留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

枸杞岛典型海洋牧场区叶绿素a质量浓度卫星遥感监测研究

孟家羽 王胜强 孙德勇 蒋歆旖 张秀梅 郎姝燕 贾永君

孟家羽,王胜强,孙德勇,等. 枸杞岛典型海洋牧场区叶绿素a质量浓度卫星遥感监测研究[J]. 海洋学报,2025,47(11):141–153 doi: 10.12284/hyxb2025138
引用本文: 孟家羽,王胜强,孙德勇,等. 枸杞岛典型海洋牧场区叶绿素a质量浓度卫星遥感监测研究[J]. 海洋学报,2025,47(11):141–153 doi: 10.12284/hyxb2025138
Meng Jiayu,Wang Shengqiang,Sun Deyong, et al. Satellite remote sensing monitoring of chlorophyll a mass concentration in a typical marine ranching area of Gouqi Island[J]. Haiyang Xuebao,2025, 47(11):141–153 doi: 10.12284/hyxb2025138
Citation: Meng Jiayu,Wang Shengqiang,Sun Deyong, et al. Satellite remote sensing monitoring of chlorophyll a mass concentration in a typical marine ranching area of Gouqi Island[J]. Haiyang Xuebao,2025, 47(11):141–153 doi: 10.12284/hyxb2025138

枸杞岛典型海洋牧场区叶绿素a质量浓度卫星遥感监测研究

doi: 10.12284/hyxb2025138
基金项目: 国家自然科学基金(42176181,42576182,42476173,42176179);江苏省基础研究计划(自然科学基金)项目(BK20211289)。
详细信息
    作者简介:

    孟家羽(2001—),女,安徽省砀山县人,主要从事海洋光学遥感研究。E-mail:15399538482@163.com

    通讯作者:

    王胜强,教授,主要从事水体生物光学、水色遥感和卫星海洋学领域研究。E-mail:shengqiang.wang@nuist.edu.cn

  • 中图分类号: P76

Satellite remote sensing monitoring of chlorophyll a mass concentration in a typical marine ranching area of Gouqi Island

  • 摘要: 海洋牧场水质监测对其高质量可持续发展具有关键意义。叶绿素a(chlorophyll a, Chl a)是浮游植物生物量和水体富营养化程度的重要指标,对环境评估与风险管理至关重要。卫星遥感具有快速观测、高时空覆盖等优势,目前尚缺乏针对海洋牧场区的专用遥感产品,且养殖设施会对卫星遥感信号造成影响,给Chl a质量浓度遥感反演带来误差。本文以浙江嵊泗枸杞岛海洋牧场(贻贝养殖区)为例,基于多个航次实测数据,构建了面向Landsat8 OLI影像的Chl a质量浓度反演模型,同时,分析了养殖设施对遥感反射率的影响,并对其进行了有效校正。验证结果表明反演模型具有良好的性能,进而利用校正后的卫星遥感反射率数据,反演获得了贻贝养殖区及毗邻海域的高精度Chl a质量浓度产品,并分析了其时空变化特征及潜在影响因素。本研究为海洋牧场区Chl a质量浓度的高精度遥感监测提供了方法支撑与技术基础。
  • 图  1  航次调查站点分布

    不同颜色标记表示不同时间航次的调查站点(黑色框线内为贻贝养殖区),背景为2021年11月16日的Landsat8 OLI真彩色遥感影像(由波段4、3和2合成)

    Fig.  1  Distribution of survey sampling sites during different cruises

    Different colors indicate sampling sites during different cruises (the area within the black box represents the mussel aquaculture ranching area), overlaid on a Landsat8 OLI true-color image on 16 November 2021 (composite of bands 4, 3, and 2)

    图  2  养殖区内部和外部毗邻海域水体遥感反射率Rrs(λ)的直方分布图

    Fig.  2  The histograms of remote sensing reflectance Rrs(λ) for areas within and adjacent to the mussel aquaculture ranching area

    图  3  实测Chl a质量浓度分布

    a. 贻贝养殖区内部Chl a质量浓度分布;b. 贻贝养殖区外部Chl a质量浓度分布

    Fig.  3  Distribution of in situ measured Chl a mass concentration

    a. Chl a mass concentration distribution inside the mussel aquaculture ranching area; b. Chl a mass concentration distribution outside the mussel aquaculture ranching area

