Toxicological study of polystyrene microplastics on the intestine of Sebastiscus marmoratus
-
摘要: 为研究聚苯乙烯微塑料对褐菖鲉(Sebastiscus marmoratus)肠道的毒性效应,将褐菖鲉分别暴露于0、1和10 mg/L的聚苯乙烯微塑料溶液中21 d,通过富集试验、组织学切片、转录组学及16S rRNA测序等技术检测褐菖鲉肠道形态结构、差异表达基因以及微生物菌群的变化。结果表明,褐菖鲉肠道中聚苯乙烯微塑料积累量随着暴露时间的增加呈现显著性上升趋势,7 d时浓度达到16.20 μg/g。聚苯乙烯微塑料暴露会对肠道造成病理学损伤,1 mg/L浓度组表现为肠粘膜细胞出现坏死和脱落并伴有空泡结构形成,10 mg/L浓度组肠绒毛出现更为明显萎缩和坏死,空泡化结构增多,肠壁厚度、肌层厚度、肠绒毛长度和宽度均出现显著性降低。转录组测序显示聚苯乙烯微塑料暴露后7 d和21 d各有313和169个基因的表达量出现显著性变化,经KEGG富集分析发现7 d时主要富集在p53信号通路(p53 signaling pathway)、淀粉和蔗糖代谢途径(Starch and sucrose metabolism)、Toll样受体信号通路(Toll-like receptor signaling pathway)等;21 d时主要富集在类固醇生物合成途径(Steroid biosynthesis)、花生四烯酸代谢途径(Arachidonic acid metabolism)、NOD样受体信号通路(NOD-like receptor signaling pathway)等。肠道微生物菌群结构在门分类水平上不会随着聚苯乙烯微塑料暴露发生明显变化,但是梭杆菌科(Fusobacteriaceae)、鲸杆菌属(Cetobacterium)、弧菌科(Vibrionaceae)和普雷沃氏菌属(Prevotella)等相对丰度增加也暗示着肠道屏障修复和抗炎症功能升高。综上所述,聚苯乙烯微塑料暴露可损伤褐菖鲉肠道组织,破坏肠道屏障并诱发炎症,进而影响其健康。Abstract: To evaluate the toxicological effects of polystyrene microplastics (PS-MPs) on the intestinal health of Sebastiscus marmoratus, individuals were exposed to PS-MP solutions at concentrations of 0, 1, and 10 mg/L for 21 days. A combination of analytical approaches, including enrichment analysis, histological examination, transcriptomic profiling, and 16S rRNA gene sequencing, was employed to assess alterations in intestinal morphology, gene expression, and microbial community composition. The results demonstrated a time-dependent accumulation of PS-MPs in the intestines, with concentrations reaching 16.20 μg/g by day 7. Histopathological analysis revealed dose-dependent intestinal damage: at 1 mg/L, necrosis, detachment, and vacuolar degeneration of mucosal cells were observed; at 10 mg/L, severe villus atrophy, necrosis, vacuolization, and significant reductions in intestinal wall thickness, muscle layer thickness, and villus length and width were evident. Transcriptomic analysis identified 313 and 169 differentially expressed genes (DEGs) after 7 and 21 days of exposure, respectively. KEGG pathway enrichment revealed that DEGs at day 7 were primarily involved in the p53 signaling pathway, starch and sucrose metabolism, and Toll-like receptor signaling. By day 21, enrichment was observed in pathways related to steroid biosynthesis, arachidonic acid metabolism, and NOD-like receptor signaling. Although no significant changes in microbial composition were detected at the phylum level, notable increases in the relative abundances of Fusobacteriaceae, Cetobacterium, Vibrionaceae, and Prevotella were observed, potentially indicating enhanced intestinal barrier repair and anti-inflammatory responses. In conclusion, PS-MP exposure resulted in structural damage to intestinal tissues, disruption of the mucosal barrier, and inflammatory responses in S. marmoratus, ultimately compromising organismal health.
