留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多尺度分析的四叉树星载激光雷达去噪方法

张百川 董志鹏 刘焱雄 阳凡林 陈义兰 李杰

张百川,董志鹏,刘焱雄,等. 基于多尺度分析的四叉树星载激光雷达去噪方法[J]. 海洋学报,2025,47(4):1–14 doi: 10.12284/hyxb2025033
引用本文: 张百川,董志鹏,刘焱雄,等. 基于多尺度分析的四叉树星载激光雷达去噪方法[J]. 海洋学报,2025,47(4):1–14 doi: 10.12284/hyxb2025033
Zhang Baichuan,Dong Zhipeng,Liu Yanxiong, et al. Multiscale Quadtree for denoising spaceborne photon-counting LiDAR[J]. Haiyang Xuebao,2025, 47(4):1–14 doi: 10.12284/hyxb2025033
Citation: Zhang Baichuan,Dong Zhipeng,Liu Yanxiong, et al. Multiscale Quadtree for denoising spaceborne photon-counting LiDAR[J]. Haiyang Xuebao,2025, 47(4):1–14 doi: 10.12284/hyxb2025033

基于多尺度分析的四叉树星载激光雷达去噪方法

doi: 10.12284/hyxb2025033
基金项目: 国家自然科学基金(42404056);山东省海洋生态环境与防灾减灾重点实验室开放基金(202304);山东省自然科学基金(ZR2023QD113);青岛市自然科学基金(23-2-1-73-zyyd-jch);海洋测绘重点实验室开放基金(2024B01)。
详细信息
    作者简介:

    张百川(1998—),男,博士生,研究方向为海洋测绘。E-mail:

    通讯作者:

    董志鹏,副研究员,研究方向为海洋测绘。E-mail:zhipengdong@foxmail.com

  • 中图分类号: P237

Multiscale Quadtree for denoising spaceborne photon-counting LiDAR

  • 摘要: 第二代星载激光雷达冰、云和陆地测高卫星(Ice, Cloud, and Land Elevation Satellite-2, ICESat-2)在获取浅海岛礁水深信息方面具有极大潜力。然而受大气散射、太阳辐射和仪器噪声等因素影响,造成获取的ICESat-2星载激光光子中存在大量噪声。针对上述问题,本文提出一种基于多尺度分析的四叉树星载激光雷达去噪方法。首先,使用高斯核函数和K折交叉验证的方法绘制光子核密度曲线(Kernel Density Estimation, KDE),并设置阈值来分离海面光子和海底光子;其次,利用自适应参数的DBSCAN(Density-Based Spatial Clustering of Applications with Noise)算法去除海底异常光子,获得粗略去噪结果。最后,对海底光子划分窗口,从不同尺度使用预判断四叉树算法提取出精确的海底信号光子。研究选取典型岛礁的ICESat-2卫星数据,通过与实测水深数据对比,决定系数(R2)分别达到95%和98%,均方根误差(RMSE)分别达到1.01 m和0.77 m。结果表明,该方法能够准确提取水下地形信息,为浅海水下地形反演奠定基础。
  • 图  1  研究算法流程图

    Fig.  1  Flowchart of the research algorithm.

    图  2  海面光子提取过程

    Fig.  2  Process of sea surface photons extraction

    图  3  最优Eps值示意图

    Fig.  3  Schematic diagram of the optimal Eps value

    图  4  窗口分割示意图

    Fig.  4  Window segmentation diagram

    图  5  四叉树算法树状图

    Fig.  5  Quadtree structure diagram

    图  6  研究区域

    Fig.  6  Study area

    图  7  不同光子密度的去噪结果(蓝色点代表海面光子,红色点代表海底光子,灰色点代表噪声光子)

    Fig.  7  Denoising results of different photon densities blue points represent sea surface photons, red points represent seafloor photons, and gray points represent noise photons

    图  8  不同海底地形的去噪结果(蓝色点代表海面光子,红色点代表海底光子,灰色点代表噪声光子)

    Fig.  8  Denoising results of different seafloor terrains blue points represent sea surface photons, red points represent seafloor photons, and gray points represent noise photons

