留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2023年7月长江特枯水情下长江口营养盐的分布特点

力清影 姚爱林 蒋昕桐 明玥 王梦宇 朱礼鑫 王宪业 高磊

力清影,姚爱林,蒋昕桐,等. 2023年7月长江特枯水情下长江口营养盐的分布特点[J]. 海洋学报,2025,47(3):1–15 doi: 10.12284/hyxb2025036
引用本文: 力清影,姚爱林,蒋昕桐,等. 2023年7月长江特枯水情下长江口营养盐的分布特点[J]. 海洋学报,2025,47(3):1–15 doi: 10.12284/hyxb2025036
Li Qingying,Yao Ailin,Jiang Xintong, et al. Distribution characteristics of nutrients in the Changjiang River Estuary under the watershed extreme drought in July 2023[J]. Haiyang Xuebao,2025, 47(3):1–15 doi: 10.12284/hyxb2025036
Citation: Li Qingying,Yao Ailin,Jiang Xintong, et al. Distribution characteristics of nutrients in the Changjiang River Estuary under the watershed extreme drought in July 2023[J]. Haiyang Xuebao,2025, 47(3):1–15 doi: 10.12284/hyxb2025036

2023年7月长江特枯水情下长江口营养盐的分布特点

doi: 10.12284/hyxb2025036
基金项目: 上海市教育委员会科研创新计划重大项目(2021-01-07-00-08-E00102);国家自然科学基金(42276217,U2243207,42249903);基金委共享航次(NORC2023-03)。
详细信息
    作者简介:

    力清影(2002—),女,安徽省马鞍山市人,硕士研究生,主要从事生物地球化学方面研究。 E-mail:51253904057@stu.ecnu.edu.cn

    通讯作者:

    高磊(1980—),男,研究员,博士,主要从事化学海洋学和海洋生物化学方面研究. E-mail: lgao@sklec.ecnu.edu.cn

Distribution characteristics of nutrients in the Changjiang River Estuary under the watershed extreme drought in July 2023

  • 摘要: 长江入海径流量极大地控制着长江冲淡水在长江口的扩散范围,以及河口生源要素的生物地球化学行为。2023年7月,长江流域发生了历史罕见的洪季干旱事件。为了研究洪季长江特枯水情下长江口营养盐的分布特点,于当月在长江口海域进行了32个典型站位的样品采集,并将其结果与2016年和2020年洪季长江洪水到达长江口前后的采样结果进行对比。在2023年7月流域干旱条件下,河口盐淡水混合区域收缩,${{\rm {NO}}_3^-} $-N和${{\rm {SiO}}_3^{2-}} $-Si产生不保守过程的时间和空间均受限,导致这两种营养盐与2016年和2020年洪季相比更加保守。同时,由于在长江特枯水情下河口表层低、中盐度(< 25)的海水被局限在水深较浅的区域,使得底部通过沉积物再悬浮释放的${{\rm {PO}}_4^{3-}} $-P较易被输送至海水表层,从而促进了表层${{\rm {PO}}_4^{3-}} $-P浓度的升高以及“源”效应的产生。而随着盐度的继续升高,表层浮游植物吸收施加的“汇”效应的影响逐步显现;并且随着深度增加,沉积物再悬浮释放的${{\rm {PO}}_4^{3-}} $也越来越难以贯穿至海水表层,两者共同作用导致${{\rm {PO}}_4^{3-}} $-P浓度在高盐度(>25)海水表层迅速下降。由此,2023年7月表层${{\rm {PO}}_4^{3-}} $-P浓度随盐度的变化表现出了特殊的“上凸”趋势。在目前长江径流量年际间较大变幅的情景下,本研究丰富和深化了对长江口生源要素生物地球化学过程的认识,也有助于进一步回答长江口等磷限制型河口中赤潮的触发机理等关键科学问题。
  • 图  1  2000年以来长江下游大通站月平均径流量的变化(a),以及2015年以来7–8月间大通站日平均径流量的变化(b)(数据下载于长江水文网:http://www.cjh.com.cn/

