留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无现场采样的机载LiDAR最大测深估算

杨文泽 杨安秀 高兴国 王春晓 王振辉 阳凡林 宿殿鹏

杨文泽,杨安秀,高兴国,等. 无现场采样的机载LiDAR最大测深估算[J]. 海洋学报,2025,47(10):137–145 doi: 10.12284/hyxb2025099
引用本文: 杨文泽,杨安秀,高兴国,等. 无现场采样的机载LiDAR最大测深估算[J]. 海洋学报,2025,47(10):137–145 doi: 10.12284/hyxb2025099
Yang Wenze,Yang Anxiu,Gao Xingguo, et al. Maximum bathymetric depth estimation for airborne LiDAR without in-situ sampling[J]. Haiyang Xuebao,2025, 47(10):137–145 doi: 10.12284/hyxb2025099
Citation: Yang Wenze,Yang Anxiu,Gao Xingguo, et al. Maximum bathymetric depth estimation for airborne LiDAR without in-situ sampling[J]. Haiyang Xuebao,2025, 47(10):137–145 doi: 10.12284/hyxb2025099

无现场采样的机载LiDAR最大测深估算

doi: 10.12284/hyxb2025099
基金项目: 国家自然科学基金(42406186);中国博士后科学基金(2021M700155);山东省自然科学基金(ZR2023QD050);山东省高等教育青年创新科技计划项目(2023KJ088);青岛市关键技术攻关及产业化示范类项目(23−1−3−hygg−1−hy);青岛市自然科学基金(24−8−4−zrjj−2−jch, 23−2−1−66−zyyd−jch);山东科技大学科研创新团队支持计划(2019TDJH103);自然资源部海底科学重点实验室开放基金(KLSG2306)。
详细信息
    作者简介:

    杨文泽(2002—),男,山东省泰安市人,主要从事机载LiDAR测深波形数据处理方面的研究。E-mail:3378133630@qq.com

    通讯作者:

    杨安秀,博士,实验师,主要从事LiDAR测深点云处理与多源数据融合方面的研究。E-mail:skyanganxiu@163.com

  • 中图分类号: P229

Maximum bathymetric depth estimation for airborne LiDAR without in-situ sampling

  • 摘要: 浅水区域的地形测量数据能够为海洋资源开发、水资源调查管理等提供基础的数据支撑,一直是海洋测绘等领域的研究热点。机载LiDAR测深(Airborne LiDAR Bathymetry,ALB)是一种高精度、高效率、机动性强的一种测量技术,特别适用于浅水区域的地形测量。针对机载激光最大测深估算依赖传统现场采样法(如赛齐盘透明度测量)效率低、成本高的问题,论文提出一种联合卫星遥感水色数据产品与波形建模的无现场采样最大测深估算方法。通过获取NASA Ocean Color的Kd(490)产品反演得到532 nm波段漫衰减系数,结合激光测深回波信号的物理模型,得到水面、水体、水底以及噪声的回波叠加波形,并利用峰值探测算法实现最大测深自动化判定。以山东省青岛市胶州湾与青海省德令哈市托素湖为实验区域,实验结果表明利用所提方法估算的最大测深估算偏差均不超过0.4 m,相对误差保持在5%以内,验证了方法的有效性。本文所提方法无需现场采样,相较于传统方法以卫星遥感水色数据产品代替现场透明度测量,不仅显著降低了机载LiDAR测深外业测量成本,还能够为浅水区测绘与水资源调查提供高效的技术支撑。
  • 图  1  无现场采样的机载LiDAR测深能力估算流程

    Fig.  1  Flowchart for estimating the bathymetric capability of airborne LiDAR without on-site sampling

    图  2  激光测深回波信号各部分和总体建模

    Fig.  2  Modeling of individual components and the overall laser bathymetry echo signal

    图  3  青岛胶州湾机载LiDAR测深实验概况

    a. 测区地理位置(审图号:GS(2019)3333号);b. 机载测深LiDAR;c. 现场水质情况;d. 无人机平台;e. 青岛胶州湾沿岸地理概况

    Fig.  3  Overview of the airborne LiDAR bathymetry experiment in Jiaozhou Bay, Qingdao

    a. Geographical location of the study area (Map Approval Number: GS(2019)3333); b. airborne bathymetric LiDAR; c. on-site water quality conditions; d. UAV platform; e. geographical overview of the Jiaozhou Bay coastline

    图  4  青海托素湖机载LiDAR测深实验概况

    a. 测区地理位置(审图号:GS(2019)3333号);b. 现场飞行照片;c. 青海托素湖卫星影像;d. 现场水质情况

    Fig.  4  Overview of the airborne LiDAR bathymetry experiment in Tosu Lake, Qinghai

    a. Geographical location of the study area (Map Approval Number: GS(2019)3333); b. on-site flight photos; c. satellite imagery of Tosu Lake, Qinghai; d. on-site water quality conditions

    图  5  实际测深回波波形(a),建模激光测深回波波形(b)

    Fig.  5  Actual measured echo waveform (a), modeled laser altimetry echo waveform (b)

    图  6  青岛胶州湾测量数据成果及最大测深

    Fig.  6  Measurement results and maximum depth map of Jiaozhou Bay, Qingdao

    图  7  青海托素湖测量数据成果及最大测深

    Fig.  7  Measurement results and maximum depth of Tuosu Lake, Qinghai

    图  8  最大测深与航高以及Kd(532)三者间的相互关系

    Fig.  8  The interrelationship among maximum detectable depth, flight altitude, and Kd(532)

    表  1  建模中部分系统参数和环境参数

    Tab.  1  System parameters and environmental parameters in modeling

    系统参数 数值 环境参数 数值
    激光波长λ 532 nm 大气双程损失${T^2_{{\mathrm{atm}}}} $ 0.9
    脉冲宽度T0 5 ns 水面粗糙度r 0.1
    航高H 130 m 水体折射率nw 1.33
    入射角θ 20° 水底反照率Rb 0.12
    发射光学效率ƞe 0.9 镜面反射系数ks 0.98
    接收光学效率ƞR 0.58 漫反射系数kd 0.02
    噪声标准差 1.1 漫衰减系数Kd(532) 0.197
    下载: 导出CSV

    表  2  实验真实系统参数和环境参数

    Tab.  2  Actual system and environmental parameters used in the experiment

    测区 航高/m Kd(532)
    青岛胶州湾 130 0.19
    青海托素湖 160 0.15
    下载: 导出CSV

    表  3  建模中部分系统参数和环境参数

    Tab.  3  System Parameters and Environmental Parameters in Modeling

    测区 实测最大测深/m 估算最大测深/m 深度差值/m
    青岛胶州湾 7.90 8.3 0.40
    青海托素湖 8.45 8.7 0.25
    下载: 导出CSV
  • [1] 赵建虎, 陆振波, 王爱学. 海洋测绘技术发展现状[J]. 测绘地理信息, 2017, 42(6): 1−10.

    Zhao Jianhu, Lu Zhenbo, Wang Aixue. Development status of marine surveying and mapping technology[J]. Journal of Geomatics, 2017, 42(6): 1−10.
    [2] 王丹菂, 徐青, 邢帅, 等. 一种由粗到精的机载激光测深信号检测方法[J]. 测绘学报, 2018, 47(8): 1148−1159.

    Wang Dandi, Xu Qing, Xing Shuai, et al. A coarse-to-fine signal detection method for airborne LiDAR bathymetry[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(8): 1148−1159.
    [3] 张一衡, 于孝林, 亓超, 等. 基于海底回波增强的机载LiDAR测深水体旅行时提取算法[J]. 海洋学报, 2023, 45(12): 145−155.

    Zhang Yiheng, Yu Xiaolin, Qi Chao, et al. An algorithm for extracting airborne LiDAR bathymetric travel time in water column based on seabed echo enhancement[J]. Haiyang Xuebao, 2023, 45(12): 145−155.
    [4] Hickman G D, Hogg J E. Application of an airborne pulsed laser for near shore bathymetric measurements[J]. Remote Sensing of Environment, 1969, 1(1): 47−58. doi: 10.1016/S0034-4257(69)90088-1
    [5] Hojerslev N K. Visibility of the sea with special reference to the Secchi disc[C]//Proceedings of SPIE 0637, Ocean Optics VIII. Orlando: SPIE, 1986: 294−307.
    [6] Steinvall O, Klevebrant H, Lexander J, et al. Laser depth sounding in the Baltic Sea[J]. Applied Optics, 1981, 20(19): 3284−3286. doi: 10.1364/AO.20.003284
    [7] Guenther G C. Airborne laser hydrography: system design and performance factors, NOAA Professional Paper Series National Ocean Service 1[R]. Rockville, MD: National Oceanic and Atmospheric Administration, 1985.
    [8] Kratzer S, Håkansson B, Sahlin C. Assessing Secchi and photic zone depth in the Baltic Sea from satellite data[J]. Ambio, 2003, 32(8): 577−585. doi: 10.1579/0044-7447-32.8.577
    [9] 姜璐, 朱海, 李松. 机载激光雷达最大探测深度同海水透明度的关系[J]. 激光与红外, 2005, 35(6): 397−399.

    Jiang Lu, Zhu Hai, Li Song. The relationship between max survey depth of airborne ocean Lidar and Secchi depth[J]. Laser & Infrared, 2005, 35(6): 397−399.
    [10] 李凯, 童晓冲, 张永生, 等. 黄海、东海区域漫衰减系数光谱遥感反演及激光测深性能评估[J]. 遥感学报, 2015, 19(5): 761−769.

    Li Kai, Tong Xiaochong, Zhang Yongsheng, et al. Inversion of diffuse attenuation coefficient spectral in the Yellow Sea / East China Sea and evaluation of laser bathymetric performance[J]. Journal of Remote Sensing, 2015, 19(5): 761−769.
    [11] 申二华, 张永生, 李凯, 等. 利用MODIS数据估计中国黄东海区域测深参数[J]. 中国图象图形学报, 2016, 21(4): 451−455.

