Numerical simulation of tides and tidal currents in Sanmen Bay and adjacent waters based on FVCOM
-
摘要: 理解区域海洋潮汐过程对保障海洋工程建设、降低海洋环境污染等具有重要意义。近年来,三门湾区域频繁开展围垦等海洋开发活动,一定程度改变了湾内水动力环境。本文基于三维非结构有限体积海洋模式FVCOM(Finite Volume Community Ocean Model),构建了三门湾及邻近海域数值模型,利用三门湾口门处3个站点的实测潮流数据以及两个站点的潮位数据验证了模型的可靠性。在此基础上,分析了当前三门湾及邻近海域的潮汐、潮流的分布特征和潮波的传播特征,并通过对比 2000 年与 2020 年岸线条件下的敏感性实验结果,量化分析了围垦引起的岸线变迁对湾内水动力环境的影响。结果表明,研究海域以正规半日潮为主,M2分潮振幅最大(1.5~2 m),S2次之,两者均呈现由东南向西北传播的特征。潮流方面,湾内以往复流为主,M2分潮潮流椭圆长半轴最大可达1 m/s;余流在地形复杂区域可高达0.4 m/s,湾内余流从东北岸向湾内流入,西南岸向湾外流出;潮能通量密度向湾口传播过程中逐渐衰减,在口门处减弱至约 20 kW/m。对比分析表明,随着岸线变迁,湾内涨潮优势增强,湾顶区域M2分潮振幅减小了0.2 m。湾口东北侧余流方向发生逆转,由向外流转为向内流,部分深水水道区域潮能通量密度相比减小了约40 kW/m。通过与实测资料对比,本研究所进行数值模拟结果与实测资料基本吻合,能够反映出近年来三门湾水动力状况,为研究典型近海海湾围垦对水环境动力的影响提供科学依据。Abstract: Understanding regional tidal processes is of great significance for ensuring the safety of marine engineering construction and mitigating marine environmental pollution. In recent years, frequent marine development activities, particularly land reclamation projects, have been implemented in Sanmen Bay, resulting in measurable alterations to the hydrodynamic environment within the bay. Based on the three-dimensional unstructured-grid finite-volume coastal ocean model(FVCOM), a numerical model for Sanmen Bay and the adjacent waters was established. The model was validated against observed current data from three stations near the bay mouth and tidal elevation data from two stations inside the bay. Based on this validation, the tides and currents distribution characteristics as well as tidal wave propagation in Sanmen Bay and its adjacent waters were analyzed. Furthermore, by comparing the results of sensitivity experiments under the 2000 and 2020 shoreline conditions, the impacts of shoreline changes induced by reclamation on the hydrodynamic environment within the bay were quantitatively assessed. Results demonstrate that the study area exhibits predominantly semidiurnal tides, with the M2-constituent showing the largest amplitude (1.5−2 m), followed by S2, both propagating from southeast to northwest. The tidal currents within the bay are primarily rectilinear, with the maximum semi-major axis of the M2 tidal current ellipse reaching 1 m/s. Residual currents in topographically complex regions can reach 0.4 m/s. Within the bay, the residual flow enters from the northeast coast and exits toward the open sea along the southwest coast. The tidal energy flux density gradually decays during its propagation toward the bay mouth, weakening to about 20 kW/m at the entrance. Comparative analysis reveals that shoreline modifications have enhanced flood dominance within the bay, reduced M2 amplitude by 0.2 m in the bay-head region. The residual current direction has reversed from outward to inward flow along the northeastern bay mouth, while tidal energy flux density decreased by approximately 40 kW/m in some deeper channels. The numerical simulations show good agreement with field measurements, effectively reflecting recent hydrodynamic conditions in Sanmen Bay and providing scientific support for studying the impact of typical coastal reclamation on hydrodynamics.
