留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自适应均衡样本的残差SuperPoint水下珊瑚礁图像配准方法

孙瑞 马毅 张飞飞 胡亚斌 崔学荣

孙瑞,马毅,张飞飞,等. 基于自适应均衡样本的残差SuperPoint水下珊瑚礁图像配准方法[J]. 海洋学报,2025,47(11):154–166 doi: 10.12284/hyxb2025128
引用本文: 孙瑞,马毅,张飞飞,等. 基于自适应均衡样本的残差SuperPoint水下珊瑚礁图像配准方法[J]. 海洋学报,2025,47(11):154–166 doi: 10.12284/hyxb2025128
Sun Rui,Ma Yi,Zhang Feifei, et al. Residual SuperPoint underwater coral reef image registration method based on adaptive equalization sample[J]. Haiyang Xuebao,2025, 47(11):154–166 doi: 10.12284/hyxb2025128
Citation: Sun Rui,Ma Yi,Zhang Feifei, et al. Residual SuperPoint underwater coral reef image registration method based on adaptive equalization sample[J]. Haiyang Xuebao,2025, 47(11):154–166 doi: 10.12284/hyxb2025128

基于自适应均衡样本的残差SuperPoint水下珊瑚礁图像配准方法

doi: 10.12284/hyxb2025128
基金项目: 国家重点研发计划资助项目(2022YFC3105100);中国高分辨率对地观测专项项目(41 Y30F07-9001-20/22)。
详细信息
    作者简介:

    孙瑞(2001—),男,山东省潍坊市人,主要从事图像智能处理与应用研究。E-mail:sunrui@fio.org.cn

    通讯作者:

    马毅,研究员,主要从事海洋遥感与应用研究。E-mail:mayimail@fio.org.cn

  • 中图分类号: TP391.4

Residual SuperPoint underwater coral reef image registration method based on adaptive equalization sample

  • 摘要: 珊瑚礁生态系统是地球上生物多样性最为丰富的海洋生态系统,是珊瑚礁研究与保护的基础,水下监测是获取珊瑚礁数据的重要方式。面向光谱混杂、结构复杂度高的水下环境场景,本文提出了基于自适应均衡样本的残差SuperPoint水下珊瑚礁图像配准方法。针对Visual Geometry Group(VGG)网络易导致部分高频特征损失、特征提取效率不高的问题,在编码网络中引入残差模块,在保留原始特征的同时降低拟合难度,提高图像特征点提取精度;针对特征点提取时容易忽视负样本的问题,提出一种自适应均衡样本对比损失函数,引入困难负样本挖掘机制,在提高参数优化效率、加快收敛速度的同时提高特征点提取的精度。本文应用海南加井岛水下珊瑚礁光学数据集、COCO和HPatches数据集开展实验,结果表明,在HPatches数据集上,残差SuperPoint算法特征点重复率为61.7%,较对比算法提高4.8%~23.1%。在水下珊瑚礁场景中,残差SuperPoint的图像级配准评价指标较经典SuperPoint,结构相似性指数提升11.8%,互信息指标提升22.60%,均方根误差基本持平。与其他传统算法对比,结构相似性指数与互信息指标均为最优,均方根误差为次优。本文方法可为珊瑚礁调查、生态监测等领域提供技术支持。
  • 图  1  水下珊瑚礁图像配准方法流程

    Fig.  1  Process of underwater coral reef image registration method

    图  2  残差SuperPoint网络结构

    Fig.  2  Residual SuperPoint network structure

    图  3  困难样本挖掘策略

    Fig.  3  Difficult sample mining strategy

    图  4  水下GoPro高清照片数据

    Fig.  4  Underwater GoPro HD photo data

    图  5  图像增强与特征点提取效果对比

    Fig.  5  Comparison of image enhancement and feature point extraction effect

    图  6  水下珊瑚礁图像特征点匹配

    a、b、c、d是4组不同的参考图像和待配准图像中提取到的匹配特征点的连线

    Fig.  6  Feature point matching for underwater coral reef images

    a, b, c, d are the line of four different sets of reference images and the matching feature points extracted from the image to be registered

    图  7  各种算法提取的特征点数量分布

    Fig.  7  Distribution of the number of feature points extracted by various algorithms

    图  8  各种算法参考图像和待配准图像特征点提取结果

    Fig.  8  Feature point extraction results of reference images and images to be registered for various algorithms

    图  9  各算法配准图像结果对比

    Fig.  9  Comparison of the registered image results of each algorithm

    图  10  残差SuperPoint网络特征点提取能力提升对比

    Fig.  10  Comparison of feature point detection ability improvement of residual SuperPoint network

    图  11  自适应均衡样本对比损失函数特征点提取能力对比

    Fig.  11  Adaptive equalization sample comparison loss function feature point extraction ability comparison

    表  1  不同算法特征点提取和匹配评价指标

    Tab.  1  Different algorithms feature point extraction and matching evaluation metrics

    算法特征点重复率用时/s平均特征点数量特征点正确匹配的概率用时/min
    SIFT0.38631100380.80310
    ORB0.568274539.660.4039
    AKAZE0.5662650340.6279
    经典SuperPoint0.56974850.593243
    残差SuperPoint0.61757342.340.63883
    下载: 导出CSV

    表  2  算法图像配准评价指标对比

    Tab.  2  Comparison of registration consistency parameters of different algorithms

    方法SSIMRMSEMI
    Hpatches水下珊瑚礁Hpatches水下珊瑚礁Hpatches水下珊瑚礁
    SIFT0.6450.45044.97067.0471.0930.307
    ORB0.5680.43349.97375.0410.9400.135
    AKAZE0.6270.44645.70172.3801.0640.336
    经典SuperPoint0.4880.40454.38872.9060.7720.292
    残差SuperPoint0.6160.45246.76772.3721.0370.358
    下载: 导出CSV
  • [1] 龙丽娟, 杨芳芳, 韦章良. 珊瑚礁生态系统修复研究进展[J]. 热带海洋学报, 2019, 38(6): 1−8.

    Long Lijuan, Yang Fangfang, Wei Zhangliang. A review on ecological restoration techniques of coral reefs[J]. Journal of Tropical Oceanography, 2019, 38(6): 1−8.
    [2] Ai Bo, Liu Xue, Wen Zhen, et al. A novel coral reef classification method combining radiative transfer model with deep learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 13400−13412. doi: 10.1109/JSTARS.2024.3430899
    [3] Hedley J D, Roelfsema C M, Chollett I, et al. Remote sensing of coral reefs for monitoring and management: a review[J]. Remote Sensing, 2016, 8(2): 118. doi: 10.3390/rs8020118
    [4] 张飞飞, 任广波, 胡亚斌, 等. 融合地理空间认知的珊瑚礁地貌单元高分遥感分类方法[J]. 海洋技术学报, 2023, 42(1): 1−15.

    Zhang Feifei, Ren Guangbo, Hu Yabin, et al. A high-resolution remote sensing classification method of coral reef geomorphic units integrating geospatial cognition[J]. Journal of Ocean Technology, 2023, 42(1): 1−15.
    [5] Teague J, Megson-Smith D A, Allen M J, et al. A review of current and new optical techniques for coral monitoring[J]. Oceans, 2022, 3(1): 30−45. doi: 10.3390/oceans3010003
    [6] 郑金辉, 任广波, 胡亚斌, 等. 生物天敌暴发导致珊瑚礁退化的高分遥感监测与分析—以南海太平岛为例[J]. 热带地理, 2023, 43(10): 1856−1873.

    Zheng Jinhui, Ren Guangbo, Hu Yabin, et al. High resolution remote sensing monitoring and analysis of coral reef degradation caused by outbreaks of biological natural enemies: a case study of the Taiping Island in the South China Sea[J]. Tropical Geography, 2023, 43(10): 1856−1873.
    [7] Turner J A, Polunin N V C, Field S N, et al. Measuring coral size-frequency distribution using stereo video technology, a comparison with in situ measurements[J]. Environmental Monitoring and Assessment, 2015, 187(5): 234. doi: 10.1007/s10661-015-4431-8
    [8] Mahmood A, Bennamoun M, An Senjian, et al. Deep image representations for coral image classification[J]. IEEE Journal of Oceanic Engineering, 2019, 44(1): 121−131. doi: 10.1109/JOE.2017.2786878
    [9] Ghaffar A A, Choi G S. A two-stream deep learning framework for robust coral reef health classification: insights and interpretability[J]. IEEE Access, 2025, 13: 78490−78512. doi: 10.1109/ACCESS.2025.3561226
    [10] Zheng Ziqiang, Liang Haixin, Wut F H, et al. HKCoral: benchmark for dense coral growth form segmentation in the wild[J]. IEEE Journal of Oceanic Engineering, 2025, 50(2): 697−713. doi: 10.1109/JOE.2024.3494112
    [11] Casoli E, Ventura D, Mancini G, et al. High spatial resolution photo mosaicking for the monitoring of coralligenous reefs[J]. Coral Reefs, 2021, 40(4): 1267−1280. doi: 10.1007/s00338-021-02136-4
    [12] Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91−110. doi: 10.1023/B:VISI.0000029664.99615.94
    [13] Bay H, Tuytelaars T, Van Gool L. Surf: speeded up robust features[C]//Proceedings of the 9th European Conference on Computer Vision. Graz: Springer, 2006: 404−417.
    [14] Rublee E, Rabaud V, Konolige K, et al. ORB: an efficient alternative to SIFT or SURF[C]//Proceedings of the 2011 International Conference on Computer Vision. Barcelona: IEEE, 2011: 2564−2571.
    [15] Pang Siqi, Ge Junyao, Hu Lei, et al. RTV-SIFT: harnessing structure information for robust optical and SAR image registration[J]. Remote Sensing, 2023, 15(18): 4476. doi: 10.3390/rs15184476
    [16] DeTone D, Malisiewicz T, Rabinovich A. SuperPoint: self-supervised interest point detection and description[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Salt Lake City: IEEE, 2018: 337−33712.
    [17] Zou Bin, Li Haolin, Zhang Lamei. Self-supervised SAR image registration with SAR-superpoint and transformation aggregation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5201115.
    [18] 曾旭东, 樊绍胜, 续尚植, 等. 低光照环境下基于轻量级SuperPoint的单目VI-SLAM算法[J]. 激光与光电子学进展, 2024, 61(18): 1815001.

    Zeng Xudong, Fan Shaosheng, Xu Shangzhi, et al. Monocular VI-SLAM algorithm based on lightweight SuperPoint network in low-light environment[J]. Laser & Optoelectronics Progress, 2024, 61(18): 1815001.
    [19] Li Zhaoyang, Cao Jie, Hao Qun, et al. DAN-SuperPoint: self-supervised feature point detection algorithm with dual attention network[J]. Sensors, 2022, 22(5): 1940. doi: 10.3390/s22051940
    [20] 赵悦, 储开斌, 张继, 等. 面向复杂环境的特征匹配算法[J]. 计算机应用与软件, 2025, 42(1): 264−270,293.

    Zhao Yue, Chu Kaibin, Zhang Ji, et al. Feature point matching algorithms for complex environments[J]. Computer Applications and Software, 2025, 42(1): 264−270,293.
    [21] Zhong Jiageng, Li Ming, Zhang Hanqi, et al. Fine-grained 3D modeling and semantic mapping of coral reefs using photogrammetric computer vision and machine learning[J]. Sensors, 2023, 23(15): 6753. doi: 10.3390/s23156753
    [22] Zhong J, Li M, Gruen A, et al. Cutting-edge 3D reconstruction solutions for underwater coral reef images: a review and comparison[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2025, 230: 779−803.
    [23] Xu Z Q J, Zhang Yaoyu, Xiao Yanyang. Training behavior of deep neural network in frequency domain[C]//Proceedings of the 26th International Conference on Neural Information Processing. Sydney: Springer, 2019: 264−274.
    [24] Francazi E, Baity-Jesi M, Lucchi A. A theoretical analysis of the learning dynamics under class imbalance[C]//Proceedings of the 40th International Conference on Machine Learning. Honolulu: JMLR. org, 2023: 413.
    [25] Gao X, Xie D, Zhang Y, et al. A comprehensive survey on imbalanced data learning[J]. arXiv preprint arXiv: 2502.08960, 2025.
    [26] Wu Xin, Zhang Lin, Huang Jipeng, et al. Underwater image enhancement via modeling white degradation[J]. IEEE Journal of Oceanic Engineering, 2024, 49(4): 1220−1232. doi: 10.1109/JOE.2024.3429653
    [27] Sang V Q, 冯鹏, 汤斌, 等. 基于米氏散射理论的水中悬浮颗粒物散射特性计算[J]. 激光与光电子学进展, 2015, 52(1): 013001.

    Sang V Q, Feng Peng, Tang Bin, et al. Study on properties of light scattering based on Mie scattering theory for suspended particles in water[J]. Laser & Optoelectronics Progress, 2015, 52(1): 013001.
    [28] Wang Yudong, Guo Jichang, Gao Huan, et al. UIEC^2-Net: CNN-based underwater image enhancement using two color space[J]. Signal Processing: Image Communication, 2021, 96: 116250. doi: 10.1016/j.image.2021.116250
    [29] Zhang Hanqi, Li Ming, Pan Xiaotian, et al. Novel approaches to enhance coral reefs monitoring with underwater image segmentation[C]//Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Wuhan: ISPRS, 2022: 271−277.
    [30] Huo Chunling, Zhang Da, Yang Huanyu. An underwater image denoising method based on high-frequency abrupt signal separation and hybrid attention mechanism[J]. Sensors, 2024, 24(14): 4578. doi: 10.3390/s24144578
    [31] Sarlin P E, DeTone D, Malisiewicz T, et al. Superglue: Learning feature matching with graph neural networks[C]. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 4938−4947.
    [32] Srivatsan R A, Zevallos N, Vagdargi P, et al. Registration with a small number of sparse measurements[J]. The International Journal of Robotics Research, 2019, 38(12/13): 1403−1419.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  242
  • HTML全文浏览量:  119
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-11
  • 修回日期:  2025-09-15
  • 网络出版日期:  2025-09-29
  • 刊出日期:  2025-11-30

目录

    /

    返回文章
    返回