留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两种底栖硅藻生物被膜生物学特性及诱导贻贝附着能力的比较

杨雨 王杜伊 李瑞华 杨金龙 梁箫

杨雨,王杜伊,李瑞华,等. 两种底栖硅藻生物被膜生物学特性及诱导贻贝附着能力的比较[J]. 海洋学报,2025,47(11):121–130 doi: 10.12284/hyxb2025132
引用本文: 杨雨,王杜伊,李瑞华,等. 两种底栖硅藻生物被膜生物学特性及诱导贻贝附着能力的比较[J]. 海洋学报,2025,47(11):121–130 doi: 10.12284/hyxb2025132
Yang Yu,Wang Duyi,Li Ruihua, et al. Comparison of biological characteristics and mussel settlement inducing capabilities of two benthic diatom biofilms[J]. Haiyang Xuebao,2025, 47(11):121–130 doi: 10.12284/hyxb2025132
Citation: Yang Yu,Wang Duyi,Li Ruihua, et al. Comparison of biological characteristics and mussel settlement inducing capabilities of two benthic diatom biofilms[J]. Haiyang Xuebao,2025, 47(11):121–130 doi: 10.12284/hyxb2025132

两种底栖硅藻生物被膜生物学特性及诱导贻贝附着能力的比较

doi: 10.12284/hyxb2025132
基金项目: 国家重点研发计划“海洋农业与淡水渔业科技创新”重点专项(2023YF2401902);国家重点研发计划(No. 2023YFE0115500)资助。
详细信息
    作者简介:

    杨雨(1999—),女,山东省潍坊市人,从事海洋硅藻与贝类互作研究。E-mail:m230100120@st.shou.edu.cn

    通讯作者:

    梁箫,副教授,主要研究海洋微生物与贝类互作。E-mail:x-liang@shou.edu.cn

  • 中图分类号: S968.3

Comparison of biological characteristics and mussel settlement inducing capabilities of two benthic diatom biofilms

  • 摘要: 硅藻作为生物被膜的重要组成成分,能够诱导贝类等无脊椎动物附着,胞外聚合物是其发挥诱导作用的关键物质。然而,目前关于硅藻诱导贻贝附着的作用机制尚不明晰。硅藻胞外聚合物(extracellular polymers substance,EPS)通常由多糖、蛋白质和核酸等物质构成,具体成分因物种不同存在差异。为研究不同硅藻生物被膜生物学特性及其诱导厚壳贻贝稚贝附着的能力,本研究从自然生物被膜中分离纯化出两株不同属的硅藻,培养21 d后测定其形成生物被膜的叶绿素a含量、硅藻密度和稚贝附着率等特性;采用热溶剂浸提法对海洋硅藻生物被膜结合性EPS进行提取,测得多糖和蛋白质含量。结果显示,小皮舟形藻(Navicula pelliculosa)生物被膜对厚壳贻贝稚贝附着具有高诱导活性(63.8%),菱形藻(Nitzschia traheaformis)生物被膜与空白组无差异;生物被膜的荧光共聚焦图像分析结果显示,小皮舟形藻生物被膜含有更多的胞外多糖,且水不溶性多糖组分占比达51.49%,菱形藻生物被膜含有更多的蛋白质组分。本研究初步探讨了不同海洋硅藻生物被膜的生物学特性,为解析硅藻生物被膜胞外物质诱导厚壳贻贝稚贝附着提供理论支撑。
  • 图  1  两种硅藻SEM图像:小皮舟形藻(a);菱形藻(b)

    Fig.  1  Two types of diatom SEM images: Navicula pelliculosa (a); Nitzschia traheaformis (b)

    图  2  无菌处理后两种硅藻生物被膜密度

    不同字母表示各组间存在显著差异(p < 0.05)

    Fig.  2  The biofilm density of the two diatom species after sterile treatment

    Bars with different letters are significantly different (p < 0.05)

    图  3  两种硅藻生物被膜的叶绿素、类胡萝卜素含量及二者比值

    不同字母表示各组间存在显著差异(p < 0.05)

    Fig.  3  Chlorophyll and carotenoid contents and their ratios in the biofilm of two diatoms

    Bars with different letters are significantly different (p < 0.05)

    图  4  两种硅藻生物被膜的硅藻密度及其稚贝附着率

    不同字母表示各组间存在显著差异(p < 0.05)