-
Key words:
- Sanmen Bay /
- FVCOM /
- tides and currents /
- reclamation
-
图 9 三门湾及邻近海域M2分潮(a)、S2分潮(b)、K1分潮(c)和O1分潮(d)的等振幅线(虚线,单位:m)和同潮时线[细实线,单位:(°)]分布
Fig. 9 Distributions of co-amplitude lines (dotted, unit: m) and co-phase lines [thin solid, unit: (°)] for M2-constituent (a), S2-constituent (b), K1-constituent (c) and O1-constituent (d) in Sanmen Bay and adjacent waters
图 10 三门湾M2和S2分潮参数实验对比
a, b. M2分潮振幅和迟角差异(Exp1减Exp2);c, d. S2分潮振幅和迟角差异(Exp1减Exp2)
Fig. 10 Experimental comparison of tidal constituents in Sanmen Bay
a, b. Differences in amplitude and phase lag of M2-constituent (Exp1 minus Exp2); c, d. differences in amplitude and phase lag of S2-constituent (Exp1minus Exp2)
表 1 潮位与潮流站点信息
Tab. 1 Information of elevation and current field stations
观测内容 站点 纬度 经度 时间范围 时间间隔 观测层次 潮位 T1 29°13′N 121°58′E 2023年9月15日0时至2023年9月30日23时 1 h H 潮位 T2 29°02′N 121°36′E 2023年9月15日0时至2023年9月30日23时 1 h H 潮流 C1 28°58′N 121°50′E 2023年9月16日9时至2023年9月17日10时;
2023年9月23日9时至2023年9月24日10时1 h 0(表层)、0.2H、 0.4H、0.6H、 0.8H、H(底层) 潮流 C2 28°53′N 121°54′E 2023年9月17日9时至2023年9月18日10时;
2023年9月24日11时至2023年9月25日12时1 h 0(表层)、0.2H、 0.4H、0.6H、 0.8H、H(底层) 潮流 C3 28°45′N 121°58′E 2023年9月16日9时至2023年9月17日10时;
2023年9月23日9时至2023年9月24日10时1 h 0(表层)、0.2H、 0.4H、0.6H、 0.8H、H(底层) 注:H表示观测点处的总水深。 表 2 敏感性实验方案
Tab. 2 Sensitivity experiment design
方案 岸线年份 岸线来源 网格点数 模拟时间 潮位驱动 实验目的 Exp1 2020 Landsat 8 23669 2023年9月1日0时至2023年10月6日23时(共37 d) TPXO9 atlas 表征现状动力格局 Exp2 2000 Landsat 7 25044 2023年9月1日0时至2023年10月6日23时(共37 d) TPXO9 atlas 量化岸线变迁对潮汐潮流的影响 表 3 各站点流速、流向模拟与实测数据的均方根误差(RMSE)
Tab. 3 RMSE between simulated and observed current speed/direction at each station
站点 层次 流速/(m·s−1) 流向/(°) 大潮 小潮 大潮 小潮 C1 表层 0.09 0.08 23.01 19.60 C1 中层 0.09 0.07 22.27 23.28 C1 底层 0.14 0.06 24.22 23.66 C2 表层 0.06 0.07 20.70 45.16 C2 中层 0.13 0.08 20.20 31.48 C2 底层 0.17 0.11 26.20 32.28 C3 表层 0.16 0.11 50.90 46.70 C3 中层 0.20 0.15 57.09 51.00 C3 底层 0.22 0.19 52.26 57.70 均值 0.14 0.10 30.98 36.76 -
[1] 彭姱容, 姚炎明, 陈琴. 石浦港纳潮量对三门湾围填海的累积响应[J]. 海洋湖沼通报, 2014(1): 169−178.Peng Kuarong, Yao Yanming, Chen Qin. Cumulative response of tidal prism of Shipu channel to reclamation projects in Sanmen Bay[J]. Transactions of Oceanology and Limnology, 2014(1): 169−178. [2] 杨万康, 尹宝树, 杨青莹, 等. 海岸围垦工程对三门湾内潮汐振幅的影响与研究[J]. 应用海洋学学报, 2019, 38(3): 408−415.Yang Wankang, Yin Baoshu, Yang Qingying, et al. Impacts of coastal reclamation on the tidal amplitude of Sanmen Bay[J]. Journal of Applied Oceanography, 2019, 38(3): 408−415. [3] 韩慧慧, 高飞, 丁咚, 等. 围填海工程对三门湾纳潮量和水交换的影响[J]. 海洋地质前沿, 2024, 40(5): 40−50.Han Huihui, Gao Fei, Ding Dong, et al. Influence of reclamation project on tidal volume and water exchange in Sanmen Bay[J]. Marine Geology Frontiers, 2024, 40(5): 40−50. [4] Shi Peijie, Yang Wankang, Xu Xuefeng, et al. Response of hydrodynamic environment to land reclamation in Sanmen Bay, China over the last half-century[J]. Frontiers in Marine Science, 2024, 11: 1448565. doi: 10.3389/fmars.2024.1448565 [5] 黄潘阳, 陈培雄, 来向华, 等. 三门湾2003−2013年间围涂工程对水动力环境的影响研究[J]. 中国海洋大学学报, 2017, 47(10): 91−98.Huang Panyang, Chen Peixiong, Lai Xianghua, et al. Hydrodynamics response to reclamation projects in Sanmenwan Bay during 2003−2013[J]. Periodical of Ocean University of China, 2017, 47(10): 91−98. [6] 林磊, 刘东艳, 刘哲, 等. 围填海对海洋水动力与生态环境的影响[J]. 海洋学报, 2016, 38(8): 1−11.Lin Lei, Liu Dongyan, Liu Zhe, et al. Impact of land reclamation on marine hydrodynamic and ecological environment[J]. Haiyang Xuebao, 2016, 38(8): 1−11. [7] 陈倩. 浙江近海潮汐潮流的三维数值模拟[D]. 