-
图 1 微塑料在褐菖鲉肠组织中的积累
注:A:荧光聚苯乙烯微球在肠绒毛上皮细胞中的分布,白色箭头所指为荧光聚苯乙烯微球;B:不同度浓度荧光聚苯乙烯微球对应OD值的标准曲线;C:聚苯乙烯微球在肠组织中的富集过程,不同字母表示显著性差异,P < 0.05
Fig. 1 Accumulation of microplastics in S. marmoratus intestine
Note: A: Distribution of fluorescent polystyrene microspheres in intestinal villus epithelial cells. The white arrows point to the fluorescent polystyrene microspheres; B: Standard curve of OD values corresponding to different concentrations of fluorescent polystyrene microspheres; C: Enrichment process of polystyrene microspheres in intestine, different letters indicate significant differences, P < 0.05
图 2 微塑料对褐菖鲉肠组织损伤的组织学观察
注:A~C:对照组(0 mg/L聚苯乙烯微球)21 d的肠组织切片;D~F:1 mg/L聚苯乙烯微球暴露21 d的肠组织切片;G~I:10 mg/L聚苯乙烯微球暴露21 d的肠组织切片
Fig. 2 Histological observation of microplastic damage to intestine in S. marmoratus
Note: A~C: Histological sections of S. marmoratus intestine in the control group (0 mg/L polystyrene microspheres) at 21 days; D~F: Histological sections of S. marmoratus intestine in the treatment group (1 mg/L polystyrene microspheres) at 21 days; Histological sections of S. marmoratus intestine in the treatment group (10 mg/L polystyrene microspheres) at 21 days
图 4 差异表达基因的功能富集分析
注:聚苯乙烯微球暴露7 d后的褐菖鲉肠组织转录组与对照组差异表达基因的KEGG (A)和GO (B)富集分析;聚苯乙烯微球暴露21 d后的褐菖鲉肠组织转录组与对照组差异表达基因的KEGG (C)和GO (D)富集分析
Fig. 4 Functional enrichment analysis of differentially expressed genes
Note: KEGG (A) and GO (B) enrichment analysis of differentially expressed genes in the intestine transcriptome of S. marmoratus exposed to polystyrene microspheres for 7 days compared with the control group; KEGG (C) and GO (D) enrichment analysis of differentially expressed genes in the intestine transcriptome of S. marmoratus exposed to polystyrene microspheres for 7 days compared with the control group
图 3 褐菖鲉肠组织转录本间相关性分析及差异基因数量统计
注:A:转录本间斯皮尔曼相关系数R2热图,R2越接近1表明相关越高;B:聚苯乙烯微球暴露7 d和21 d后差异基因数量统计
Fig. 3 Correlation analysis between transcripts and statistics of differentially expressed genes in S. marmoratus intestine
Note: A: Heatmap of Spearman’s correlation coefficient R2 between transcripts. The closer R2 is to 1, the higher the correlation; B: Statistics of differentially expressed genes after 7 and 21 days of polystyrene microsphere exposure
图 6 聚苯乙烯微塑料对褐菖鲉肠道微生物群落组成及丰度的影响
注:A: 门分类水平上肠道微生物群落组成;B:基于LEfSe分析的肠道微生物群落LDA评分柱状图(LDA > 3);C:基于LEfSe分析的肠道微生物分支图,每个圈的大小代表分类单元的丰度
Fig. 6 Effects of polystyrene microplastics on the composition and abundance of intestinal microbial communities in S. marmoratus
Note: A: Composition of intestinal microbial communities at the phylum classification level; B: LDA score bar graph of intestinal microbial communities based on LEfSe analysis (LDA > 3); C: Branch diagram of intestinal microorganisms based on LEfSe analysis, the size of each circle represents the abundance of the taxonomic unit
表 1 转录组验证相关基因qRT-PCR引物序列
Tab. 1 qRT-PCR primer sequences for transcriptome validation of related genes
基因
Gene name基因编号