    Fig.  1  Variation in monthly average discharge at the Datong station in the lower Changjiang River since 2000 (a), and variations in daily average discharge at the Datong station from July to August since 2015 (b) (the data were downloaded from http://www.cjh.com.cn/)

    图  2  2023年7月长江口航次的采样站位,以及(a)表层和(b)底层盐度和SPM的质量浓度的分布

    Fig.  2  The sampling stations, as well as the distributions of salinity and SPM mass concentration at the (a) surface and (b) bottom layers, during the Changjiang River Estuary cruise in July 2023

    图  3  2023年7月长江口航次营养盐浓度在表层的分布

    Fig.  3  Distributions of nutrients concentration at the surface layer, during the Changjiang River Estuary cruise in July 2023

    图  4  2023年7月长江口航次营养盐浓度在底层的分布

    Fig.  4  Distributions of nutrients concentration at the bottom layer, during the Changjiang River Estuary cruise in July 2023

    图  5  2023年7月长江口航次表层和底层营养盐浓度与盐度之间的相关关系和线性回归直线

    Fig.  5  The correlations and linear regression lines between nutrients and salinity, at the surface and the bottom layers during the Changjiang River Estuary cruise in July 2023

    图  6  2023年7月流域干旱条件下长江口航次表层4条盐度等值线位置与2016年和2020年洪水到达长江口前后4个航次相应等值线位置的比较(其中盐度分别为:a. 10、b. 15、c. 20、d. 25)

    Fig.  6  Comparison of the positions of the four salinity contour lines at the surface of the Changjiang River Estuary (including salinity: a. 10, b. 15, c. 20, and d. 25), among the five cruises including the one during the watershed drought in July 2023 and the four before and after the arrivals of the watershed floods in 2016 and 2020

    图  7  2023年7月流域干旱条件下长江口航次表层(e)和底层(f)在各个盐度区间的SPM平均质量浓度与2016年和2020年洪季洪水到达长江口前后4个航次结果的对比(其中分图a、b、c、d分别为2016年和2020年4个航次所使用数据的采样站位)

    Fig.  7  Comparison of the average SPM mass concentrations at different salinity ranges in the surface (e) and the bottom layers (f), among the five cruises including the one during the watershed drought in July 2023 and the four cruises before and after the arrivals of the watershed floods in the summers of 2016 and 2020 (The panels a, b, c, and d show the sampling stations for the data used during the four cruises in 2016 and 2020, respectively)

    图  8  2016年和2020年洪季长江口4个航次表层(红色表示)和底层(蓝色表示)营养盐浓度与盐度之间的相关关系和线性回归直线

    Fig.  8  The correlations and linear regression lines between nutrients and salinity, at the surface (red color) and the bottom (blue color) layers during the four cruises in the summers of 2016 and 2020

    图  9  2023年7月流域干旱条件下(a),以及2016年7月(b)和2020年8月(c)洪水到达长江口后等3个长江口航次表层${{\rm {PO}}_4^{3-}} $-P浓度随盐度的上凸变化使用二次多项式函数拟合后的结果

    Fig.  9  The fitting results of the concave ${{\rm {PO}}_4^{3-}} $-P trend with salinity using a quadratic polynomial function, in the surface layer during the three Changjiang River Estuary cruises (including the one during the watershed drought in July 2023 and the two after the arrivals of the watershed floods in 2016 and 2020)

    图  10  2016年、2020年、2023年洪季长江口5个航次典型断面(这5个断面的位置分别见图7a–d以及图2a中紫色线段)盐度(等值线表示)和${{\rm {PO}}_4^{3-}} $-P浓度的变化

    Fig.  10  Variations in salinity (isoline representation) and ${{\rm {PO}}_4^{3-}} $-P concentration along the typical transects of the Changjiang River Estuary during the five cruises in the summers of 2016, 2020, and 2023 (the positions of the five transects are shown by the purple lines in Figs 7a–d and 2a)