    图  4  现场实测的遥感反射率光谱曲线

    a. 水体光谱曲线;b. 浮标光谱曲线。图b 中黑色实线表示平均光谱值,青色阴影区域表示光谱的1倍标准差变化范围

    Fig.  4  Field-measured remote sensing reflectance spectra

    a. Water spectral curves; b. buoy spectral curves. In panel b, the black solid line represents the mean spectral values, while the cyan shaded area indicates the range of one standard deviation

    图  5  Chl a质量浓度反演模型拟合与交叉验证散点图

    a和c分别为春夏季和秋冬季的模型拟合图;b和d分别为春夏季和秋冬季模型估算值与实测值的散点图

    Fig.  5  Fitting and cross-validation of the Chl a mass concentration retrieval model

    a and c represent the model fitting for spring-summer and autumn-winter, respectively; b and d present scatter plots comparing model estimates with observations for the corresponding seasons

    图  6  OC3算法反演的Chl a质量浓度与实测数据的对比散点图

    a. 春夏季节;b. 秋冬季节

    Fig.  6  Scatter plot between Chl a mass concentrations retrieved by the OC3 algorithm and in situ mass measurements

    a. Spring and summer; b. autumn and winter

    图  7  卫星Rrs(443)/Rrs(655)与实测比值、Chl a质量浓度反演值与实测值之间的散点图及Chl a质量浓度分布图

    a和c分别为校正前和校正后卫星观测遥感反射率比值与实测比值的散点图;b和f为基于校正前遥感反射率反演的Chl a质量浓度;d和g为基于校正后遥感反射率反演的Chl a质量浓度;e为2021年11月16日Landsat8 OLI的真彩色遥感影像(由波段4、3和2合成)

    Fig.  7  Scatter plots of satellite-derived Rrs(443)/Rrs(655) and Chl a mass concentrations versus in situ values, and spatial distributions of Chl a mass concentrations

    a and c show scatter plots of satellite-derived Rrs443/Rrs655 versus in situ values before and after correction, respectively; b and f present satellite Chl a mass concentrations retrieved from uncorrected remote sensing reflectance; d and g indicate satellite Chl a mass concentrations derived from corrected remote sensing reflectance; e shows a true-color Landsat 8 OLI image on 16 November 2021 (composite of bands 4, 3, and 2)

    图  8  不同浮标光谱对Chl a质量浓度反演的敏感性分析

    Fig.  8  Sensitivity analysis of Chl a mass concentration inversion with respect to different buoy spectra

    图  9  贻贝养殖区及毗邻海域Landsat 8 OLI真彩色遥感影像(由波段4、3和2合成)及Chl a质量浓度分布

    Fig.  9  Landsat 8 OLI true-color image (composed of bands 4, 3, and 2) and the Chl a mass concentration distribution in mussel aquaculture ranching area and adjacent seas

    图  10  贻贝养殖区内部和外部毗邻海域的平均Chl a质量浓度

    Fig.  10  The average Chl a mass concentration in the marine areas within and adjacent to the mussel aquaculture ranching area

    图  11  实测Chl a质量浓度箱线图

    Fig.  11  Boxplot of measured Chl a mass concentration

    表  1  春夏季节Chl a质量浓度最优反演模型及精度

    Tab.  1  The optimal estimation models and accuracy of Chl a mass concentration during the spring and summer seasons

    X 光谱形式 模型 R2 MAPE/% RMSE/(mg·m−3) Bias/(mg·m−3)
    X1 Rrs (443) y = −223.57x + 10.97 0.07 46.4 5.06 0.002
    X2 Rrs (655) − Rrs (443) y = 16.49e184.83x 0.42 44.1 4.32 0.15
    X3 ${\dfrac{{{R_{{\text{rs}}}}\left( {561} \right)}}{{{R_{{\text{rs}}}}\left( {483} \right)}}}$ y = 0.19e3.30x 0.87 25.4 2.29 0.08
    X4 ${{\log _{10}}\left[ {\dfrac{{{R_{{\text{rs}}}}\left( {561} \right)}}{{{R_{{\text{rs}}}}\left( {483} \right)}}} \right]}$ y = 4.90e9.42x 0.88 26.6 2.41 0.14
    X5 ${\dfrac{{{R_{{\text{rs}}}}\left( {655} \right) - {R_{{\text{rs}}}}\left( {443} \right)}}{{{R_{{\text{rs}}}}\left( {655} \right)/{R_{{\text{rs}}}}\left( {443} \right)}}}$ y = 16.24e90.02x 0.54 40.2 4.05 0.21
    X6 ${\dfrac{{{R_{{\text{rs}}}}\left( {561} \right) - {R_{{\text{rs}}}}\left( {483} \right)}}{{{R_{{\text{rs}}}}\left( {561} \right) + {R_{{\text{rs}}}}\left( {483} \right)}}}$ y = 4.87e8.29x 0.88 26.7 2.42 0.15
    下载: 导出CSV