Gene ID上游引物(5’-3’)
Forward primer(5’-3’)下游引物(5’-3’)
Reverse primer(5’-3’)ap-ey Seb005471 GTGGCTTCACATTAGGGA CAGTCGCAGCAATCTTTT chia.1 Seb015280 ACAACGGCAGCCCACAG GGGACGGAAACCAGCAA tnfb Seb010742 AGCCAAGGCAGCCATCC GCCACCCTGAGCAAACG rxfp3 Seb013534 CAATGGGCTGGAGATTC GTGGTGATGGTGCGAGT IL-1β Seb008799 GACATGCAACGTGAGCGAGAT AGCGGCCACCCTTAAACCT lyg2 Seb011630 CCTGGGACAGTGAGGAACA CTGGCAACGACATCATTGGAG hce-1 Seb012543 GCCGCCGTGGTTATTCC TGTGCTGGTCCCTGTCG β-actin Seb018988 ATCCTGCGTCTTGACTTGG TGGGCAACGGAACCTCT 缩写:ap-ey,aminopeptidase Ey-like,氨肽酶Ey样蛋白;chia.1,Chitinase,几丁质酶;tnfb,Tumor necrosis factor b,肿瘤坏死因子b;rxfp3,Relaxin-3 receptor,松弛素-3受体;IL-1β,Interleukin-1β,白介素1β;lyg2,Lysozyme g2,溶菌酶g2;hce-1,High chorionic soluble enzyme 1,高绒毛膜可溶性酶1。 表 2 褐菖鲉肠组织结构主要形态指标
Tab. 2 Main morphological indexes of S. marmoratus intestine
聚苯乙烯
微球浓度肠壁厚度/μm 肌层厚度/μm 肠绒毛长度/μm 绒毛宽度/μm 0 mg/L
(对照组)722.78 ± 85.13a 224.44 ± 23.88 a 523.89 ± 47.96 a 86.67 ± 7.59 a 1 mg/L 744.35 ± 68.22 a 172.75 ± 17.04 a 443.48 ± 76.30 a 72.46 ± 4.24 a 10 mg/L 340.80 ± 70.51b 84.27 ± 15.08 b 163.73 ± 70.00 b 53.33 ± 4.94 b 注:不同字母表示显著性差异(P < 0.05)。 表 3 转录组测序质量控制评估统计
Tab. 3 Transcriptome sequencing quality control assessment statistics
处理组 样品名 Read Sum Base Sum(bp) GC(%) Q20(%) Q30(%) 对照组
(7 d)C7d-1 22 195 470 6 645 865 363 47.96 97.49 92.99 C7d-2 23 945 721 7 167 698 090 48.18 97.62 93.35 C7d-3 20 782 776 6 222 969 089 47.73 96.87 91.53 微塑料
处理组
(7 d)T7d-1 20 342 804 6 090 487 296 48.38 96.56 90.74 T7d-2 20 603 189 6 163 545 646 48.3 97.85 93.68 T7d-3 22 157 429 6 636 136 422 48.8 97.33 92.44 对照组
(21 d)C21d-1 22 527 606 6 745 899 584 49.26 97.69 93.51 C21d-2 22 925 541 6 862 648 252 48.72 97.41 92.54 C21d-3 24 512 631 7 341 308 812 49.59 97.61 93.1 微塑料
处理组
(21 d)T21d-1 20 860 878 6 245 600 995 48.39 97.25 92.34 T21d-2 20 959 519 6 272 482 585 48.61 97.17 91.99 T21d-3 20 196 772 6 047 124 185 48.44 97.08 91.81 -
[1] Eerkes-Medrano D, Thompson R C, Aldridge D C. Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs[J]. Water Research, 2015, 75: 63−82. doi: 10.1016/j.watres.2015.02.012 [2] Jambeck J R, Geyer R, Wilcox C, et al. Plastic waste inputs from land into the ocean[J]. Science, 2015, 347(6223): 768−771. doi: 10.1126/science.1260352 [3] Bhat R A H, Sidiq M J, Altinok I. Impact of microplastics and nanoplastics on fish health and reproduction[J]. Aquaculture, 2024, 590: 741037. doi: 10.1016/j.aquaculture.2024.741037 [4] Suaria G, Avio C G, Mineo A, et al. The mediterranean plastic soup: synthetic polymers in mediterranean surface waters[J]. Scientific Reports, 2016, 6(1): 37551. doi: 10.1038/srep37551 [5] Cincinelli A, Scopetani C, Chelazzi D, et al. Microplastic in the surface waters of the ross sea (antarctica): occurrence, distribution and characterization by FTIR[J]. Chemosphere, 2017, 175: 391−400. doi: 10.1016/j.chemosphere.2017.02.024 [6] Jiang Yong, Yang Fan, Kazmi S S U H, et al. A review of microplastic pollution in seawater, sediments and organisms of the Chinese coastal and marginal seas[J]. Chemosphere, 2022, 286: 131677. doi: 10.1016/j.chemosphere.2021.131677 [7] 杜蕴超. 