5月28日,6月6日,6月20日,6月23日,7月2日,7月14日,
    7月18日,7月21日,8月1日,8月11日,8月14日,8月16日,8月19日
    2022 7月25日 7月16日 5月22日,5月25日,5月30日,6月15日,6月18日,6月25日
    2023 6月15日 7月5日,7月19日,
    7月23日
    5月14日,5月23日,6月8日,6月22日
    2024 5月16日,6月6日,6月10日,
    6月18日,6月23日,7月21日
    5月28日,6月1日 6月25日,8月3日
      注:“−”表示无成像。
    下载: 导出CSV
  • [1] Wang Bin, Wu Lei. Numerical study on the massive outbreak of the Ulva prolifera green tides in the southwestern Yellow Sea in 2021[J]. Journal of Marine Science and Engineering, 2021, 9(11): 1167. doi: 10.3390/jmse9111167
    [2] Xue Mingyue, Wu Mengquan, Zheng Longxiao, et al. Multi-factors synthetically contribute to Ulva prolifera outbreaks in the South Yellow Sea of China[J]. Remote Sensing, 2023, 15(21): 5151. doi: 10.3390/rs15215151
    [3] Zheng Longxiao, Wu Mengquan, Cui Yating, et al. What causes the great green tide disaster in the South Yellow Sea of China in 2021?[J]. Ecological Indicators, 2022, 140: 108988. doi: 10.1016/j.ecolind.2022.108988
    [4] Zhan Yating, Qiu Zhongfeng, Wang Yujun, et al. Long-term spatiotemporal characteristics of Ulva prolifera green tide and effects of environmental drivers on its monitoring by satellites: a case study in the Yellow Sea, China, from 2008 to 2023[J]. Journal of Marine Science and Engineering, 2024, 12(4): 630. doi: 10.3390/jmse12040630
    [5] Men Yanzhuo, Liu Yingying, Ma Yufei, et al. Remote sensing monitoring of green tide disaster using MODIS and GF-1 data: a case study in the Yellow Sea[J]. Journal of Marine Science and Engineering, 2023, 11(12): 2212. doi: 10.3390/jmse11122212
    [6] 赵新宇. 漂浮状态浒苔(Ulva prolifera)光合系统对典型环境变化的适应特征及其机理的研究[D]. 青岛: 中国海洋大学, 2015.

    Zhao Xinyu. Study of adaptive features and mechanism of photosynthetic system in floating Ulva prolifera against typical environmental changes[D]. Qingdao: Ocean University of China, 2015.
    [7] 姜子可, 于新生, 郝英岩. 平面光极的研制及浒苔对沉积物——海水界面溶解氧影响的模拟观测[J]. 海洋地质前沿, 2017, 33(9): 53−59.

    Jiang Zike, Yu Xinsheng, Hao Yingyan. Planar optode for dissolved oxygen measurement for Enteromorpha prolifera around sediment-water interface[J]. Marine Geology Frontiers, 2017, 33(9): 53−59.
    [8] 赵苗苗, 毕蓉, 李鸿妹, 等. 浒苔降解过程中颗粒有机碳、氮释放及相关微生物种群丰度变化研究[J]. 渔业科学进展, 2025, 46(2): 64−75.

    Zhao Miaomiao, Bi Rong, Li Hongmei, et al. Release dynamics of particulate organic carbon and nitrogen and the related microbial abundance variation during degradation of Ulva prolifera[J]. Progress in Fishery Sciences, 2025, 46(2): 64−75.
    [9] 马彩华, 尚静, 马伟伟, 等. 青岛鳌山湾2019年浒苔绿潮灾害损失价值评估[J]. 海洋湖沼通报, 2024, 46(1): 167−175.

    Ma Caihua, Shang Jing, Ma Weiwei, et al. Assessment of the damage value of Ulva prolifera green tide of Aoshan Bay, Qingdao[J]. Transactions of Oceanology and Limnology, 2024, 46(1): 167−175.
    [10] 刘建强, 叶小敏, 宋庆君, 等. HY-1C/D海洋水色卫星产品体系及其典型应用[J]. 遥感学报, 2023, 27(1): 1−13. doi: 10.11834/jrs.20235002

    Liu Jianqiang, Ye Xiaomin, Song Qingjun, et al. Products of HY-1C/D ocean color satellites and their typical applications[J]. National Remote Sensing Bulletin, 2023, 27(1): 1−13. doi: 10.11834/jrs.20235002
    [11] Incekara A H, Delen A, Seker D Z, et al. Investigating the utility potential of low-cost unmanned aerial vehicles in the temporal monitoring of a landfill[J]. ISPRS International Journal of Geo-Information, 2019, 8(1): 22. doi: 10.3390/ijgi8010022
    [12] Zheng Longxiao, Wu Mengquan, Zhao Jie, et al. Effects of Ulva prolifera dissipation on the offshore environment based on remote sensing images and field monitoring data[J]. Acta Oceanologica Sinica, 2023, 42(6): 112−120. doi: 10.1007/s13131-022-2129-7
    [13] 王宗灵, 傅明珠, 肖洁, 等. 黄海浒苔绿潮研究进展[J]. 海洋学报, 2018, 40(2): 1−13.

