Allelopathic effects of Sesuvium portulacastrum on three typical red tide dinoflagellates and identification of potential allelopathic substances
-
摘要: 本研究旨在探讨海马齿对典型赤潮藻的化感作用及其物质来源。选取典型赤潮藻海洋原甲藻、米氏凯伦藻和塔玛亚历山大藻为受试对象,以滨海耐盐植物海马齿的种植水为研究材料。通过C18固相萃取柱吸附海马齿种植水中的根系分泌物,并采用甲醇、乙酸乙酯、二氯甲烷和正己烷萃取,四种萃取物对三种赤潮甲藻的生长表现出不同程度的抑制,其中二氯甲烷萃取物抑制效果最显著,浓度在10 g·L−1对上述三种藻类的抑制率分别为50.83%、97.30%和81.41%。对其进行气相色谱质谱(GC-MS)分析,共检测出19种脂肪酸及其衍生物。从中筛选出的硬脂酸、油酸酰胺和二十四烷醇均表现出抑藻活性,二十四烷醇的抑藻活性最强,当浓度处于2 mg·L−1时,对上述三种藻类的抑制率分别为90%、100%和81.04%。以上结果显示,海马齿能够释放脂肪酸及其衍生物来抑制赤潮藻生长,具备进一步开发为赤潮防治植物修复工具种的潜力。Abstract: This study aimed to investigate the allelopathic effects of Sesuvium portulacastrum (Aizoaceae) on typical red tide algae and identify the sources of the active compounds. Three red tide algae species, Prorocentrum micans, Karenia mikimotoi, and Alexandrium catenella, were selected as test subjects. The planting water of the coastal salt-tolerant plant Sesuvium portulacastrum served as the research material. Root exudates from the plant were adsorbed using a C18 solid-phase extraction column and then extracted with methanol, ethyl acetate, dichloromethane, and n-hexane. The four extracts exhibited varying degrees of inhibition on the growth of the algae, with the dichloromethane extract showing the most significant inhibitory effect. At a concentration of 10 g·L−1, the inhibition rates for the three algae species were 50.83%, 97.30%, and 81.41%, respectively. Gas chromatography-mass spectrometry (GC-MS) analysis identified 19 fatty acids and their derivatives. Among these, stearic acid, oleamide, and docosanol exhibited algicidal activity, with docosanol showing the strongest effect. At a concentration of 2 mg·L−1, the inhibition rates for the three algae species were 90%, 100%, and 81.04%, respectively. These results indicate that Sesuvium portulacastrum can release fatty acids and their derivatives to inhibit the growth of red tide algae, demonstrating its potential as a plant-based tool for red tide control and environmental remediation.
-
图 1 海马齿种植水不同极性萃取物对海洋原甲藻生长的影响
图中数据为3次重复的平均值 ± 标准差,以* (P <0.05)或** (p <0.01)表示处理组与对照组差异显著,无显著差异不做标记,下同。
Fig. 1 The effects of different polarity extracts from the planting water of Sesuvium portulacastrum on the growth of Prorocentrum micans
The data in the figure are the means of three replicates ± standard deviation. Significant differences between the treatments and control are marked with * (P <0.05) or ** (P <0.01), and non-significant differences are not marked, the same below.
图 4 海马齿种植水硅烷化衍生二氯甲烷萃取物GC-MS总离子流图
序号1−19表示海马齿种植水和根组织二氯甲烷萃取物中的共同物质,物质具体信息参见表1,下同。
Fig. 4 GC-MS total ion chromatogram of dichloromethane extract of Sesuvium portulacastrum planting water with silylation derivation
The serial numbers 1−19 represent common substances found in the dichloromethane extracts of both Sesuvium portulacastrum planting water and root tissues; for specific information on these substances, please refer to Table 1, the same below.