杭州: 浙江大学, 2002.Chen Qian. Three-dimensional simulation of tides and tidal currents in the seas adjacent to Zhejiang[D]. Hangzhou: Zhejiang University, 2002. [8] 唐建华, 赵升伟, 刘玮祎, 等. 基于FVCOM的强潮海湾三维潮流数值模拟[J]. 水利水运工程学报, 2010(4): 81−88.Tang Jianhua, Zhao Shengwei, Liu Weiyi, et al. 3D numerical simulation for tidal flow in macro-tidal bay based on FVCOM[J]. Hydro-Science and Engineering, 2010(4): 81−88. [9] 何齐齐, 宋丹, 许雪峰, 等. 三门湾海域污染物扩散数值研究[J]. 海洋通报, 2018, 37(1): 63−73.He Qiqi, Song Dan, Xu Xuefeng, et al. Numerical simulation of pollutants diffusion in the Sanmen Bay[J]. Marine Science Bulletin, 2018, 37(1): 63−73. [10] Yao Yanming, Zhu Jiahao, Li Li, et al. Marine environmental capacity in Sanmen Bay, China[J]. Water, 2022, 14(13): 2083. doi: 10.3390/w14132083 [11] Chen Changsheng, Liu Hedong, Beardsley R C. An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: application to coastal ocean and estuaries[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(1): 159−186. doi: 10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2 [12] Warner J C, Geyer W R, Lerczak J A. Numerical modeling of an estuary: a comprehensive skill assessment[J]. Journal of Geophysical Research: Oceans, 2005, 110(C5): 2004JC002691. doi: 10.1029/2004JC002691 [13] Pan Haidong, Xu Tengfei, Wei Zexun. Improved tidal estimates from short water level records via the modified harmonic analysis model[J]. Ocean Modelling, 2024, 189: 102372. doi: 10.1016/j.ocemod.2024.102372 [14] 周华民, 潘海东, 严聿晗, 等. 新型潮汐调和分析算法在浙江近海短期潮位分析中的应用[J]. 海洋学报, 2025, 47(2): 29−40.Zhou Huamin, Pan Haidong, Yan Yuhan, et al. Application of a modified tidal harmonic analysis method in the analysis of short-term tide levels offshore Zhejiang[J]. Haiyang Xuebao, 2025, 47(2): 29−40. [15] Defant A. Physical Oceanography[M]. New York: Pergamon Press, 1961: 417−419. [16] 陈宗镛. 潮汐学[M]. 北京: 科学出版社, 1980.Chen Zongyong. Tidology[M]. Beijing: Science Press, 1980. [17] 林国尧, 龚文平. 海南岛莺歌海近岸的潮汐不对称与潮致余流研究[J]. 海洋学报, 2017, 39(7): 36−42.Lin Guoyao, Gong Wenping. Tidal asymmetry and tide-induced residual currents in the Yinggehai Coast, Hainan Island[J]. Haiyang Xuebao, 2017, 39(7): 36−42. [18] 郭文云. 潮汐不对称性的时间变化特征及其对工程的响应[D]. 上海: 华东师范大学, 2017.Guo Wenyun. The time-varying characteristics of tidal duration asymmetry and its response to project[D]. Shanghai: East China Normal University, 2017. [19] Nidzieko N J. Tidal asymmetry in estuaries with mixed semidiurnal/diurnal tides[J]. Journal of Geophysical Research: Oceans, 2010, 115(C8): 2009JC005864. doi: 10.1029/2009JC005864 [20] Rodríguez P A, Carbajal N, Rodríguez J H G. Lagrangian trajectories, residual currents and rectification process in the Northern Gulf of California[J]. Estuarine, Coastal and Shelf Science, 2017, 194: 263−275. doi: 10.1016/j.ecss.2017.06.019 [21] Harari J, De Camargo R. Numerical simulation of the tidal propagation in the coastal region of Santos (Brazil, 24°S 46°W)[J]. Continental Shelf Research, 2003, 23(16): 1597−1613. doi: 10.1016/S0278-4343(03)00143-2 [22] 胡方西, 曹沛奎. 三门湾潮波运动特征及其与地貌发育的关系[J]. 海洋与湖沼, 1981, 12(3): 225−234.Hu Fangxi, Cao Peikui. Characteristics of the tidal wave movement in the Sanmen Bay and its relationship with the topographic development[J]. Oceanologia et Limnologia Sinica, 1981, 12(3): 225−234. [23] 宋泽坤, 施伟勇, 张峰, 等. 三门湾近期水动力特性观测研究[J]. 应用海洋学学报, 2017, 36(2): 279−285.Song Zekun, Shi Weiyong, Zhang Feng, et al. Field observation and analysis on the characteristics of tidal dynamics in Sanmen Bay[J]. Journal of Applied Oceanography, 2017, 36(2): 279−285. -
下载: