留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

波高极值推算方法与不确定性分析

赵悦 谢冬梅 潘军宁 杨氾 金越睿 王赵军

赵悦,谢冬梅,潘军宁,等. 波高极值推算方法与不确定性分析[J]. 海洋学报,2025,47(10):79–89 doi: 10.12284/hyxb2025089
引用本文: 赵悦,谢冬梅,潘军宁,等. 波高极值推算方法与不确定性分析[J]. 海洋学报,2025,47(10):79–89 doi: 10.12284/hyxb2025089
Zhao Yue,Xie Dongmei,Pan Junning, et al. Inference methods and uncertainty assessment of extreme wave heights[J]. Haiyang Xuebao,2025, 47(10):79–89 doi: 10.12284/hyxb2025089
Citation: Zhao Yue,Xie Dongmei,Pan Junning, et al. Inference methods and uncertainty assessment of extreme wave heights[J]. Haiyang Xuebao,2025, 47(10):79–89 doi: 10.12284/hyxb2025089

波高极值推算方法与不确定性分析

doi: 10.12284/hyxb2025089
基金项目: 国家重点研发计划资助项目(2024YFB2605900);国家自然科学基金(U2340225);中央级公益性科研院所基本科研业务费专项资金资助项目(Y224008);南京水利科学研究院研究生学位论文基金(Yy224004)。
详细信息
    作者简介:

    赵悦(1993—),女,河北省唐山市人,博士研究生,主要从事海洋工程环境及防灾减灾研究。E-mail:zy18842606786@163.com

    通讯作者:

    潘军宁,教授级高级工程师,主要从事海岸波浪数值模拟和物理模型试验技术、海岸防护工程方面的研究。E-mail:jnpan@nhri.cn

  • 中图分类号: P751

Inference methods and uncertainty assessment of extreme wave heights

  • 摘要: 针对提升海洋工程中波高极值推算精度的需求,本文系统对比分析了年极值法(AM)与超阈值法(POT)的适用性及其不确定性。基于杭州湾两站点的多年再分析波浪数据,分别构建年极值序列与超阈值样本,并采用广义极值分布(GEV)和广义Pareto分布(GPD)进行建模;其中,POT法通过最小化尾部误差准则优化阈值选择。进一步结合Delta法与Bootstrap法,量化了模型参数与重现期水平波高估计值的置信区间。结果表明,对于高重现期水平,POT法给出的波高估计值更高,置信区间更窄,更适用于对极端事件敏感的工程设计场景;在不确定性分析方面,Bootstrap法较Delta法更能全面反映模型不确定性。本研究为波高极值建模建立了更为稳健的分析框架与参数推算依据。
  • 图  1  研究点位置

    Fig.  1  Locations of research stations

    图  2  年极值和超阈值波高样本选取对比

    Fig.  2  Comparison between the annual maximum model and peak-over-threshold model

    图  3  原始样本尾部误差随阈值变化图

    Fig.  3  The TLSE of the original sample varies with the thresholds

    图  4  参数估计值随阈值变化图

    Fig.  4  Change of parameter estimation with thresholds

    图  5  年极值波高累积分布

    Fig.  5  The cumulative distribution of annual extreme wave height

    图  6  超阈值拟合结果

    Fig.  6  The fitting results of POT

    图  7  波高估计值(100 a)和尾部误差随阈值变化图

    Fig.  7  Variation of 100-year return period wave heights estimates and the TLSE with thresholds

    图  8  Bootstrap法计算的平均尾部误差随阈值变化图

    Fig.  8  The TLSEB by Bootstrap varies with the thresholds

    图  9  不同置信区间不确定性对比

    Fig.  9  Comparison of uncertainty of different confidence intervals

    图  10  不同方法推算的重现期波高对比

    Fig.  10  Comparison of return period wave heights derived from different methods

    图  11  不同置信区间不确定性对比(#3)

    Fig.  11  Comparison of uncertainty of different confidence intervals (#3)

    图  12  不同方法推算的重现期波高对比(#3)

    Fig.  12  Comparison of return period wave heights derived from different methods (#3)

    表  1  研究点信息

    Tab.  1  Information of research stations

    研究点纬度/°N经度/°E水深/m波高最大值/m波高最小值/m波高平均值/m
    #130.84121.925.001.950.050.45
    #230.73121.995.002.350.070.55
    #330.00123.0050.0010.720.151.32
    下载: 导出CSV

    表  2  不同极值理论方法参数估计结果及重现期波高比较

    Tab.  2  Comparison of parameter estimation and return period wave height using different extreme value theories

    研究点 方法 参数 重现期波高/m
    μ/u ξ σ 2 a 5 a 10 a 20 a 50 a 100 a
    #1 AM法 1.297 −0.046 0.199 1.37 1.61 1.77 1.93 2.15 2.32
    POT法 0.88 0.106 0.182 1.37 1.57 1.74 1.93 2.23 2.49
    #2 AM法 1.576 −0.030 0.243 1.67 1.95 2.14 2.33 2.58 2.77
    POT法 1.06 0.154 0.136 1.69 1.91 2.11 2.33 2.66 2.93
    下载: 导出CSV

    表  3  不同B值对应的TLSEBu = 0.88 m)

    Tab.  3  TLSEB corresponding to different Bootstraps (u = 0.88 m)

    研究点 参数 原始样本TLSE B值
    50 100 200 500 1000 2 000
    #1 TLSEB 0.145 0.228 0.264 0.240 0.241 0.242 0.242
    ξ 0.182 0.173 0.176 0.180 0.178 0.180 0.180
    σ 0.106 0.106 0.106 0.105 0.106 0.106 0.106
    #2 TLSEB 0.263 0.386 0.405 0.397 0.392 0.395 0.396
    ξ 0.154 0.162 0.151 0.153 0.155 0.153 0.153
    σ 0.136 0.135 0.137 0.136 0.136 0.137 0.137
    下载: 导出CSV

    表  4  GPD 参数置信区间比较

    Tab.  4  Comparison of confidence intervals of GPD parameters

    研究点 方法 ξ置信区间 σ置信区间 ξ置信区间宽度 σ置信区间宽度
    #1 Bootstrap法 [0.101, 0.263] [0.094, 0.119] 0.162 0.025
    Delta法 [0.090, 0.274] [0.093, 0.118] 0.184 0.025
    #2 Bootstrap法 [0.081, 0.224] [0.125, 0.148] 0.143 0.023
    Delta法 [0.068, 0.240] [0.121, 0.152] 0.172 0.031
    下载: 导出CSV
  • [1] Chen Baiyu, Zhang Kuangyuan, Wang Liping, et al. Generalized extreme value-pareto distribution function and its applications in ocean engineering[J]. China Ocean Engineering, 2019, 33(2): 127−136. doi: 10.1007/s13344-019-0013-9
    [2] Ions K, Karunarathna H, Reeve D E, et al. Gravel barrier beach morphodynamic response to extreme conditions[J]. Journal of Marine Science and Engineering, 2021, 9(2): 135. doi: 10.3390/jmse9020135
    [3] Vieira D P, Tannuri E A, Câmara J G A. Availability assessment of a monobuoy-anchored ship to ship offloading system[J]. Applied Ocean Research, 2020, 101: 102291. doi: 10.1016/j.apor.2020.102291
    [4] Zheng Siming, Antonini A, Zhang Yongliang, et al. Hydrodynamic performance of a multi-Oscillating Water Column (OWC) platform[J]. Applied Ocean Research, 2020, 99: 102168. doi: 10.1016/j.apor.2020.102168
    [5] 中华人民共和国交通运输部. 港口与航道水文规范: JTS 145−2015(2022版)[S]. 北京: 人民交通出版社, 2016: 17−20.

    Ministry of Transport of the People’s Republic of China. Code of hydrology for harbour and waterway: JTS 145−2015 (2022 Edition)[S]. Beijing: China Communication Press, 2016: 17−20.
    [6] 刘德辅, 马逢时. 极值分布理论在计算波高多年分布中的应用[J]. 应用数学学报, 1976(1): 23−37.

    Liu Defu, Ma Fengshi. Application of extreme value distribution theory in computing the multi-year distribution of wave heights[J]. Acta Mathematicae Applicatae Sinica, 1976(1): 23−37.
    [7] You Zaijin, Yin Baoshu. Estimation of extreme coastal wave heightsfrom time series of wave data[J]. China Ocean Engineering, 2006, 20(2): 225−241.
    [8] 王超, 刘德辅. 设计波浪选取中的不确定性分析[J]. 海洋学报, 1991, 13(6): 874−881.

    Wang Chao, Liu Defu. Uncertainty analysis in the selection of design waves[J]. Haiyang Xuebao, 1991, 13(6): 874−881.
    [9] Coles S. An Introduction to Statistical Modeling of Extreme Values[M]. London: Springer, 2001.
    [10] Silva-González F, Heredia-Zavoni E, Inda-Sarmiento G. Square Error Method for threshold estimation in extreme value analysis of wave heights[J]. Ocean Engineering, 2017, 137: 138−150. doi: 10.1016/j.oceaneng.2017.03.028
    [11] Liang Bingchen, Shao Zhuxiao, Li Huajun, et al. An automated threshold selection method based on the characteristic of extrapolated significant wave heights[J]. Coastal Engineering, 2019, 144: 22−32. doi: 10.1016/j.coastaleng.2018.12.001
    [12] Shao Zhuxiao, Liang Bingchen, Gao Huijun. Extracting independent and identically distributed samples from time series significant wave heights in the Yellow Sea[J]. Coastal Engineering, 2020, 158: 103693. doi: 10.1016/j.coastaleng.2020.103693
    [13] Pickands III J. Statistical inference using extreme order statistics[J]. The Annals of Statistics, 1975, 3(1): 119−131.
    [14] Mazas F, Hamm L. A multi-distribution approach to POT methods for determining extreme wave heights[J]. Coastal Engineering, 2011, 58(5): 385−394. doi: 10.1016/j.coastaleng.2010.12.003
    [15] Zhao Yue, Xie Dongmei, Pan Junning, et al. A threshold determination method for extreme value analysis based on the tail least squares estimation[J]. Ocean Engineering, 2025, 335: 121696. doi: 10.1016/j.oceaneng.2025.121696
    [16] 郭怿品, 李典庆, 唐小松, 等. 基于Bootstrap方法的堆石坝坝坡稳定可靠度分析[J]. 武汉大学学报(工学版), 2019, 52(2): 106−115.