    表  2  秋冬季节Chl a质量浓度最优反演模型及精度

    Tab.  2  The optimal estimation models and accuracy of Chl a mass concentration during the autumn and winter seasons

    X 光谱形式 模型 R2 MAPE/% RMSE/(mg·m−3) Bias/(mg·m−3)
    X1 Rrs (655) y = 8.14e−61.50x 0.58 36.7 1.73 −0.02
    X2 Rrs (865) − Rrs (655) y = 8.18e78.31x 0.61 34.4 1.67 −0.02
    X3 ${ \dfrac{{{R_{{\text{rs}}}}\left( {443} \right)}}{{{R_{{\text{rs}}}}\left( {655} \right)}}} $ y = 2.49x1.53 0.65 31.3 1.59 −0.01
    X4 ${{\log _{10}}\left[ {\dfrac{{{R_{{\text{rs}}}}\left( {655} \right)}}{{{R_{{\text{rs}}}}\left( {443} \right)}}} \right]}$ y = −12.81x + 2.91 0.65 35.1 1.62 0.0004
    X5 ${\dfrac{{{R_{{\text{rs}}}}\left( {561} \right) - {R_{{\text{rs}}}}\left( {483} \right)}}{{{R_{{\text{rs}}}}\left( {561} \right)/{R_{{\text{rs}}}}\left( {483} \right)}}}$ y = 8.09e−234.70x 0.57 40.4 1.72 −0.03
    X6 ${\dfrac{{{R_{{\text{rs}}}}\left( {655} \right) - {R_{{\text{rs}}}}\left( {443} \right)}}{{{R_{{\text{rs}}}}\left( {655} \right) + {R_{{\text{rs}}}}\left( {443} \right)}}}$ y = 17.85x2 − 8.43x + 2.35 0.67 29.7 1.58 0.0003
    下载: 导出CSV
  • [1] Taylor M D, Chick R C, Lorenzen K, et al. Fisheries enhancement and restoration in a changing world[J]. Fisheries Research, 2017, 186: 407−412. doi: 10.1016/j.fishres.2016.10.004
    [2] Du Yuanwei, Li Biying, Quan Xijian. Construction and application of DPPD model for evaluating marine resources and environment carrying capacity in China[J]. Journal of Cleaner Production, 2020, 252: 119655. doi: 10.1016/j.jclepro.2019.119655
    [3] Kong Fanzhen, Cui Wanglai, Xi Henghui. Spatial-temporal variation, decoupling effects and prediction of marine fishery based on modified ecological footprint model: case study of 11 coastal provinces in China[J]. Ecological Indicators, 2021, 132: 108271. doi: 10.1016/j.ecolind.2021.108271
    [4] Halpern B S, Frazier M, Potapenko J, et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean[J]. Nature Communications, 2015, 6(1): 7615. doi: 10.1038/ncomms8615
    [5] 林承刚, 杨红生, 陈鹰, 等. 现代化海洋牧场建设与发展——第230期双清论坛学术综述[J]. 中国科学基金, 2021, 35(1): 143−152.

    Lin Chenggang, Yang Hongsheng, Chen Ying, et al. Construction and development of modern marine ranching—academic review of the 230th Shuangqing Forum[J]. Bulletin of National Natural Science Foundation of China, 2021, 35(1): 143−152.
    [6] Du Yuanwei, Sun Xuelei. Influence paths of marine ranching ecological security in China based on probabilistic linguistic term sets and qualitative comparative analysis[J]. International Journal of Fuzzy Systems, 2021, 23(1): 228−242. doi: 10.1007/s40815-020-00894-x
    [7] Li Zepeng, Chen Yan, Wang Gang, et al. Ecological carrying capacity and carbon sequestration potential of bivalve shellfish in marine ranching: a case study in Bohai Bay, China[J]. Frontiers in Marine Science, 2023, 10: 1174235. doi: 10.3389/fmars.2023.1174235
    [8] 唐启升, 蒋增杰, 毛玉泽. 渔业碳汇与碳汇渔业定义及其相关问题的辨析[J]. 渔业科学进展, 2022, 43(5): 1−7.