    Shen Erhua, Zhang Yongsheng, Li Kai, et al. Estimation of the Yellow Sea and East China Sea hydrographic parameters based on MODIS data[J]. Journal of Image and Graphics, 2016, 21(4): 451−455.
    [12] 丁凯, 李清泉, 朱家松, 等. 海南岛沿岸海域水体漫衰减系数光谱分析及LiDAR测深能力估算[J]. 光谱学与光谱分析, 2018, 38(5): 1582−1587.

    Ding Kai, Li Qingquan, Zhu Jiasong, et al. Analysis of diffuse attenuation coefficient spectra of coastal waters of Hainan Island and performance estimation of airborne LiDAR bathymetry[J]. Spectroscopy and Spectral Analysis, 2018, 38(5): 1582−1587.
    [13] Schippnick P F. Phenomenological model of beam spreading in ocean water[C]//Proceedings of SPIE 1302, Ocean Optics X. Orlando: SPIE, 1990: 13−37.
    [14] 姚春华, 陈卫标, 臧华国, 等. 机载激光测深系统的最小可探测深度研究[J]. 光学学报, 2004, 24(10): 1406−1410.

    Yao Chunhua, Chen Weibiao, Zang Huaguo, et al. Study of the capability of minimum depth using an airborne laser bathymetry[J]. Acta Optica Sinica, 2004, 24(10): 1406−1410.
    [15] Abdallah H, Baghdadi N, Bailly J S, et al. Wa-LiD: a new LiDAR simulator for waters[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4): 744−748. doi: 10.1109/LGRS.2011.2180506
    [16] 张震, 马毅, 张靖宇, 等. 基于水体回波信号仿真的激光雷达水深探测模型研究[J]. 海洋技术学报, 2015, 34(6): 13−18.

    Zhang Zhen, Ma Yi, Zhang Jingyu, et al. Research on the water depth detection model based on LiDAR echo signal simulation[J]. Journal of Ocean Technology, 2015, 34(6): 13−18.
    [17] 亓超, 周丰年, 吴敬文, 等. 基于机载LiDAR测深水体波形的漫衰减系数提取方法[J]. 海洋学报, 2021, 43(1): 147−154.

    Qi Chao, Zhou Fengnian, Wu Jingwen, et al. Extraction method for diffuse attenuation coefficient based on airborne LiDAR bathymetric water column waveform[J]. Haiyang Xuebao, 2021, 43(1): 147−154.
    [18] Gordon H R, Smith R C, Ronald J, et al. Introduction to ocean optics[C]//Proceedings of SPIE 0208, Ocean Optics VI. Monterey: SPIE, 1980: 14−55.
    [19] Lee Z P, Du Keping, Arnone R. A model for the diffuse attenuation coefficient of downwelling irradiance[J]. Journal of Geophysical Research: Oceans, 2005, 110(C2): C02016.
    [20] 王晓梅, 唐军武, 丁静, 等. 黄海、东海二类水体漫衰减系数与透明度反演模式研究[J]. 海洋学报, 2005, 27(5): 38−45.

    Wang Xiaomei, Tang Junwu, Ding Jing, et al. The retrieval algorithms of diffuse attenuation and transparency for the Case-II waters of the Huanghai Sea and the East China Sea[J]. Haiyang Xuebao, 2005, 27(5): 38−45.
    [21] Austin R W, Petzold T J. Spectral dependence of the diffuse attenuation coefficient of light in ocean waters[J]. Optical Engineering, 1986, 25(3): 253471. doi: 10.1117/12.7973845
    [22] Wang Chisheng, Li Qingquan, Liu Yanxiong, et al. A comparison of waveform processing algorithms for single-wavelength LiDAR bathymetry[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 101: 22−35. doi: 10.1016/j.isprsjprs.2014.11.005
    [23] 贺岩, 陶邦一, 俞家勇, 等. 机载激光测深技术及应用[J]. 中国激光, 2024, 51(11): 1101016.

    He Yan, Tao Bangyi, Yu Jiayong, et al. Development of airborne LiDAR bathymetric technology and application[J]. Chinese Journal of Lasers, 2024, 51(11): 1101016.
    [24] 宿殿鹏, 王斌, 买小争, 等. 面向无现场控制的机载测深LiDAR安置角误差检校[J]. 测绘学报, 2025, 54(6): 1042−1053.

    Su Dianpeng, Wang Bin, Mai Xiaozheng, et al. Calibration of placement angle errors of airborne bathymetric LiDAR without field control[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(6): 1042−1053.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  151
  • HTML全文浏览量:  97
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-18
  • 修回日期:  2025-10-27
  • 网络出版日期:  2025-11-06
  • 刊出日期:  2025-10-31

目录

    /

    返回文章
    返回