    图  9  东岛水深相关性分析

    Fig.  9  Depth correlation analysis of Dong Island

    图  10  瓦胡岛水深相关性分析

    Fig.  10  Depth correlation analysis of Oahu Island

    图  11  不同水深下的总体准确率

    Fig.  11  OA at different water depths

    图  13  不同水深下的FPR值

    Fig.  13  FPR at different water depths

    图  12  不同水深下的F1值

    Fig.  12  F1 scores at different water depths

    表  1  实验区域

    Tab.  1  Experimental area

    序号 研究区域 采集时间 航迹 波束 范围
    (a) 东岛 2023-08-07 19:59:02 0743 GT3L 16°39′54″~16°41′07″N
    (b) 华光礁 2022-07-15 14:36:12 0362 GT1R 16°13′33″~16°14′37″N
    (c) 蜈支洲岛 2022-06-28 03:40:53 0095 GT3R 18°18′52″~18°19′01″N
    (d) 别克斯岛 2020-07-17 13:08:31 0339 GT1L 18°07′26″~18°07′48″N
    (e) 瓦胡岛 2022-09-02 06:13:30 1105 GT3R 21°17′08″~21°18′04″N
    (f) 埃林吉纳埃环礁 2022-09-08 08:22:27 1198 GT2R 11°07′12″~11°08′06″N
    下载: 导出CSV

    表  2  精度评价结果(东岛、蜈支洲岛和别克斯岛)

    Tab.  2  Accuracy verification results (Dong Island, Wuzhizhou Island, and Vieques Island)

    实验区域 指标 实验方法
    ATL03 DBSCAN Quadtree 本文方法
    东岛 OA/% 94.7 94.5 94.1 97.8
    F1/% 97.2 97.1 96.9 98.9
    FPR/% 48.3 48.3 34.7 23.1
    蜈支洲岛 OA/% 94.1 96.0 93.7 98.5
    F1/% 85.3 91.9 86.9 96.9
    FPR/% 0.2 4.8 5.7 1.8
    别克斯岛 OA/% 83.6 93.4 93.1 95.3
    F1/% 80.0 92.9 92.5 95.4
    FPR/% 0.0 1.7 0.6 8.3
    下载: 导出CSV

    表  3  精度评价结果(华光礁、瓦胡岛和埃林吉纳埃环礁)

    Tab.  3  Accuracy verification results (Huaguang Reef, Oahu Island, and Ailinginae Atoll)

    实验区域 指标 实验方法
    ATL03 DBSCAN Quadtree 本文方法
    华光礁 OA/% 95.1 95.8 96.3 99.3
    F1/% 97.4 97.8 98.0 99.6
    FPR/% 73.9 45.8 17.5 2.6
    瓦胡岛 OA/% 96.2 94.5 96.8 97.7
    F1/% 98.0 97.1 98.3 98.8
    FPR/% 79.8 41.9 25.8 15.7
    埃林吉纳埃环礁 OA/% 97.9 98.4 98.5 98.7
    F1/% 98.9 99.2 99.3 99.4
    FPR/% 55.3 28.2 13.6 1.0
    下载: 导出CSV

    表  4  不同算法的去噪精度比较

    Tab.  4  Comparison of denoising accuracy of different algorithms

    研究区域 方法 指标
    R²/% RMSE/m MAE/m MRE/% 点数量
    东岛 DBSCAN算法 89.0 1.03 0.77 7.53 627
    Quadtree算法 75.0 1.35 0.80 7.88 618
    本文方法 95.0 1.01 0.77 7.26 696
    瓦胡岛 DBSCAN算法 97.0 0.99 0.76 15.64 477
    Quadtree算法 96.0 1.28 0.85 16.87 486
    本文方法 98.0 0.91 0.69 10.72 596
    下载: 导出CSV
  • [1] 杨元喜, 徐天河, 薛树强. 我国海洋大地测量基准与海洋导航技术研究进展与展望[J]. 测绘学报, 2017, 46(1): 1−8. doi: 10.11947/j.AGCS.2017.20160519

    Yang Yuanxi, Xu Tianhe, Xue Shuqiang. Progresses and prospects in developing marine geodetic datum and marine navigation of China[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(1): 1−8. doi: 10.11947/j.AGCS.2017.20160519
    [2] 马毅, 张杰, 张靖宇, 等. 浅海水深光学遥感研究进展[J]. 海洋科学进展, 2018, 36(3): 331−351. doi: 10.3969/j.issn.1671-6647.2018.03.001

    Ma Yi, Zhang Jie, Zhang Jingyu, et al. Progress in shallow water depth mapping from optical remote sensing[J]. Advances in Marine Science, 2018, 36(3): 331−351. doi: 10.3969/j.issn.1671-6647.2018.03.001
    [3] Hodúl M, Bird S, Knudby A, et al. Satellite derived photogrammetric bathymetry[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 142: 268−277. doi: 10.1016/j.isprsjprs.2018.06.015
    [4] Albright A, Glennie C. Nearshore bathymetry from fusion of Sentinel-2 and ICESat-2 observations[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(5): 900−904. doi: 10.1109/LGRS.2020.2987778
    [5] Caballero I, Stumpf R P. Retrieval of nearshore bathymetry from Sentinel-2A and 2B satellites in South Florida coastal waters[J]. Estuarine, Coastal and Shelf Science, 2019, 226: 106277. doi: 10.1016/j.ecss.2019.106277
    [6] Ranndal H, Sigaard Christiansen P, Kliving P, et al. Evaluation of a statistical approach for extracting shallow water bathymetry signals from ICESat-2 ATL03 photon data[J]. Remote Sensing, 2021, 13(17): 3548. doi: 10.3390/rs13173548
    [7] Parrish C E, Magruder L A, Neuenschwander A L, et al. Validation of ICESat-2 ATLAS bathymetry and analysis of ATLAS’s bathymetric mapping performance[J]. Remote sensing, 2019, 11(14): 1634. doi: 10.3390/rs11141634
    [8] 朱笑笑, 王成, 习晓环, 等. ICESat-2星载光子计数激光雷达数据处理与应用研究进展[J]. 红外与激光工程, 2020, 49(11): 20200259. doi: 10.3788/IRLA20200259

    Zhu Xiaoxiao, Wang Cheng, Xi Xiaohuan, et al. Research progress of ICESat-2/ATLAS data processing and applications[J]. Infrared and Laser Engineering, 2020, 49(11): 20200259. doi: 10.3788/IRLA20200259
    [9] 方勇, 曹彬才, 高力, 等. 激光雷达测绘卫星发展及应用[J]. 红外与激光工程, 2020, 49(11): 20201044. doi: 10.3788/IRLA20201044

    Fang Yong, Cao Bincai, Gao Li, et al. Development and application of lidar mapping satellite[J]. Infrared and Laser Engineering, 2020, 49(11): 20201044. doi: 10.3788/IRLA20201044
    [10] 焦慧慧, 谢俊峰, 刘仁, 等. 星载对地观测光子计数激光雷达去噪方法浅析[J]. 航天返回与遥感, 2021, 42(5): 140−150. doi: 10.3969/j.issn.1009-8518.2021.05.015

    Jiao Huihui, Xie Junfeng, Liu Ren, et al. Discussion on denoising method of photon counting LiDAR for satellite ground observation[J]. Spacecraft Recovery & Remote Sensing, 2021, 42(5): 140−150. doi: 10.3969/j.issn.1009-8518.2021.05.015
    [11] . Magruder L A, Wharton M E, Stout K D, et al. Noise filtering techniques for photon-counting ladar data[C]//Proceedings of SPIE the International Society for Optical Engineering. Baltimore: SPIE, 2012: 237−245.
    [12] Herzfeld U C, McDonald B W, Wallin B F, et al. Algorithm for detection of ground and canopy cover in micropulse photon-counting lidar altimeter data in preparation for the ICESat-2 mission[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(4): 2109−2125.
    [13] Xie Huan, Xu Qi, Ye Dan, et al. A comparison and review of surface detection methods using MBL, MABEL, and ICESat-2 photon-counting laser altimetry data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 7604−7623.
    [14] Xie Huan, Ye Dan, Xu Qi, et al. A density-based adaptive ground and canopy detecting method for ICESat-2 photon-counting data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4411813.
    [15] . Zhang Jiashu, Kerekes J, Csatho B, et al. A clustering approach for detection of ground in micropulse photon-counting LiDAR altimeter data[C]//Proceedings of 2014 IEEE Geoscience and Remote Sensing Symposium. Quebec City: IEEE, 2014: 177−180.
    [16] 谢锋, 杨贵, 舒嵘, 等. 方向自适应的光子计数激光雷达滤波方法[J]. 红外与毫米波学报, 2017, 36(1): 107−113. doi: 10.11972/j.issn.1001-9014.2017.01.019