    表  1  2023年7月长江口航次营养盐浓度与盐度之间线性回归直线的斜率在表层和底层间的比较

    Tab.  1  Comparison of the slopes of the regression lines between the surface and the bottom layers, during the Changjiang River Estuary cruise in July 2023

    营养盐 层次 斜率/(μmol·L−1/Salinity) 斜率差值 差异显著性
    $ {{\rm {NO}}_3^-} $-N表层3.75 ± 0.110.42p < 0.001
    底层3.33 ± 0.17
    $ {{\rm {SiO}}_3^{2-}} $-Si表层3.54 ± 0.090.32p < 0.05
    底层3.22 ± 0.14
    $ {{\rm {PO}}_4^{3-}} $-P表层0.045 ± 0.0040.026p < 0.001
    底层0.019 ± 0.003
    $ {{\rm {NH}}_4^+} $-N表层0.36 ± 0.100.18p > 0.05
    底层0.18 ± 0.04
    下载: 导出CSV
  • [1] Cai Wenju, Borlace S, Lengaigne M, et al. Increasing frequency of extreme El Niño events due to greenhouse warming[J]. Nature Climate Change, 2014, 4(2): 111−116. doi: 10.1038/nclimate2100
    [2] Cai Wenju, Wang Guojian, Dewitte B, et al. Increased variability of eastern Pacific El Niño under greenhouse warming[J]. Nature, 2018, 564(7735): 201−206. doi: 10.1038/s41586-018-0776-9
    [3] Lopez H, Lee S K, Kim D, et al. Projections of faster onset and slower decay of El Niño in the 21st century[J]. Nature Communications, 2022, 13(1): 1915. doi: 10.1038/s41467-022-29519-7
    [4] Wetz M S, Yoskowitz D W. An ‘extreme’ future for estuaries? Effects of extreme climatic events on estuarine water quality and ecology[J]. Marine Pollution Bulletin, 2013, 69(1/2): 7−18.
    [5] Dottori F, Szewczyk W, Ciscar J C, et al. Increased human and economic losses from river flooding with anthropogenic warming[J]. Nature Climate Change, 2018, 8(9): 781−786. doi: 10.1038/s41558-018-0257-z
    [6] Yang S L, Milliman J D, Li P, et al. 50, 000 dams later: erosion of the Yangtze River and its delta[J]. Global and Planetary Change, 2011, 75(1/2): 14−20.
    [7] Dai Zhijun, Du Jinzhou, Li Jiufa, et al. Runoff characteristics of the Changjiang River during 2006: effect of extreme drought and the impounding of the Three Gorges Dam[J]. Geophysical Research Letters, 2008, 35(7): L07406.
    [8] Jiang Tong, Su Buda, Hartmann H. Temporal and spatial trends of precipitation and river flow in the Yangtze River Basin, 1961–2000[J]. Geomorphology, 2007, 85(3/4): 143−154.
    [9] Zhang Wenjun, Jin Feifei, Stuecker M F, et al. Unraveling El Niño’s impact on the East Asian monsoon and Yangtze River summer flooding[J]. Geophysical Research Letters, 2016, 43(21): 11375−11382.
    [10] Ma Feng, Ye Aizhong, You Jinjun, et al. 2015-16 floods and droughts in China, and its response to the strong El Niño[J]. Science of the Total Environment, 2018, 627: 1473−1484. doi: 10.1016/j.scitotenv.2018.01.280
    [11] 郑守仁. 从2016年长江洪水看三峡工程防洪作用[J]. 长江技术经济, 2017, 1(1): 38−42.

    Zheng Shouren. The flood control effect of the Three Gorges Project from the perspective of the Yangtze River flood in 2016[J]. Technology and Economy of Changjiang, 2017, 1(1): 38−42. (查阅网上资料, 未找到对应的英文翻译, 请确认)
    [12] 陈敏. 2020年长江暴雨洪水特点与启示[J]. 人民长江, 2020, 51(12): 76−81.