表 1 海马齿种植水和根组织二氯甲烷萃取物中的共同物质
Tab. 1 The common substances in the dichloromethane extracts from the planting water and root tissues of Sesuvium portulacastrum
类型
Type序号
Serial number化合物名称
Compound nameIUPAC名称
IUPAC Name分子式
Molecular formula脂肪酸 1 十二烷酸 Dodecanoic acid C12H24O2 2 十四烷酸 Tetradecanoic acid C14H28O2 3 十五烷酸 Pentadecanoic acid C15H30O2 4 反式-十六碳-9-烯酸 (E)-hexadec-9-enoic acid C16H30O2 5 棕榈酸 Hexadecanoic acid C16H32O2 6 十七烷酸 Heptadecanoic acid C17H34O2 7 油酸 (Z)-octadec-9-enoic acid C18H34O2 8 硬脂酸 Octadecanoic acid C18H36O2 9 二十二烷酸 Docosanoic acid C22H44O2 脂肪酸衍生物 10 双(2-甲基丙基)苯−1,2-二羧酸酯 Bis(2-methylpropyl) benzene−1,2-dicarboxylate C16H22O4 11 癸−1-烯-3-酮 Dec−1-en-3-one C10H18O 12 十五烷-3-酮 Pentadecan-3-one C15H30O 13 油酸酰胺 Octadec-9-enamide C18H35NO 14 1-辛氧基二十烷 1-octoxyicosane C28H58O 15 3-(3,5-二叔丁基-4-羟基苯基)丙酸十八酯 Octadecyl 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate C35H62O3 16 二甘醇 2-(2-hydroxyethoxy)ethanol C4H10O3 17 十八烷醇 Octadecan−1-ol C18H38O 18 十六烷醇 hexadecan−1-ol C16H34O 19 二十四烷醇 Tetracosan−1-ol C24H50O -
[1] 于仁成, 刘东艳. 我国近海藻华灾害现状、演变趋势与应对策略[J]. 中国科学院院刊, 2016, 31(10): 1167−1174.Yu Rencheng, Liu Dongyan. Harmful algal blooms in the coastal waters of China: current situation, long-term changes and prevention strategies[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(10): 1167−1174. [2] Gravinese P M, Munley M K, Kahmann G, et al. The effects of prolonged exposure to hypoxia and Florida red tide (Karenia brevis) on the survival and activity of stone crabs[J]. Harmful Algae, 2020, 98: 101897. doi: 10.1016/j.hal.2020.101897 [3] 周名江, 于仁成. 有害赤潮的形成机制、危害效应与防治对策[J]. 自然杂志, 2007, 29(2): 72−77. doi: 10.3969/j.issn.0253-9608.2007.02.003Zhou Mingjiang, Yu Rencheng. Mechanisms and impacts of harmful algal blooms and the countmeasures[J]. Chinese Journal of Nature, 2007, 29(2): 72−77. doi: 10.3969/j.issn.0253-9608.2007.02.003 [4] 胡小颖, 高孟春, 孙永福. 浅析海洋污染对公众健康的影响及防治措施[J]. 海洋开发与管理, 2008, 25(7): 68−73.Hu Xiaoying, Gao Mengchun, Sun Yongfu. A brief analysis of the impact of marine pollution on public health and its prevention and control measures[J]. Ocean Development and Management, 2008, 25(7): 68−73. (查阅网上资料, 未找到本条文献英文翻译信息, 请确认) [5] Poulin R X, Hogan S, Poulson-Ellestad K L, et al. Karenia brevis allelopathy compromises the lipidome, membrane integrity, and photosynthesis of competitors[J]. Scientific Reports, 2018, 8(1): 9572. doi: 10.1038/s41598-018-27845-9 [6] Zhang Shenghua, Guo Li, Cao Jinyan, et al. Allelopathic activities of three emergent macrophytes on several monospecific cyanobacterial species and natural phytoplankton assemblages[J]. Polish Journal of Environmental Studies, 2015, 24(1): 397−402. [7] 谢树莲, 王捷, 刘琪, 等. 植物化感作用控藻研究进展[J]. 山西大学学报(自然科学版), 2017, 40(3): 652−660.Xie Shulian, Wang Jie, Liu Qi, et al. Research progresses on plant allelopathic effects for algal control[J]. Journal of Shanxi University (Natural Science Edition), 2017, 40(3): 652−660. [8] 孙志伟, 邱丽华, 段舜山, 等. 化感作用抑制有害藻类生长的研究进展[J]. 生态科学, 2015, 34(6): 188−192.Sun Zhiwei, Qiu Lihua, Duan Shunshan, et al. Research progress on allelopathic effects for algae control[J]. Ecological Science, 2015, 34(6): 188−192. [9] Molisch H, Fischer G. Der einfluss einer pflanze auf die andere, allelopathie[J]. Nature, 1938, 141(3568): 493. (查阅网上资料, 未找到本条文献作者信息, 请确认) [10] Whittaker R H, Feeny P P. Allelochemics: chemical interactions between species[J]. Science, 1971, 171(3973): 757−770. doi: 10.1126/science.171.3973.757 [11] Li Benhang, Yin Yijun, Kang Longfei, et al. A review: application of allelochemicals in water ecological restoration——algal inhibition[J]. Chemosphere, 2021, 267: 128869. doi: 10.1016/j.chemosphere.2020.128869 [12] Patil V, Abate R, Wu Weiwei, et al. Allelopathic inhibitory effect of the macroalga Pyropia haitanensis (Rhodophyta) on harmful bloom-forming Pseudo-nitzschia species[J]. Marine Pollution Bulletin, 2020, 161: 111752. doi: 10.1016/j.marpolbul.2020.111752 [13] 周世伟, 刘苏静, 杨翠云, 等. 鼠尾藻和鸭毛藻水提液对三角褐指藻的抑制作用[J]. 生态环境学报, 2009, 18(6): 2027−2032. doi: 10.3969/j.issn.1674-5906.2009.06.004Zhou Shiwei, Liu Sujing, Yang Cuiyun, et al. Inhibitory effect of water extracts from Sargassum thunbergii and Symphyocladia latiuscula on Phaeodactylum tricornutum[J]. Ecology and Environmental Sciences, 2009, 18(6): 2027−2032. doi: 10.3969/j.issn.1674-5906.2009.06.004 [14] Sun Siqi, Hu Shanshan, Zhang Bo, et al. Allelopathic effects and potential allelochemical of Sargassum fusiforme on red tide microalgae Heterosigma akashiwo[J]. Marine Pollution Bulletin, 2021, 170: 112673. doi: 10.1016/j.marpolbul.2021.112673 [15] Lokhande V H, Nikam T D, Patade V Y, et al. Morphological and molecular diversity analysis among the Indian clones of Sesuvium portulacastrum L.[J]. Genetic Resources and Crop Evolution, 2009, 56(5): 705−717. doi: 10.1007/s10722-008-9396-9 [16] 窦碧霞, 黄建荣, 李连春, 等. 海马齿对海水养殖系统中氮、磷的移除效果研究[J]. 水生态学杂志, 2011, 32(5): 94−99.Dou Bixia, Huang Jianrong, Li Lianchun, et al. Research on effects of nutrient and phosphate removal from marine aquaculture system by Sesuvium portulacastrum[J]. Journal of Hydroecology, 2011, 32(5): 94−99. [17] 张开秀, 杨芳, 姜丹, 等. 水培海马齿对海水菲污染修复作用的初步研究[J]. 环境科学学报, 2012, 32(3): 618−625.Zhang Kaixiu, Yang Fang, Jiang Dan, et al. A preliminary study on phytoremediation of phenanthrene by a marine halophyte Sesuvium portulacastrum Linn. in hydroponic cultures[J]. Acta Scientiae Circumstantiae, 2012, 32(3): 618−625. [18] 梁胜伟, 胡新文, 段瑞军, 等. 海马齿对无机汞的耐性和吸附积累[J]. 植物生态学报, 2009, 33(4): 638−645. doi: 10.3773/j.issn.1005-264x.2009.04.002Liang Shengwei, Hu Xinwen, Duan Ruijun, et al. Mercury tolerance and accumulation in the halophyte Sesuvium portulacastrum[J]. Chinese Journal of Plant Ecology, 2009, 33(4): 638−645. doi: 10.3773/j.issn.1005-264x.2009.04.002 [19] 姜丹. 3种滩涂盐生植物对海洋赤潮发生的抑制作用及其机理初探[D]. 北京: 中国科学院大学, 2010.Jiang Dan. Preliminary study on the inhibitory effects and mechanisms of three salt marsh halophytes on marine red tide formation[D]. Beijing: University of Chinese Academy of Sciences, 2010. (查阅网上资料, 未找到本条文献英文翻译信息, 请确认) [20] 张可. 海马齿对三种赤潮微藻生长的克生作用研究[D]. 福建: 厦门大学, 2011.Zhang Ke. Allelopathic effect of Sesuvium portulacastrum on the growth of three red tide microalgae[D]. Fujian: Xiamen University, 2011. [21] Zhang Tingting, Zheng Chunyan, Hu Wei, et al. The allelopathy and allelopathic mechanism of phenolic acids on toxic Microcystis aeruginosa[J]. Journal of Applied Phycology, 2010, 22(1): 71−77. doi: 10.1007/s10811-009-9429-6 [22] 王利雪, 田师思, 宋禧林, 等. 气相色谱-质谱联用法测定指纹残留物中脂肪酸成分[J]. 分析化学, 2022, 50(10): 1542−1550.Wang Lixue, Tian Shisi, Song Xilin, et al. Analysis of fatty acid components in fingerprint residues by gas chromatography-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2022, 50(10): 1542−1550. [23] 高红, 周飞飞, 唐洪杰, 等. 黄海绿潮浒苔提取物的化感效应及化感物质的分离鉴定[J]. 海洋学报, 2018, 40(12): 11−20. doi: 10.3969/j.issn.0253-4193.2018.12.002Gao Hong, Zhou Feifei, Tang Hongjie, et al. Allelopathy of extracts of Ulva prolifera on green tides in the Yellow Sea and the identification of the allelochemicals[J]. Haiyang Xuebao, 2018, 40(12): 11−20. doi: 10.3969/j.issn.0253-4193.2018.12.002 [24] 陈芝兰. 凤眼莲根对赤潮藻生长的抑制作用及其机理研究[D]. 广州: 暨南大学, 2005.Chen Zhilan. Antialgal effect and mechanism of the root of Eichhornia crassipes to HABs algae[D]. Guangzhou: Jinan University, 2005. [25] 孙志伟, 段璐洋, 周静韵, 等. 红树植物干粉和新鲜组织水提物对两种赤潮藻的化感抑制效应[J]. 生态科学, 2012, 31(2): 109−114. doi: 10.3969/j.issn.1008-8873.2012.02.003Sun Zhiwei, Duan Luyang, Zhou Jingyun, et al. Allelopathic effects of water extracts from mangrove plants dry powder and fresh tissue on two red-tide algae[J]. Ecological Science, 2012, 31(2): 109−114. doi: 10.3969/j.issn.1008-8873.2012.02.003 [26] 孔垂华, 徐涛, 胡飞, 等. 环境胁迫下植物的化感作用及其诱导机制[J]. 生态学报, 2000, 20(5): 849−854. doi: 10.3321/j.issn:1000-0933.2000.05.022Kong Chuihua, Xu Tao, Hu Fei, et al. Allelopathy under environmental stress and its induced mechanism[J]. Acta Ecologica Sinica, 2000, 20(5): 849−854. doi: 10.3321/j.issn:1000-0933.2000.05.022 [27] 刘贤青, 罗杰. 植物代谢组学技术研究进展[J]. 科技导报, 2015, 33(16): 33−38.Liu xianqing, Luo Jie. Advances of technologies and research in plant metabolomics[J]. Science & Technology Review, 2015, 33(16): 33−38. [28] 江贵波, 曾任森. 化感物质及其收集方法综述[J]. 河南农业科学, 2006(6): 24−27. doi: 10.3969/j.issn.1004-3268.2006.06.006Jiang Guibo, Zeng Rensen. Summary on allelochemicals and their collection methods[J]. Journal of Henan Agricultural Sciences, 2006(6): 24−27. doi: 10.3969/j.issn.1004-3268.2006.06.006 [29] 高云霓, 刘碧云, 王静, 等. 苦草(Vallisneria spiralis)释放的酚酸类物质对铜绿微囊藻(Microcystis aeruginosa)的化感作用[J]. 湖泊科学, 2011, 23(5): 761−766. doi: 10.18307/2011.0514Gao Yunni, Liu Biyun, Wang Jing, et al. Allelopathic effects of phenolic compounds released by Vallisneria spiralis on Microcystis aeruginosa[J]. Journal of Lake Sciences, 2011, 23(5): 761−766. doi: 10.18307/2011.0514 [30] 陈小华, 汪群杰. 固相萃取技术与应用[M]. 