    Tang Qisheng, Jiang Zengjie, Mao Yuze. Clarification on the definitions and its relevant issues of fisheries carbon sink and carbon sink fisheries[J]. Progress in Fishery Sciences, 2022, 43(5): 1−7.
    [9] 唐启升, 刘慧. 海洋渔业碳汇及其扩增战略[J]. 中国工程科学, 2016, 18(3): 68−73. doi: 10.15302/J-SSCAE-2016.03.011

    Tang Qisheng, Liu Hui. Strategy for carbon sink and its amplification in marine fisheries[J]. Strategic Study of CAE, 2016, 18(3): 68−73. doi: 10.15302/J-SSCAE-2016.03.011
    [10] Wu Bowen, Dai Shiniu, Wen Xinli, et al. Chlorophyll-nutrient relationship changes with lake type, season and small-bodied zooplankton in a set of subtropical shallow lakes[J]. Ecological Indicators, 2022, 135: 108571. doi: 10.1016/j.ecolind.2022.108571
    [11] 铁凝, 刘秉义. 基于海洋激光雷达和BP神经网络的叶绿素剖面反演算法[J]. 光学学报, 2023, 43(24): 2401007. doi: 10.3788/AOS230800

    Tie Ning, Liu Bingyi. Chlorophyll profile retrieval algorithm based on oceanographic lidar and BP neural network[J]. Acta Optica Sinica, 2023, 43(24): 2401007. doi: 10.3788/AOS230800
    [12] 谢婷婷, 陈芸芝, 卢文芳. 基于三波段生物光学模型反演闽江下游叶绿素a[J]. 激光与光电子学进展, 2020, 57(7): 071701.

    Xie Tingting, Chen Yunzhi, Lu Wenfang. Retrieval of chlorophyll-a in lower reaches of the Minjiang River Via three-band bio-optical model[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071701.
    [13] Smith V H. Responses of estuarine and coastal marine phytoplankton to nitrogen and phosphorus enrichment[J]. Limnology and Oceanography, 2006, 51(1part2): 377−384. doi: 10.4319/lo.2006.51.1_part_2.0377
    [14] Arias-Rodriguez L F, Duan Zheng, Sepúlveda R, et al. Monitoring water quality of Valle de Bravo reservoir, Mexico, using entire lifespan of MERIS data and machine learning approaches[J]. Remote Sensing, 2020, 12(10): 1586. doi: 10.3390/rs12101586
    [15] 潘雨薇, 陈晶晶, 孙亮, 等. 多角度偏振成像仪的海洋场景定标与水色反演[J]. 光学学报, 2024, 44(18): 1801008. doi: 10.3788/AOS231924

    Pan Yuwei, Chen Jingjing, Sun Liang, et al. Ocean sites calibration and water color retrieval for directional polarimetric camera[J]. Acta Optica Sinica, 2024, 44(18): 1801008. doi: 10.3788/AOS231924
    [16] Li Yuan, Zhang Yunlin, Shi Kun, et al. Spatiotemporal dynamics of chlorophyll-a in a large reservoir as derived from Landsat 8 OLI data: understanding its driving and restrictive factors[J]. Environmental Science and Pollution Research, 2018, 25(2): 1359−1374. doi: 10.1007/s11356-017-0536-7
    [17] 罗婕纯一, 秦龙君, 毛鹏, 等. 水质遥感监测的关键要素叶绿素a的反演算法研究进展[J]. 遥感技术与应用, 2021, 36(3): 473−488.