    Wang Zongling, Fu Mingzhu, Xiao Jie, et al. Progress on the study of the Yellow Sea green tides caused by Ulva prolifera[J]. Haiyang Xuebao, 2018, 40(2): 1−13.
    [14] 耿慧霞, 颜天, 于仁成, 等. 浒苔孢子在不同材料基质上的附着萌发差异性研究[J]. 海洋与湖沼, 2018, 49(5): 1006−1013.

    Geng Huixia, Yan Tian, Yu Rencheng, et al. Comparative study on germination of Ulva prolifera spores on different substrates[J]. Oceanologia et Limnologia Sinica, 2018, 49(5): 1006−1013.
    [15] 刘旭, 田杰, 吴彬锋, 等. 基于MODIS的2019年中国南黄海绿潮生消过程分析[J]. 海洋预报, 2021, 38(5): 53−59.

    Liu Xu, Tian Jie, Wu Binfeng, et al. Analysis of the formation and decay progress of the green tide in the southern Yellow Sea in 2019 based on MODIS[J]. Marine Forecasts, 2021, 38(5): 53−59.
    [16] Zhang Guangzong, He Yufang, Niu Lifeng, et al. Identification of green tide decomposition regions in the Yellow Sea, China: based on time-series remote sensing data[J]. Remote Sensing, 2024, 16(24): 4794. doi: 10.3390/rs16244794
    [17] 张广宗, 吴孟泉, 孙晓, 等. 南黄海浒苔漂移轨迹年际变化规律及驱动因素[J]. 海洋与湖沼, 2018, 49(5): 1084−1093.

    Zhang Guangzong, Wu Mengquan, Sun Xiao, et al. The inter-annual drift and driven force of Ulva prolifera bloom in the southern Yellow Sea[J]. Oceanologia et Limnologia Sinica, 2018, 49(5): 1084−1093.
    [18] 颜天, 于仁成, 周名江, 等. 黄海海域大规模绿潮成因与应对策略——“鳌山计划”研究进展[J]. 海洋与湖沼, 2018, 49(5): 950−958.

    Yan Tian, Yu Rencheng, Zhou Mingjiang, et al. Mechanism of massive formation and prevention strategy against large-scale green tides in the South Yellow Sea[J]. Oceanologia et Limnologia Sinica, 2018, 49(5): 950−958.
    [19] Xing Qianguo, Hu Chuanmin. Mapping macroalgal blooms in the Yellow Sea and East China Sea using HJ-1 and Landsat data: application of a virtual baseline reflectance height technique[J]. Remote Sensing of Environment, 2016, 178: 113−126. doi: 10.1016/j.rse.2016.02.065
    [20] Zeng Yinqing, Yang Xinlan, Xia Zhangyi, et al. Review of allelopathy in green tides: the case of Ulva prolifera in the South Yellow Sea[J]. Biology, 2024, 13(6): 456. doi: 10.3390/biology13060456
    [21] Zheng Longxiao, Wu Mengquan, Xue Mingyue, et al. Power of SAR imagery and machine learning in monitoring Ulva prolifera: a case study of Sentinel-1 and random forest[J]. Chinese Geographical Science, 2024, 34(6): 1134−1143. doi: 10.1007/s11769-024-1465-2
    [22] Tong Yichao, Xia Lihua, Liu Jinlin, et al. Distribution and identification of Ulva aragoensis (Ulvaceae, Chlorophyta), a constituent species of green tides in the southern Yellow Sea, based on molecular data[J]. Journal of Marine Science and Engineering, 2022, 10(11): 1767. doi: 10.3390/jmse10111767
    [23] 刘海龙, 邢前国, 丁静, 等. 漂浮大型藻运移高分辨率遥感观测: 以黄海浒苔绿潮为例[J]. 遥感学报, 2023, 27(1): 187−196. doi: 10.11834/jrs.20235001

    Liu Hailong, Xing Qianguo, Ding Jing, et al. High-resolution remote sensing of the transportation of floating macroalgae: case studies with the Ulva prolifera green tide[J]. National Remote Sensing Bulletin, 2023, 27(1): 187−196. doi: 10.11834/jrs.20235001
    [24] 张海波, 刘珂, 苏荣国, 等. 2018年南黄海浒苔绿潮迁移发展规律与营养盐相互关系探究[J]. 海洋学报, 2020, 42(8): 30−39.