北京: 科学出版社, 2010.Chen Xiaohua, Wang Qunjie. Solid-phase Extraction Technology and Applications[M]. Beijing: Science Press, 2010. (查阅网上资料, 未找到本条文献英文翻译信息, 请确认) [31] Fonseca R R D, Ortiz-Ramírez F A, Cavalcanti D N, et al. Allelopathic potential of extracts the from marine macroalga Plocamium brasiliense and their effects on pasture weed[J]. Revista Brasileira de Farmacognosia, 2012, 22(4): 850−853. doi: 10.1590/S0102-695X2012005000065 [32] Calabrese E J, Baldwin L A. Defining hormesis[J]. Human & Experimental Toxicology, 2002, 21(2): 91−97. [33] Calabrese E J. Hormesis within a mechanistic context[J]. Homeopathy, 2015, 104(2): 90−96. doi: 10.1016/j.homp.2015.01.002 [34] Xu Caicai, Ge Zhiwei, Li Chao, et al. Inhibition of harmful algae Phaeocystis globosa and Prorocentrum donghaiense by extracts of coastal invasive plant Spartina alterniflora[J]. Science of The Total Environment, 2019, 696: 133930. doi: 10.1016/j.scitotenv.2019.133930 [35] 周宝利, 李娜, 刘双双, 等. 2, 4-二叔丁基苯酚对番茄叶霉病及幼苗生长的影响[J]. 生态学杂志, 2013, 32(5): 1203−1207.Zhou Baoli, Li Na, Liu Shuangshuang, et al. Effects of 2, 4-di-tert-butylphenol on tomato leaf mould and seedling growth[J]. Chinese Journal of Ecology, 2013, 32(5): 1203−1207. [36] 王宇轩, 唐宗寿, 曹梦琳, 等. 八宝景天花对三种杂草的化感作用及潜在化感物质鉴定[J]. 草业学报, 2020, 29(1): 175−182. doi: 10.11686/cyxb2019308Wang Yuxuan, Tang Zongshou, Cao Menglin, et al. Allelopathic effects of Hylotelephium erythrostictum flowers on three weed species and identification of potential allelochemicals[J]. Acta Prataculturae Sinica, 2020, 29(1): 175−182. doi: 10.11686/cyxb2019308 [37] 罗万芬, 曾仁权. 3种长链脂肪酸对水华鱼腥藻的生长影响[J]. 河南师范大学学报(自然科学版), 2011, 39(3): 119−121.Luo Wanfen, Zeng Renquan. Effects of three long chain fatty acids on the growth of Anabaena Flos-aquae[J]. Journal of Henan Normal University (Natural Science Edition), 2011, 39(3): 119−121. [38] 吴湘, 吴昊, 钟斌, 等. 大漂提取物抑制铜绿微囊藻的试验研究[J]. 水生生物学报, 2016, 40(3): 547−551. doi: 10.7541/2016.73Wu Xiang, Wu Hao, Zhong bin, et al. Experimental study on the inhibition effect of extracts from Pistia stratiotes Linn. on the growth of Microcystis aeruginosa[J]. Acta Hydrobiologica Sinica, 2016, 40(3): 547−551. doi: 10.7541/2016.73 [39] 孙颖颖, 浦寅芳, 阎斌伦, 等. 菹草石油醚组分中抑藻活性物质的分离纯化和抑藻活性[J]. 水产学报, 2016, 40(11): 1782−1789.Sun Yingying, Pu Yinfang, Yan Binlun, et al. Isolation and purification of antialgal activity substances from petroleum ether extracts of the submerged macrophytes Potamogeton crispus and the antialgal activities analysis[J]. Journal of Fisheries of China, 2016, 40(11): 1782−1789. [40] Wang Renjun, Wang You, Tang Xuexi. Identification of the toxic compounds produced by Sargassum thunbergii to red tide microalgae[J]. Chinese Journal of Oceanology and Limnology, 2012, 30(5): 778−785. doi: 10.1007/s00343-012-1294-5 [41] Oh M Y, Lee S B, Jin D H, et al. Isolation of algicidal compounds from the red alga Corallina pilulifera against red tide microalgae[J]. Journal of Applied Phycology, 2010, 22(4): 453−458. doi: 10.1007/s10811-009-9478-x [42] Wu J T, Chiang Y R, Huang Wenya, et al. Cytotoxic effects of free fatty acids on phytoplankton algae and cyanobacteria[J]. Aquatic Toxicology, 2006, 80(4): 338−345. doi: 10.1016/j.aquatox.2006.09.011 -