    Chen Min. Characteristics and enlightenment of rainstorm and flood in Yangtze River in 2020[J]. Yangtze River, 2020, 51(12): 76−81.
    [13] 夏军, 陈进. 从防御2020年长江洪水看新时代防洪战略[J]. 中国科学: 地球科学, 2021, 51(1): 27−34.

    Xia Jun, Chen Jin. A new era of flood control strategies from the perspective of managing the 2020 Yangtze River flood[J]. Science China Earth Sciences, 2021, 64(1): 1−9.
    [14] 屈艳萍, 吕娟, 苏志诚, 等. 2022年长江流域夏秋旱特点分析与思考[J]. 中国防汛抗旱, 2023, 33(3): 30−33,66.

    Qu Yanping, Lyu Juan, Su Zhicheng, et al. Analysis and thinking on Summer-Autumn drought in the Yangtze River Basin in 2022[J]. China Flood & Drought Management, 2023, 33(3): 30−33,66.
    [15] 张明波, 熊丰, 王栋. 2022年长江流域汛期枯水情势分析[J]. 人民长江, 2023, 54(4): 1−6,22.

    Zhang Mingbo, Xiong Feng, Wang Dong. Analysis on low water regime during flood season in Yangtze River Basin in 2022[J]. Yangtze River, 2023, 54(4): 1−6,22.
    [16] 许继军, 周涛. 长江流域2022“汛期反枯”现象警示与对策[J]. 中国水利, 2023(11): 12−14,19. doi: 10.3969/j.issn.1000-1123.2023.11.004

    Xu Jijun, Zhou Tao. Warning and strategies for the “flood season drought” phenomenon in the Yangtze River Basin in 2022[J]. China Water Resources, 2023(11): 12−14,19. doi: 10.3969/j.issn.1000-1123.2023.11.004
    [17] 段欣妤, 张强, 张良, 等. 2022年长江流域重大干旱发展过程中西太平洋副热带高压的多维度异常特征[J]. 科学通报, 2024, 69(15): 2081−2092.

    Duan Xinyu, Zhang Qiang, Zhang Liang, et al. The multi-dimensional anomaly characteristics of the western Pacific subtropical high during the development of the 2022 major drought in the Yangtze River Basin[J]. Chinese Science Bulletin, 2024, 69(15): 2081−2092.
    [18] 中国气象局. 2023年中国气候公报[M]. 北京: 中国气象局, 2023.

    China Meteorological Administration. 2023 China Climate Bulletin[M]. Beijing: China Meteorological Administration, 2023.
    [19] 竺夏英, 孙林海, 钟海玲, 等. 2023年中国气候异常特征及主要天气气候事件[J]. 气象, 2024, 50(2): 246−256. doi: 10.7519/j.issn.1000-0526.2024.010501

    Zhu Xiaying, Sun Linhai, Zhong Hailing, et al. Characteristics of climate anomalies and major meteorological events over China in 2023[J]. Meteorological Monthly, 2024, 50(2): 246−256. doi: 10.7519/j.issn.1000-0526.2024.010501
    [20] 中华人民共和国水利部. 中国水旱灾害防御公报2023[M]. 北京: 中国水利水电出版社, 2024.