    Zhang Haibo, Liu Ke, Su Rongguo, et al. Study on the coupling relationship between the development of Ulva prolifera green tide and nutrients in the southern Yellow Sea in 2018[J]. Haiyang Xuebao, 2020, 42(8): 30−39.
    [25] Wei Hao, Zhang Haiyan, Yang Wei, et al. The changing Bohai and Yellow Seas: a physical view[M]//Chen C T A, Guo Xinyu. Changing Asia-Pacific Marginal Seas. Singapore: Springer, 2020: 105−120.
    [26] 吕军, 王胜强, 孙德勇, 等. 近20年(2002−2020年)渤黄海真光层深度的时空变化遥感分析[J]. 遥感学报, 2022, 26(12): 2507−2517. doi: 10.11834/jrs.20210414

    Lü Jun, Wang Shengqiang, Sun Deyong, et al. Remote sensing of spatial and temporal variations of euphotic zone depth in the Bohai Sea and Yellow Sea during recent 20 years (2002−2020)[J]. National Remote Sensing Bulletin, 2022, 26(12): 2507−2517. doi: 10.11834/jrs.20210414
    [27] 李庆亭, 刘海霞, 方俊永, 等. MADC在浒苔空间分布信息提取中的应用[J]. 遥感学报, 2010, 14(2): 283−293.

    Li Qingting, Liu Haixia, Fang Junyong, et al. Application of MADC system in spatial distribution information extraction of Enteromorpha prolifera[J]. Journal of Remote Sensing, 2010, 14(2): 283−293.
    [28] 高丽萍, 范德江, 宋德海, 等. 苏北浒苔生长期运移路径及温盐环境的数值模拟[J]. 海洋学报, 2021, 43(8): 1−16.

    Gao Liping, Fan Dejiang, Song Dehai, et al. Numerical simulation of the migration path during the growth period of Ulva prolifera in the sea near northern Jiangsu and the thermohaline environment[J]. Haiyang Xuebao, 2021, 43(8): 1−16.
    [29] Zhang Guangzong, Niu Lifeng, Wu Mengquan, et al. Ecological impact patterns and temporal cycles of green tide biomass in the settlement region: based on time-series remote sensing and in situ data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 1610−1622. doi: 10.1109/JSTARS.2023.3338979
    [30] 万剑华, 万献慈, 刘善伟, 等. 多指数决策融合的MODIS浒苔提取方法[J]. 海洋环境科学, 2022, 41(2): 316−324.

    Wan Jianhua, Wan Xianci, Liu Shanwei, et al. MODIS Enteromorpha extraction algorithm based on multi-index decision fusion[J]. Marine Environmental Science, 2022, 41(2): 316−324.
    [31] HU C M, QI L, HU L B, et al. Mapping Ulva prolifera green tides from space: A revisit on algorithm design and data products[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 116: 103173
    [32] Cai Feng, Druzhinina I S. In honor of John Bissett: authoritative guidelines on molecular identification of Trichoderma[J]. Fungal Diversity, 2021, 107(1): 1−69. doi: 10.1007/s13225-020-00464-4
    [33] Carey S J, Becklund L E, Fabre P P, et al. Optimizing the lysis step in CTAB DNA extractions of silica-dried and herbarium leaf tissues[J]. Applications in Plant Sciences, 2023, 11(3): e11522. doi: 10.1002/aps3.11522
    [34] Wada Y, Harun A, Yean C Y, et al. A Nanoplex PCR assay for the simultaneous detection of vancomycin- and linezolid-resistant genes in Enterococcus[J]. Diagnostics, 2023, 13(4): 722. doi: 10.3390/diagnostics13040722
    [35] 姜芳燕, 杨宁, 菅盼盼, 等. 基于rbcLtufA基因的石莼和浒苔系统发育分析[J]. 基因组学与应用生物学, 2018, 37(7): 3012−3018.

    Jiang Fangyan, Yang Ning, Jian Panpan, et al. Phylogenetic analysis of Ulva sp. and Enteromorpha sp. based on rbcL and tufA gene[J]. Genomics and Applied Biology, 2018, 37(7): 3012−3018.
    [36] Aboul-Maaty N A F, Oraby H A S. Extraction of high-quality genomic DNA from different plant orders applying a modified CTAB-based method[J]. Bulletin of the National Research Centre, 2019, 43(1): 25. doi: 10.1186/s42269-019-0066-1
    [37] Fernández A, Segura-Alabart N, Serratosa F. The multifurcating neighbor-joining algorithm for reconstructing Polytomic phylogenetic trees[J]. Journal of Molecular Evolution, 2023, 91(6): 773−779. doi: 10.1007/s00239-023-10134-z
    [38] 田晓玲, 霍元子, 陈丽平, 等. 江苏如东近海绿潮藻分子检测与类群演替分析[J]. 科学通报, 2011, 56(4/5): 309−317.

    Tian Xiaoling, Huo Yuanzi, Chen Liping, et al. Molecular detection and analysis of green seaweeds from Rudong coasts in Jiangsu Province[J]. Chinese Science Bulletin, 2011, 56(4/5): 309−317.
    [39] Zhang Yongyu, He Peimin, Li Hongmei, et al. Ulva prolifera green-tide outbreaks and their environmental impact in the Yellow Sea, China[J]. National Science Review, 2019, 6(4): 825−838. doi: 10.1093/nsr/nwz026
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  259
  • HTML全文浏览量:  135
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-21
  • 修回日期:  2025-10-14
  • 网络出版日期:  2025-10-25
  • 刊出日期:  2025-11-30

目录

    /

    返回文章
    返回