环境因子影响下的聚苯乙烯微塑料对长牡蛎毒性效应研究[D]. 烟台: 中国科学院大学(中国科学院烟台海岸带研究所), 2023.Du Yunchao. The influence of environmental factors on the toxicity of polystyrence microplastics to the pacific oysters Crassostrea gigas[D]. Yantai: University of Chinese Academy of Sciences (Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences), 2023. [8] Hamed M, Soliman H A M, Said R E M, et al. Oxidative stress, antioxidant defense responses, and histopathology: biomarkers for monitoring exposure to pyrogallol in clarias gariepinus[J]. Journal of Environmental Management, 2024, 351: 119845. doi: 10.1016/j.jenvman.2023.119845 [9] Rangasamy B, Malafaia G, Maheswaran R. Evaluation of antioxidant response and Na +-K+-ATPase activity in zebrafish exposed to polyethylene microplastics: shedding light on a physiological adaptation[J]. Journal of Hazardous Materials, 2022, 426: 127789. doi: 10.1016/j.jhazmat.2021.127789 [10] Umamaheswari S, Priyadarshinee S, Kadirvelu K, et al. Polystyrene microplastics induce apoptosis via ROS-mediated p53 signaling pathway in zebrafish[J]. Chemico-Biological Interactions, 2021, 345: 109550. doi: 10.1016/j.cbi.2021.109550 [11] Shi Zhaoji, Yao Fucheng, Liu Ziqiang, et al. Microplastics predominantly affect gut microbiota by altering community structure rather than richness and diversity: a meta-analysis of aquatic animals[J]. Environmental Pollution, 2024, 360: 124639. doi: 10.1016/j.envpol.2024.124639 [12] Browne M A, Niven S J, Galloway T S, et al. Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity[J]. Current Biology, 2013, 23(23): 2388−2392. doi: 10.1016/j.cub.2013.10.012 [13] Chen Qiqing, Gundlach M, Yang Shouye, et al. Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity[J]. Science of The Total Environment, 2017, 584−585: 1022−1031. doi: 10.1016/j.scitotenv.2017.01.156 [14] Pedersen A F, Meyer D N, Petriv A M V, et al. Nanoplastics impact the zebrafish (Danio rerio) transcriptome: associated developmental and neurobehavioral consequences[J]. Environmental Pollution, 2020, 266: 115090. doi: 10.1016/j.envpol.2020.115090 [15] Pedà C, Caccamo L, Fossi M C, et al. Intestinal alterations in European sea bass Dicentrarchus labrax (linnaeus, 1758) exposed to microplastics: preliminary results[J]. Environmental Pollution, 2016, 212: 251−256. doi: 10.1016/j.envpol.2016.01.083 [16] Bobori D C, Dimitriadi A, Feidantsis K, et al. Differentiation in the expression of toxic effects of polyethylene-microplastics on two freshwater fish species: size matters[J]. Science of The Total Environment, 2022, 830: 154603. doi: 10.1016/j.scitotenv.2022.154603 [17] 邹雄, 阮泽超, 张燕, 等. 人工繁育条件下的褐菖鲉(Sebastiscus marmoratus)繁殖特性研究[J]. 