    Guo Yipin, Li Dianqing, Tang Xiaosong, et al. Slope stability reliability of rockfill dams based on Bootstrap method[J]. Engineering Journal of Wuhan University, 2019, 52(2): 106−115.
    [17] 张艳芳, 赵宜宾, 任晴晴. 广义Pareto分布参数的Bootstrap置信区间及应用[J]. 工程数学学报, 2023, 40(6): 1011−1020. doi: 10.3969/j.issn.1005-3085.2023.06.012

    Zhang Yanfang, Zhao Yibin, Ren Qingqing. Bootstrap confidence interval for parameters of generalized Pareto distribution and its application[J]. Chinese Journal of Engineering Mathematics, 2023, 40(6): 1011−1020. doi: 10.3969/j.issn.1005-3085.2023.06.012
    [18] Makkonen L. Bringing closure to the plotting position controversy[J]. Communications in Statistics-Theory and Methods, 2008, 37(3): 460−467. doi: 10.1080/03610920701653094
    [19] Sun Peidong, Xu Bin, Wang Jichao. Long-term trend analysis and wave energy assessment based on ERA5 wave reanalysis along the Chinese coastline[J]. Applied Energy, 2022, 324: 119709. doi: 10.1016/j.apenergy.2022.119709
    [20] 杜文彦, 张旭日, 张丽丽, 等. 基于ERA5再分析数据的中国邻近海域极端波高特征分析[J]. 海洋与湖沼, 2022, 53(4): 1007−1014. doi: 10.11693/hyhz20220100003

    Du Wenyan, Zhang Xuri, Zhang Lili, et al. Characteristics of extreme wave height in China’s marginal seas based on ERA5 reanalysis data[J]. Oceanologia et Limnologia Sinica, 2022, 53(4): 1007−1014. doi: 10.11693/hyhz20220100003
    [21] 夏武松, 魏永亮, 陆恒星, 等. 基于ERA5的南大西洋风速和有效波高时空变化特征分析[J]. 海洋湖沼通报, 2024, 46(1): 1−11.

    Xia Wusong, Wei Yongliang, Lu Hengxing, et al. Analysis of temporal and spatial changes of wind speed and significant wave height in the South Atlantic based on ERA5[J]. Transactions of Oceanology and Limnology, 2024, 46(1): 1−11.
    [22] Luceño A, Menéndez M, Méndez F J. The effect of temporal dependence on the estimation of the frequency of extreme ocean climate events[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 462(2070): 1683−1697. doi: 10.1098/rspa.2005.1652
    [23] Méndez F J, Menéndez M, Luceño A, et al. Estimation of the long-term variability of extreme significant wave height using a time-dependent Peak Over Threshold (POT) model[J]. Journal of Geophysical Research: Oceans, 2006, 111(C7): C07024.
    [24] Feng Jianhong, Jiang Wensheng. Extreme water level analysis at three stations on the coast of the Northwestern Pacific Ocean[J]. Ocean Dynamics, 2015, 65(11): 1383−1397. doi: 10.1007/s10236-015-0881-3
    [25] 刘旭, 王峥, 梁颖祺, 等. 我国台风风暴潮灾害损失的时空演变特征分析[J]. 海洋预报, 2023, 40(6): 21−32. doi: 10.11737/j.issn.1003-0239.2023.06.003

    Liu Xu, Wang Zheng, Liang Yingqi, et al. Spatial-temporal characteristics of the typhoon storm surge damages in China[J]. Marine Forecasts, 2023, 40(6): 21−32. doi: 10.11737/j.issn.1003-0239.2023.06.003
    [26] Murphy C, Tawn J A, Varty Z. Automated threshold selection and associated inference uncertainty for univariate extremes[J]. Technometrics, 2025, 67(2): 215−224. doi: 10.1080/00401706.2024.2421744
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  234
  • HTML全文浏览量:  177
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-15
  • 修回日期:  2025-08-27
  • 网络出版日期:  2025-09-05
  • 刊出日期:  2025-10-31

目录

    /

    返回文章
    返回