    Fig.  4  Diatom density and juvenile settlement rate of two diatom biofilms

    Bars with different letters are significantly different (p < 0.05)

    图  5  激光共聚焦扫描电镜下两种硅藻生物被膜胞外多糖和蛋白的图像(A)和生物量(B)

    不同字母表示各组间存在显著差异(p < 0.05),ns表示无显著差异(p > 0.05)

    Fig.  5  Image (A) and biovolume (B) of exopolysaccharides and proteins in two diatom biofilms under CLSM

    Bars with different letters are significantly different (p < 0.05), ns indicates significant different (p > 0.05)

    图  6  胞外物质组成

    Fig.  6  Composition of extracellular matter

    表  1  生物被膜胞外物质含量与诱导活性的相关性分析

    Tab.  1  Correlation analysis between biofilm extracellular substance content and inducing activity

    项目 多糖 蛋白质
    r p r p
    附着率 0.90 <0.001* −0.89 <0.001*
      注:*表示各组间存在显著差异(p < 0.05)。
    下载: 导出CSV

    表  2  胞外物质组成

    Tab.  2  Composition of extracellular matter

    胞外多糖/(mg·mL−1 胞外蛋白质/(mg·mL−1 总计/(mg·mL−1
    水不溶性 水溶性 多糖合计 水不溶性 水溶性 蛋白合计
    小皮舟形藻 3.61 ± 0.01 0.96 ± 0.02 4.57 ± 0.01a 1.17 ± 0.03 1.22 ± 0.01 2.4 ± 0.01b 6.97 ± 0.02
    菱形藻 1.06 ± 0.18 0.77 ± 0.01 1.84 ± 0.12c 1.20 ± 0.05 1.24 ± 0.06 2.44 ± 0.22b 4.28 ± 0.01
      注:不同字母表示各组间存在显著差异(p < 0.05)。
    下载: 导出CSV
  • [1] O'Toole G, Kaplan H B, Kolter R. Biofilm formation as microbial development[J]. Annual Review of Microbiology, 2000, 54: 49−79. doi: 10.1146/annurev.micro.54.1.49
    [2] Dobretsov S, Abed R M M, Teplitski M. Mini-review: inhibition of biofouling by marine microorganisms[J]. Biofouling, 2013, 29(4): 423−441. doi: 10.1080/08927014.2013.776042
    [3] Qian P Y, Dahms H U. A triangle model: environmental changes affect biofilms that affect larval settlement[C]//Springer series on biofilms. Berlin, Heidelberg: Springer, 2008.
    [4] Zobell C E, Allen E C. The significance of marine bacteria in the fouling of submerged surfaces[J]. Journal of Bacteriology, 1935, 29(3): 239−251. doi: 10.1128/jb.29.3.239-251.1935
    [5] Dahms H U, Dobretsov S, Qian Peiyuan. The effect of bacterial and diatom biofilms on the settlement of the bryozoan Bugula neritina[J]. Journal of Experimental Marine Biology and Ecology, 2004, 313(1): 191−209. doi: 10.1016/j.jembe.2004.08.005
    [6] Xiong Wu, Jousset A, Guo Sai, et al. Soil protist communities form a dynamic hub in the soil microbiome[J]. The ISME Journal, 2018, 12(2): 634−638. doi: 10.1038/ismej.2017.171
    [7] Broniewski J M, Meaden S, Paterson S, et al. The effect of phage genetic diversity on bacterial resistance evolution[J]. The ISME Journal, 2020, 14(3): 828−836. doi: 10.1038/s41396-019-0577-7
    [8] Chen Jian, Zhai Ziqin, Lu Lili, et al. Identification and characterization of miRNAs and their predicted mRNAs in the larval development of pearl oyster Pinctada fucata[J]. Marine Biotechnology, 2022, 24(2): 303−319. doi: 10.1007/s10126-022-10105-3
    [9] 牟嘉仪, 胡晓梦, 彭莉华, 等. 细菌运动性对生物被膜的动态演替及其对厚壳贻贝附着的影响[J]. 渔业科学进展, 2023, 44(3): 200−208.

    Mu Jiayi, Hu Xiaomeng, Peng Lihua, et al. Effects of bacterial motility on dynamic succession of biofilms and settlement of the mussel Mytilus coruscus[J]. Progress in Fishery Sciences, 2023, 44(3): 200−208.
    [10] 徐嘉康, 王劲松, 方怡涵, 等. 厚壳贻贝肠道细菌的生物被膜对其幼虫和稚贝附着的影响[J]. 海洋学报, 2021, 43(9): 81−91.