海洋与湖沼, 2024, 55(4): 1027−1036. doi: 10.11693/hyhz20240200030Zou Xiong, Ruan Zechao, Zhang Yan, et al. Reproductive biology of fish sebastiscus marmoratus under artificial breeding[J]. Oceanologia et Limnologia Sinica, 2024, 55(4): 1027−1036. doi: 10.11693/hyhz20240200030 [18] Burns E E, Boxall A B A. Microplastics in the aquatic environment: Evidence for or against adverse impacts and major knowledge gaps[J]. Environmental Toxicology and Chemistry, 2018, 37(11): 2776−2796. doi: 10.1002/etc.4268 [19] 刘涛, 孙晓霞, 朱明亮, 等. 东海表层海水中微塑料分布与组成[J]. 海洋与湖沼, 2018, 49(1): 62−69.Liu Tao, Sun Xiaoxia, Zhu Mingliang, et al. Distribution and composition of microplastics in the surface water of the east China sea[J]. Oceanologia et Limnologia Sinica, 2018, 49(1): 62−69. [20] 王洪燕, 赵晟. 浙江舟山养殖海域沉积物微塑料污染特征[J]. 江苏农业科学, 2020, 48(9): 276−281.Wang Hongyan, Zhao Sheng. Microplastic pollution in sediments in aquaculture sea area of Zhoushan, Zhejiang province[J]. Jiangsu Agricultural Sciences, 2020, 48(9): 276−281. [21] 周筱田. 浙江省近岸海域水体微塑料分布及其与鼠尾藻DOM相互作用[D]. 舟山: 浙江海洋大学, 2022.Zhou Xiaotian. Distribution of microplastics in coastal seawaters of Zhejiang province and it interaction with dissolved organic matter from Sargassum thunbergii[D]. Zhoushan: Zhejiang Ocean University, 2022. [22] Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1995, 57(1): 289−300. doi: 10.1111/j.2517-6161.1995.tb02031.x [23] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the $ 2^{-\Delta \Delta C_{\mathrm{T}}} $ method[J]. Methods, 2001, 25(4): 402−408. doi: 10.1006/meth.2001.1262[24] Bokulich N A, Kaehler B D, Rideout J R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin[J]. Microbiome, 2018, 6(1): 90. doi: 10.1186/s40168-018-0470-z [25] Ding Ruiyang, Ma Yiming, Li Tianyu, et al. The detrimental effects of micro-and nano-plastics on digestive system: an overview of oxidative stress-related adverse outcome pathway[J]. Science of the Total Environment, 2023, 878: 163144. doi: 10.1016/j.scitotenv.2023.163144 [26] 于萍. 微塑料对中华绒螯蟹毒性效应的初步研究[D]. 上海: 华东师范大学, 2019.Yu Ping. Preliminary study on the toxic effects of microplastics on Eriocheir sinensis[D]. Shanghai: East China Normal University, 2019. [27] Limonta G, Mancia A, Benkhalqui A, et al. Microplastics induce transcriptional changes, immune response and behavioral alterations in adult zebrafish[J]. Scientific Reports, 2019, 9(1): 15775. doi: 10.1038/s41598-019-52292-5 [28] 刘佳, 闫子豪, 么宝兰, 等. 鱼类肠道组织结构、功能、影响因素及其保护物质的研究进展[J]. 水产科技情报, 2023, 50(2): 121−127.Liu Jia, Yan Zihao, Yao Baolan, et al. Research progress on the tissue structure, function, influencing factors and protective substances of fish intestine[J]. Fisheries Science and Technology Information, 2023, 50(2): 121−127. [29] Rochman C M, Hoh E, Kurobe T, et al. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress[J]. Scientific Reports, 2013, 3: 3263. doi: 10.1038/srep03263 [30] 刘香, 茹小尚, 张立斌. 海洋微塑料污染的生物效应研究进展[J]. 