    Ministry of Water Resources of the People’s Republic of China. China Flood and Drought Disaster Prevention Bulletin 2023[M]. Beijing: China Water & Power Press, 2024. (查阅网上资料, 未找到对应的英文翻译, 请确认)
    [21] Ge Jianzhong, Zhang Jingsi, Chen Changsheng, et al. Impacts of fluvial flood on physical and biogeochemical environments in estuary–shelf continuum in the East China Sea[J]. Journal of Hydrology, 2021, 598: 126441. doi: 10.1016/j.jhydrol.2021.126441
    [22] Yao Ailin, Gao Lei, Ming Yue. Influences of catastrophic floods on the biogeochemistry of organic matter and nutrients in the Changjiang River estuary[J]. Journal of Marine Systems, 2024, 241: 103922. doi: 10.1016/j.jmarsys.2023.103922
    [23] Sun Qianwen, Li Dewang, Wang Bin, et al. Massive nutrients offshore transport off the Changjiang Estuary in flooding summer of 2020[J]. Frontiers in Marine Science, 2023, 10: 1076336. doi: 10.3389/fmars.2023.1076336
    [24] Yu Hao, Wu Ying, Zhang Jing, et al. Impact of extreme drought and the Three Gorges Dam on transport of particulate terrestrial organic carbon in the Changjiang (Yangtze) River[J]. Journal of Geophysical Research: Earth Surface, 2011, 116(F4): F04029.
    [25] Lei Shiping, Bu Dezhi, Guo Xianghui, et al. Mitigation of hypoxia and ocean acidification on the inner East China Sea shelf impacted by the 2023 summer drought[J]. Marine Pollution Bulletin, 2024, 207: 116830. doi: 10.1016/j.marpolbul.2024.116830
    [26] 中华人民共和国水利部. 中国河流泥沙公报2023[M]. 北京: 中国水利水电出版社, 2024: 1−22.

    Ministry of Water Resources of the People’s Republic of China. Bulletin of Chinese River Sediment2023[M]. Beijing: China Water & Power Press, 2024: 1−22. (查阅网上资料, 未找到对应的英文翻译, 请确认)
    [27] Gao Lei, Li Daoji, Zhang Yanwei. Nutrients and particulate organic matter discharged by the Changjiang (Yangtze River): seasonal variations and temporal trends[J]. Journal of Geophysical Research: Biogeosciences, 2012, 117(G4): G04001.
    [28] Wang Yao, Gao Lei, Ming Yue, et al. Recent declines in nutrient concentrations and fluxes in the lower Changjiang River[J]. Estuaries and Coasts, 2023, 46(6): 1475−1493. doi: 10.1007/s12237-023-01216-8
    [29] Gao Lei, Zong Haibo. Using water age to study the biogeochemistry of nutrients in a large-river estuary and the adjacent shelf area[J]. Journal of Marine Systems, 2021, 214: 103469. doi: 10.1016/j.jmarsys.2020.103469
    [30] Gao Lei, Li Daoji, Ishizaka J, et al. Nutrient dynamics across the river-sea interface in the Changjiang (Yangtze River) estuary—East China Sea region[J]. Limnology and Oceanography, 2015, 60(6): 2207−2221. doi: 10.1002/lno.10196
    [31] Wang Mengyu, Gao Lei. New insights into the non-conservative behaviors of nutrients triggering phytoplankton blooms in the Changjiang (Yangtze) River Estuary[J]. Journal of Geophysical Research: Oceans, 2022, 127(2): e2021JC017688. doi: 10.1029/2021JC017688
    [32] Shen Zhiliang, Zhou Shuqing, Pei Shaofeng. Transfer and transport of phosphorus and silica in the turbidity maximum zone of the Changjiang estuary[J]. Estuarine, Coastal and Shelf Science, 2008, 78(3): 481−492. doi: 10.1016/j.ecss.2008.01.010
    [33] Meng J, Yao Peng, Yu Zhigang, et al. Speciation, bioavailability and preservation of phosphorus in surface sediments of the Changjiang Estuary and adjacent East China Sea inner shelf[J]. Estuarine, Coastal and Shelf Science, 2014, 144: 27−38. doi: 10.1016/j.ecss.2014.04.015
    [34] Yao Qingzhen, Yu Zhigang, Li Lingling, et al. Transformation and source of nutrients in the Changjiang Estuary[J]. Science China Chemistry, 2014, 57(5): 779−790. doi: 10.1007/s11426-013-5040-4
    [35] Liu Jun, Krom M D, Ran Xiangbin, et al. Sedimentary phosphorus cycling and budget in the seasonally hypoxic coastal area of Changjiang Estuary[J]. Science of the Total Environment, 2020, 713: 136389. doi: 10.1016/j.scitotenv.2019.136389
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  76
  • HTML全文浏览量:  31
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-26
  • 修回日期:  2025-01-02
  • 网络出版日期:  2025-01-25

目录

    /

    返回文章
    返回