    Xu Jiakang, Wang Jinsong, Fang Yihan, et al. Effects of intestinal bacterial biofilms on settlement process of larvae and plantigrades in Mytilus coruscus[J]. Haiyang Xuebao, 2021, 43(9): 81−91.
    [11] 解静仪, 王小雨, 李局, 等. 海洋细菌生物被膜可拉酸含量影响厚壳贻贝稚贝附着[J]. 海洋学报, 2023, 45(8): 96−107.

    Xie Jingyi, Wang Xiaoyu, Li Ju, et al. Effect of the content of colanic acid in marine bacterial biofilms on the settlement of Mytilus coruscus plantigrades[J]. Haiyang Xuebao, 2023, 45(8): 96−107.
    [12] Hu Xiaomeng, Peng Lihua, Wu Jingxian, et al. Bacterial c-di-GMP signaling gene affects mussel larval metamorphosis through outer membrane vesicles and lipopolysaccharides[J]. npj Biofilms and Microbiomes, 2024, 10(1): 38. doi: 10.1038/s41522-024-00508-6
    [13] Xiao Rui, Zheng Yi. Overview of microalgal extracellular polymeric substances (EPS) and their applications[J]. Biotechnology Advances, 2016, 34(7): 1225−1244. doi: 10.1016/j.biotechadv.2016.08.004
    [14] Tong C Y, Derek C J C. Biofilm formation of benthic diatoms on commercial polyvinylidene fluoride membrane[J]. Algal Research, 2021, 55: 102260. doi: 10.1016/j.algal.2021.102260
    [15] Passow U. Transparent exopolymer particles (TEP) in aquatic environments[J]. Progress in Oceanography, 2002, 55(3/4): 287−333.
    [16] Harder T, Lam C, Qian Peiyuan. Induction of larval settlement in the polychaete Hydroides elegans by marine biofilms: an investigation of monospecific diatom films as settlement cues[J]. Marine Ecology Progress Series, 2002, 229: 105−112. doi: 10.3354/meps229105
    [17] Ab Rahim S A K, Li Jingyu, Satuito C G, et al. The role of diatom-based film as an inducer of metamorphosis in larvae of two species of sea urchin, Pseudocentrotus depressus and Anthocidaris crassispina[J]. Sessile Organisms, 2004, 21(1): 7−12. doi: 10.4282/sosj.21.7
    [18] Ito S, Kitamura H. Induction of larval metamorphosis in the sea cucumber Stichopus japonicus by periphitic diatoms[J]. Hydrobiologia, 1997, 358(1/3): 281−284.
    [19] Li Zheng, Liang Xiao, Li Ju, et al. Inhibition of mussel settlement by calcined mussel shell powder through altering biofilms and bacterial community[J]. International Biodeterioration & Biodegradation, 2024, 190: 105791.
    [20] 杨金龙, 慎佩晶, 王冲, 等. 微生物膜对厚壳贻贝稚贝附着的影响[J]. 水产学报, 2013, 37(6): 904−909.

    Yang Jinlong, Shen Peijing, Wang Chong, et al, Effects of biofilms on settlement of plantigrades of the mussel Mytilus coruscus[J]. Journal of Fisheries of China, 2013, 37(6): 904−909.
    [21] Totti C, Romagnoli T, De Stefano M, et al. The diversity of epizoic diatoms: relationships between diatoms and marine invertebrates[M]//Dubinsky Z, Seckbach J. All Flesh is Grass: Plant-Animal Interrelationships. Dordrecht: Springer, 2011: 323−343.
    [22] Khaw Y S, Khong N M H, Shaharuddin N A, et al. A simple 18S rDNA approach for the identification of cultured eukaryotic microalgae with an emphasis on primers[J]. Journal of Microbiological Methods, 2020, 172: 105890. doi: 10.1016/j.mimet.2020.105890
    [23] Xiao Yuan, Liu Yongding, Wang Gaohong, et al. Simulated microgravity alters growth and microcystin production in Microcystis aeruginosa (cyanophyta)[J]. Toxicon, 2010, 56(1): 1−7. doi: 10.1016/j.toxicon.2010.01.026
    [24] González-Machado C, Capita R, Riesco-Peláez F, et al. Visualization and quantification of the cellular and extracellular components of Salmonella Agona biofilms at different stages of development[J]. PLoS One, 2018, 13(7): e0200011. doi: 10.1371/journal.pone.0200011
    [25] 王大志, 黄世玉, 程兆第. 三种海洋硅藻胞外多聚物形态、微细结构及组成的初步研究[J]. 海洋与湖沼, 2004, 35(3): 273−278.