海洋科学, 2022, 45(3): 122−133.Liu Xiang, Ru Xiaoshang, Zhang Libin. Research progress on the biological effects of marine microplastic pollution[J]. Marine Sciences, 2022, 45(3): 122−133. [31] Rochman C M, Browne M A, Underwood A J, et al. The ecological impacts of marine debris: unraveling the demonstrated evidence from what is perceived[J]. Ecology, 2016, 97(2): 302−312. doi: 10.1890/14-2070.1 [32] Pedà C, Caccamo L, Fossi M C, et al. Intestinal alterations in European sea bass Dicentrarchus labrax (linnaeus, 1758) exposed to microplastics: preliminary results[J]. Environmental Pollution, 2016, 212: 251−256. (查阅网上资料, 本条文献与第15条文献重复, 请核对) [33] Umamaheswari S, Priyadarshinee S, Kadirvelu K, et al. Polystyrene microplastics induce apoptosis via ROS-mediated p53 signaling pathway in zebrafish[J]. Chemico-Biological Interactions, 2021, 345: 109550. (查阅网上资料, 本条文献与第10条文献重复, 请核对) [34] Xu Tianchao, Cui Jie, Xu Ran, et al. Microplastics induced inflammation and apoptosis via ferroptosis and the NF-κB pathway in carp[J]. Aquatic Toxicology, 2023, 262: 106659. doi: 10.1016/j.aquatox.2023.106659 [35] Hou Miaomiao, Xu Chunsen, Zou Xinhua, et al. Long-term exposure to microplastics induces intestinal function dysbiosis in rare minnow (Gobiocypris rarus)[J]. Ecotoxicology and Environmental Safety, 2022, 246: 114157. doi: 10.1016/j.ecoenv.2022.114157 [36] Sun Zhicheng, Peng Xin, Zhao Linlin, et al. From tissue lesions to neurotoxicity: the devastating effects of small-sized nanoplastics on red drum Sciaenops ocellatus[J]. Science of the Total Environment, 2024, 933: 173238. doi: 10.1016/j.scitotenv.2024.173238 [37] Mahapatra S, Ganguly B, Pani S, et al. A comprehensive review on the dynamic role of toll-like receptors (TLRs) in frontier aquaculture research and as a promising avenue for fish disease management[J]. International Journal of Biological Macromolecules, 2023, 253: 126541. doi: 10.1016/j.ijbiomac.2023.126541 [38] Sahoo B R. Structure of fish toll-like receptors (TLR) and NOD-like receptors (NLR)[J]. International Journal of Biological Macromolecules, 2020, 161: 1602−1617. doi: 10.1016/j.ijbiomac.2020.07.293 [39] Su Shengyan, Jing Xiaojun, Zhang Chengfeng, et al. Interaction between the intestinal microbial community and transcriptome profile in common carp (Cyprinus carpio L. )[J]. Frontiers in Microbiology, 2021, 12: 659602. doi: 10.3389/fmicb.2021.659602 [40] Jin Yuanxiang, Xia Jizhou, Pan Zihong, et al. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish[J]. Environmental Pollution, 2018, 235: 322−329. doi: 10.1016/j.envpol.2017.12.088 [41] Zhu Chenxi, Zhou Hui, Bao Mengyu, et al. Polystyrene microplastics induce molecular toxicity in Simocephalus vetulus: a transcriptome and intestinal microorganism analysis[J]. Aquatic Toxicology, 2024, 275: 107046. doi: 10.1016/j.aquatox.2024.107046 [42] Calder P C. Functional roles of fatty acids and their effects on human health[J]. Journal of Parenteral and Enteral Nutrition, 2015, 39(S1): 18S−32S. [43] Calder P C. Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance[J]. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 2015, 1851(4): 469−484. doi: 10.1016/j.bbalip.2014.08.010 [44] Franchi L, Muñoz-Planillo R, Núñez G. Sensing and reacting to microbes through the inflammasomes[J]. Nature Immunology, 2012, 13(4): 325−332. doi: 10.1038/ni.2231 [45] Chen G, Shaw M H, Kim Y G, et al. NOD-like receptors: Role in innate immunity and inflammatory disease[J]. Annual Review of Pathology: Mechanisms of Disease, 2009, 4: 365−398. doi: 10.1146/annurev.pathol.4.110807.092239 [46] Vandenabeele P, Galluzzi L, Vanden Berghe T, et al. Molecular mechanisms of necroptosis: an ordered cellular explosion[J]. Nature Reviews Molecular Cell Biology, 2010, 11(10): 700−714. doi: 10.1038/nrm2970 [47] Browne M A, Crump P, Niven S J, et al. Accumulation of microplastic on shorelines woldwide: sources and sinks[J]. Environmental Science & Technology, 2011, 45(21): 9175−9179. [48] Li Yi, Wang Yuqi, Han Shuo, et al. N-acyl-homoserine lactones-mediated quorum sensing promotes intestinal colonization of Aeromonas veronii through facilitating cheA gene expression[J]. Aquaculture, 2024, 579: 740189. doi: 10.1016/j.aquaculture.2023.740189 [49] 梁胜男, 柯楚新, 黄鹤, 等. 肠道内产丁酸细菌及其产物丁酸生理功能的研究进展[J]. 微生物学通报, 2021, 48(3): 948−959.Liang Shengnan, Ke Chuxin, Huang He, et al. Butyrate-producing bacteria in the intestinal tract and the physiological function of their metabolite butyrate: a review[J]. Microbiology China, 2021, 48(3): 948−959. [50] Qiao Ruxia, Sheng Cheng, Lu Yifeng, et al. Microplastics induce intestinal inflammation, oxidative stress, and disorders of metabolome and microbiome in zebrafish[J]. Science of the Total Environment, 2019, 662: 246−253. doi: 10.1016/j.scitotenv.2019.01.245 [51] 王美茹, 崔鹏飞, 汝少国. 养殖水环境中抗生素对鱼类肠道菌群结构、功能和抗性组的影响研究进展[J]. 生态毒理学报, 2023, 18(3): 94−111.Wang Meiru, Cui Pengfei, Ru Shaoguo. Research progress on effects of antibiotics in aquaculture water environ-ment on structure, function and resistome of fish intestinal microbiota[J]. Asian Journal of Ecotoxicology, 2023, 18(3): 94−111. [52] Zhang Yong, Qi Xiaozhou, Zhang Zhongyu, et al. Effects of dietary Cetobacterium somerae on the intestinal health, immune parameters and resistance against Nocardia seriolae of largemouth bass, Micropterus salmoides[J]. Fish & Shellfish Immunology, 2023, 135: 108693. [53] 邓益琴. 水产动物弧菌病及其生物防治研究进展[J]. 大连海洋大学学报, 2023, 38(4): 553−563.Deng Yiqin. Progress in research on vibriosis and biological control in animals in aquaculture: a review[J]. Journal of Dalian Ocean University, 2023, 38(4): 553−563. [54] Jin Yuanxiang, Xia Jizhhou, Pan Zihong, et al. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish[J]. Environmental Pollution, 2018, 235: 322−329. (查阅网上资料, 本条文献与第40条文献重复, 请核对) [55] Lu Liang, Wan Zhiqin, Luo Ting, et al. Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice[J]. The Science of the Total Environment, 2018, 631−632: 449−458. doi: 10.1016/j.scitotenv.2018.03.051 -