    Luo Jiechunyi, Qin Longjun, Mao Peng, et al. Research progress in the retrieval algorithms for chlorophyll-a, a key element of water quality monitoring by remote sensing[J]. Remote Sensing Technology and Application, 2021, 36(3): 473−488.
    [18] O’Reilly J E, Werdell P J. Chlorophyll algorithms for ocean color sensors-OC4, OC5 & OC6[J]. Remote Sensing of Environment, 2019, 229: 32−47. doi: 10.1016/j.rse.2019.04.021
    [19] Le Chengfeng, Hu Chuanmin, Cannizzaro J, et al. Evaluation of chlorophyll-a remote sensing algorithms for an optically complex estuary[J]. Remote Sensing of Environment, 2013, 129: 75−89. doi: 10.1016/j.rse.2012.11.001
    [20] Dasgupta S, Singh R P, Kafatos M. Comparison of global chlorophyll concentrations using MODIS data[J]. Advances in Space Research, 2009, 43(7): 1090−1100. doi: 10.1016/j.asr.2008.11.009
    [21] Hu Jingwen, Liu Xiaoyan, Wang Qixiang, et al. Analysis of retrieval accuracy and spatial-temporal variation of chlorophyll-a concentration in Bohai Sea based on GOCI[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 13202−13216. doi: 10.1109/JSTARS.2024.3414588
    [22] Yin Ziyao, Li Junsheng, Zhang Bing, et al. Increase in chlorophyll-a concentration in Lake Taihu from 1984 to 2021 based on Landsat observations[J]. Science of the Total Environment, 2023, 873: 162168. doi: 10.1016/j.scitotenv.2023.162168
    [23] Cao Zhigang, Ma Ronghua, Liu Miao, et al. Harmonized chlorophyll-a retrievals in inland lakes from Landsat-8/9 and Sentinel 2A/B virtual constellation through machine learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4209916.
    [24] Gao Shike, Ren Shuangning, Xie Bin, et al. Interaction between sea surface chlorophyll a and seawater indicators in the sea ranching area: a case study in Haizhou Bay[J]. Regional Studies in Marine Science, 2022, 56: 102687. doi: 10.1016/j.rsma.2022.102687
    [25] Gao Shike, Shi Yixi, Zhang Shuo, et al. Temporal and spatial variation patterns of chlorophyll a in marine ranching under global interannual events[J]. Marine Environmental Research, 2024, 202: 106760. doi: 10.1016/j.marenvres.2024.106760
    [26] 李珺, 邓邦平, 刘章彬, 等. 舟山枸杞岛大型海藻凋落物分解特征及其影响因素[J]. 海洋环境科学, 2023, 42(2): 271−279.

    Li Jun, Deng Bangping, Liu Zhangbin, et al. Litter decomposition characteristics and influencing factors of macroalgae in Gouqi island of Zhoushan[J]. Marine Environmental Science, 2023, 42(2): 271−279.
    [27] Cai Lina, Yin Jie, Yan Xiaojun, et al. The environmental analysis and site selection of mussel and large yellow croaker aquaculture areas based on high resolution remote sensing[J]. Acta Oceanologica Sinica, 2024, 43(3): 66−86. doi: 10.1007/s13131-023-2284-5
    [28] 邓明星. 贻贝筏式养殖对海域水动力及浮游植物生态系统影响[D]. 上海: 上海海洋大学, 2016: 11−12.

    Deng Mingxing. Effects of raft aquaculture on dynamics and phytoplankton ecosystem[D]. Shanghai: Shanghai Ocean University, 2016: 11−12.
    [29] 朱帅麟, 单晓鸾, 刘明智, 等. 贻贝筏式养殖区两类端足目生物分布特征及其与环境因子关系[J]. 水生生物学报, 2024, 48(7): 1159−1169.

    Zhu Shuailin, Shan Xiaoluan, Liu Mingzhi, et al. Distribution characteristics and environmental factors for two categories of amphipods in mussel-rafts culture area[J]. Acta Hydrobiologica Sinica, 2024, 48(7): 1159−1169.
    [30] 唐军武, 田国良, 汪小勇, 等. 水体光谱测量与分析I: 水面以上测量法[J]. 遥感学报, 2004, 8(1): 37−44.

    Tang Junwu, Tian Guoliang, Wang Xiaoyong, et al. The methods of water spectra measurement and analysis I: above-water method[J]. Journal of Remote Sensing, 2004, 8(1): 37−44.
    [31] 汪小勇, 唐军武, 李铜基, 等. 水面之上法测量水体光谱的关键技术[J]. 海洋技术, 2012, 31(1): 72−76.