    Wang Dazhi, Huang Shiyu, Cheng Zhaodi. Morphology, fine structure and chemical composition of extracellular polymeric substances in three marine diatom species[J]. Oceanologia et Limnologia Sinica, 2004, 35(3): 273−278.
    [26] Dobretsov S, Abed R M M, Voolstra C R. The effect of surface colour on the formation of marine micro and macrofouling communities[J]. Biofouling, 2013, 29(6): 617−627. doi: 10.1080/08927014.2013.784279
    [27] Cox E J. Variation in patterns of valve morphogenesis between representatives of six biraphid diatom genera (Bacillariophyceae)[J]. Journal of Phycology, 1999, 35(6): 1297−1312. doi: 10.1046/j.1529-8817.1999.3561297.x
    [28] Gitelson A. Towards a generic approach to remote non-invasive estimation of foliar carotenoid-to-chlorophyll ratio[J]. Journal of Plant Physiology, 2020, 252: 153227. doi: 10.1016/j.jplph.2020.153227
    [29] 孟顺龙, 裘丽萍, 王菁, 等. 光照对普通小球藻和鱼腥藻生长竞争的影响[J]. 生态环境学报, 2015, 24(10): 1654−1659.

    Meng Shunlong, Qiu Liping, Wang Jing, et al. Effect of light intensity on growth and competition between Chlorella Vulgaris and Anabaena[J]. Ecology and Environmental Sciences, 2015, 24(10): 1654−1659.
    [30] Sunagawa S, Cortés J, Jiménez C, et al. Variation in cell densities and pigment concentrations of symbiotic dinoflagellates in the coral Pavona clavus in the eastern Pacific (Costa Rica)[J]. Ciencias Marinas, 2008, 34(2): 113−123.
    [31] 柳欣, 左林子, 黄春秀, 等. 优势硅藻和定鞭金藻不同生长阶段光合色素比值变化[J]. 海洋环境科学, 2012, 31(6): 793−797.

    Liu Xin, Zuo Linzi, Huang Chunxiu, et al. The variation of of typical diatoms and haptophytes in different growth phases[J]. Marine Environmental Science, 2012, 31(6): 793−797.
    [32] Aslam S N, Strauss J, Thomas D N, et al. Identifying metabolic pathways for production of extracellular polymeric substances by the diatom Fragilariopsis cylindrus inhabiting sea ice[J]. The ISME Journal, 2018, 12(5): 1237−1251. doi: 10.1038/s41396-017-0039-z
    [33] 陈琪, 郑纪勇, 杨靖亚, 等. 海洋底栖硅藻胞外多聚物化学成分的定量研究[J]. 海洋环境科学, 2016, 35(5): 641−646.

    Chen Qi, Zheng Jiyong, Yang Jingya, et al. Studies on the chemical compositions of extracellular polymeric substances from marine benthic diatoms[J]. Marine Environmental Science, 2016, 35(5): 641−646.
    [34] Aono Y, Asikin Y, Wang Ning, et al. High-throughput chlorophyll and carotenoid profiling reveals positive associations with sugar and apocarotenoid volatile content in fruits of tomato varieties in modern and wild accessions[J]. Metabolites, 2021, 11(6): 398. doi: 10.3390/metabo11060398
    [35] 杜美荣, 方建光, 毛玉泽, 等. 底栖硅藻生物膜附着基对扇贝幼虫附着和变态的影响[J]. 海洋与湖沼, 2020, 51(1): 125−131.

    Du Meirong, Fang Jianguang, Mao Yuze, et al. Effect of benthic diatom filmed substrate on settlement and metamorphosis of scallop[J]. Oceanologia et Limnologia Sinica, 2020, 51(1): 125−131.
    [36] Jouuchi T, Satuito C G, Kitamura H. Sugar compound products of the periphytic diatom Navicula ramosissima induce larval settlement in the barnacle, Amphibalanus amphitrite[J]. Marine Biology, 2007, 152(5): 1065−1076. doi: 10.1007/s00227-007-0753-6
    [37] Castilla-Gavilán M, Reznicov M, Turpin V, et al. Sea urchin recruitment: effect of diatom based biofilms on Paracentrotus lividus competent larvae[J]. Aquaculture, 2020, 515: 734559. doi: 10.1016/j.aquaculture.2019.734559
    [38] 王吉桥, 丛文虎, 姜玉声, 等. 仿刺参幼体对底栖硅藻附着基的选择性及其摄食器官发育的研究[J]. 大连海洋大学学报, 2010, 25(4): 298−307.

    Wang Jiqiao, Cong Wenhu, Jiang Yusheng, et al. Effects of benthic diatom species and density on settlement and ontogenetic development of feeding organs in sea cucumber Apostichopus japonicus[J]. Journal of Dalian Ocean University, 2010, 25(4): 298−307.
    [39] Kawamura T, Nimura Y, Hirano R. Effects of bacterial films on diatom attachment in the initial phase of marine fouling[J]. Journal of the Oceanographical Society of Japan, 1988, 44(1): 1−5. doi: 10.1007/BF02303145
    [40] 鲍康德, 张小平, 郑维发. 海洋浮游硅藻胞外多糖研究进展[J]. 安徽师范大学学报(自然科学版), 2005, 28(2): 214−217.

    Bao Kangde, Zhang Xiaoping, Zheng Weifa. Reserch advances on extracellular polysaccharides of marine planktonic diatom[J]. Journal of Anhui Normal University (Natural Science), 2005, 28(2): 214−217.
    [41] Sutherland I W. The biofilm matrix–an immobilized but dynamic microbial environment[J]. Trends in Microbiology, 2001, 9(5): 222−227. doi: 10.1016/S0966-842X(01)02012-1
    [42] Wingender J, Strathmann M, Rode A, et al. Isolation and biochemical characterization of extracellular polymeric substances from Pseudomonas aeruginosa[J]. Methods in Enzymology, 2001, 336: 302−314.
    [43] Zupo V, Glaviano F, Caramiello D, et al. Effect of five benthic diatoms on the survival and development of Paracentrotus lividus post-larvae in the laboratory[J]. Aquaculture, 2018, 495: 13−20. doi: 10.1016/j.aquaculture.2018.05.028
    [44] Lam C, Harder T, Qian Peiyuan. Growth conditions of benthic diatoms affect quality of extracellular polymeric larval settlement cues[J]. Marine Ecology Progress Series, 2005, 294: 109−116. doi: 10.3354/meps294109
    [45] 中国水产科学研究院黄海水产研究所. 一种促进双壳贝类附着变态的舟形藻活性物质及其应用[P]. 中国: 202311602214.1, 2025-07-08.

    Yellow Sea Fisheries Research Institute. Navicula navicula active substance for promoting adhesion and metamorphosis of bivalve and application of navicula navicula active substance[P]. CN: 202311602214.1, 2025-07-08.
    [46] Perotti O N, Viramontes-Esparza G, Booth D S. A red algal polysaccharide influences the multicellular development of the choanoflagellate Salpingoeca rosetta[J]. Current Biology, 2025, 35(15): 3767−3776. e4.
    [47] Sun Yongxin, Rabbi M H, Ma Shuhui, et al. Effect of dietary Cordyceps polysaccharide supplementation on intestinal microflora and immune response of Apostichopus japonicus[J]. Aquaculture Research, 2021, 52(11): 5198−5212. doi: 10.1111/are.15389
    [48] Rajitha K, Nancharaiah Y V, Venugopalan V P. Role of bacterial biofilms and their EPS on settlement of barnacle (Amphibalanus reticulatus) larvae[J]. International Biodeterioration & Biodegradation, 2020, 150: 104958.
    [49] Dreanno C, Matsumura K, Dohmae N, et al. An α2-macroglobulin-like protein is the cue to gregarious settlement of the barnacle Balanus amphitrite[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(39): 14396−14401.
    [50] Peng Lihua, Liang Xiao, Chang Ruiheng, et al. A bacterial polysaccharide biosynthesis-related gene inversely regulates larval settlement and metamorphosis of Mytilus coruscus[J]. Biofouling, 2020, 36(7): 753−765. doi: 10.1080/08927014.2020.1807520
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  71
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-18
  • 修回日期:  2025-09-28
  • 网络出版日期:  2025-10-11
  • 刊出日期:  2025-11-30

目录

    /

    返回文章
    返回