    Wang Xiaoyong, Tang Junwu, Li Tongji, et al. Key technologies of water spectra measurements with above-water method[J]. Ocean Technology, 2012, 31(1): 72−76.
    [32] Lee Z, Ahn Y H, Mobley C, et al. Removal of surface-reflected light for the measurement of remote-sensing reflectance from an above-surface platform[J]. Optics Express, 2010, 18(25): 26313−26324. doi: 10.1364/OE.18.026313
    [33] Vanhellemont Q. Sensitivity analysis of the dark spectrum fitting atmospheric correction for metre- and decametre-scale satellite imagery using autonomous hyperspectral radiometry[J]. Optics Express, 2020, 28(20): 29948−29965. doi: 10.1364/OE.397456
    [34] Caballero I, Fernández R, Escalante O M, et al. New capabilities of Sentinel-2A/B satellites combined with in situ data for monitoring small harmful algal blooms in complex coastal waters[J]. Scientific Reports, 2020, 10(1): 8743. doi: 10.1038/s41598-020-65600-1
    [35] Wang Shengqiang, Meng Jiayu, Sun Deyong, et al. Correcting aquaculture facility-induced spectral distortions for improved satellite water quality retrieval in marine ranching areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 4208912.
    [36] Qiu Zhongfeng. A simple optical model to estimate suspended particulate matter in Yellow River Estuary[J]. Optics Express, 2013, 21(23): 27891−27904. doi: 10.1364/OE.21.027891
    [37] 周艳蕾, 张传松, 石晓勇, 等. 黄渤海海水中叶绿素a的分布特征及其环境影响因素[J]. 中国环境科学, 2017, 37(11): 4259−4265.

    Zhou Yanlei, Zhang Chuansong, Shi Xiaoyong, et al. Distribution characteristics of chlorophyll a and its influencing environmental factors in Bohai Sea and Yellow Sea[J]. China Environmental Science, 2017, 37(11): 4259−4265.
    [38] 陈金月, 陈水森, 付娆, 等. 广东省水质现状及驱动因素[J]. 生态学报, 2022, 42(19): 7921−7931.

    Chen Jinyue, Chen Shuisen, Fu Rao, et al. Analysis of water quality status and driving factors in Guangdong Province[J]. Acta Ecologica Sinica, 2022, 42(19): 7921−7931.
    [39] Díez-Minguito M, de Swart H E. Relationships between chlorophyll-a and suspended sediment concentration in a high-nutrient load estuary: an observational and idealized modeling approach[J]. Journal of Geophysical Research: Oceans, 2020, 125(3): e2019JC015188. doi: 10.1029/2019JC015188
    [40] Giles H, Pilditch C A. Effects of mussel (Perna canaliculus) biodeposit decomposition on benthic respiration and nutrient fluxes[J]. Marine Biology, 2006, 150(2): 261−271. doi: 10.1007/s00227-006-0348-7
    [41] Smaal A C, Schellekens T, van Stralen M R, et al. Decrease of the carrying capacity of the Oosterschelde estuary (SW Delta, NL) for bivalve filter feeders due to overgrazing?[J]. Aquaculture, 2013, 404-405: 28–34.
    [42] 吕旭宁. 滤食性贝类规模化养殖的环境效应及可持续生产模式探索[D]. 上海: 上海海洋大学, 2017: 31–32.

    Lü Xuning. Environmental effects and exploration of sustainable production model of large-scale mariculture of filter-feeding bivalves[D]. Shanghai: Shanghai Ocean University, 2017: 31–32.
    [43] Lin Jun, Li Chunyan, Zhang Shouyu. Hydrodynamic effect of a large offshore mussel suspended aquaculture farm[J]. Aquaculture, 2016, 451: 147−155. doi: 10.1016/j.aquaculture.2015.08.039
    [44] Chen Yanlin, He Guojin, Yin Ranyu, et al. Comparative study of marine ranching recognition in multi-temporal high-resolution remote sensing images based on DeepLab-v3+ and U-net[J]. Remote Sensing, 2022, 14(22): 5654. doi: 10.3390/rs14225654
    [45] Yu Haomiao, Wang Fangxiong, Hou Yingzi, et al. MSARG-net: a multimodal offshore floating raft aquaculture area extraction network for remote sensing images based on multiscale SAR guidance[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 18319−18334. doi: 10.1109/JSTARS.2024.3471925
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  159
  • HTML全文浏览量:  93
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-15
  • 修回日期:  2025-10-10
  • 网络出版日期:  2025-10-22
  • 刊出日期:  2025-11-30

目录

    /

    返回文章
    返回