    Xie Feng, Yang Gui, Shu Rong, et al. An adaptive directional filter for photon counting Lidar point cloud data[J]. Journal of Infrared and Millimeter Waves, 2017, 36(1): 107−113. doi: 10.11972/j.issn.1001-9014.2017.01.019
    [17] Chen Bowei, Pang Yong, Li Zengyuan, et al. Ground and top of canopy extraction from photon-counting LiDAR data using local outlier factor with ellipse searching area[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(9): 1447−1451. doi: 10.1109/LGRS.2019.2899011
    [18] Ma Yue, Xu Nan, Sun Jinyan, et al. Estimating water levels and volumes of lakes dated back to the 1980s using Landsat imagery and photon-counting lidar datasets[J]. Remote Sensing of Environment, 2019, 232: 111287. doi: 10.1016/j.rse.2019.111287
    [19] Ma Yue, Zhang Wenhao, Sun Jinyan, et al. Photon-counting lidar: an adaptive signal detection method for different land cover types in coastal areas[J]. Remote Sensing, 2019, 11(4): 471. doi: 10.3390/rs11040471
    [20] Zhu Xiaoxiao, Nie Sheng, Wang Cheng, et al. A noise removal algorithm based on OPTICS for photon-counting LiDAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(8): 1471−1475. doi: 10.1109/LGRS.2020.3003191
    [21] Zhang Guoping, Xu Qing, Xing Shuai, et al. A noise-removal algorithm without input parameters based on quadtree isolation for photon-counting LiDAR[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 6501905.
    [22] Huang Guoan, Dong Zhipeng, Liu Yanxiong, et al. An optimized denoising method for ICESat-2 photon-counting data considering heterogeneous density and weak connectivity[J]. Optics Express, 2023, 31(25): 41496−41517. doi: 10.1364/OE.502934
    [23] Song Yue, Ma Yue, Zhou Zhibiao, et al. Signal photon extraction and classification for ICESat-2 photon-counting lidar in coastal areas[J]. Remote Sensing, 2024, 16(7): 1127. doi: 10.3390/rs16071127
    [24] Xie Huan, Xu Qi, Luan Kuifeng, et al. Evaluating ICESat-2 seafloor photons by underwater light-beam propagation and noise modeling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 4203018.
    [25] . Davis R A, Lii K S, Politis D N. Remarks on some nonparametric estimates of a density function[M]//Davis R A, Lii K S, Politis D N. Selected Works of Murray Rosenblatt. New York: Springer, 2011: 95−100.
    [26] Parzen E. On estimation of a probability density function and mode[J]. The Annals of Mathematical Statistics, 1962, 33(3): 1065−1076. doi: 10.1214/aoms/1177704472
    [27] . Ester M, Kriegel H P, Sander J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. Portland: AAAI Press, 1996: 226−231.
    [28] Finkel R A, Bentley J L. Quad trees a data structure for retrieval on composite keys[J]. Acta Informatica, 1974, 4(1): 1−9. doi: 10.1007/BF00288933
    [29] Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62−66. doi: 10.1109/TSMC.1979.4310076
    [30] Zheng Xuebo, Hou Chunping, Huang Meiyan, et al. A density and distance-based method for ICESat-2 photon-counting data denoising[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 6500405.
    [31] Egbert G D, Erofeeva S Y. Efficient inverse modeling of barotropic ocean tides[J]. Journal of Atmospheric and Oceanic technology, 2002, 19(2): 183−204. doi: 10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
    [32] Bargaoui Z K, Chebbi A. Comparison of two kriging interpolation methods applied to spatiotemporal rainfall[J]. Journal of Hydrology, 2009, 365(1/2): 56−73.
    [33] . Parrish C E, Magruder L A, Neuenschwander A L, et al. Validation of ICESat-2 ATLAS bathymetry and analysis of ATLAS’s bathymetric mapping performance[J]. Remote sensing, 2019, 11(14): 1634. (查阅网上资料, 该文献与第7条文献重复, 请确认)
    [34] 孟文君, 李杰, 张凯, 等. 基于改进DBSCAN算法的ICESat-2海面点数据去噪处理及精度评估[J]. 海洋通报, 2021, 40(6): 675−682. doi: 10.11840/j.issn.1001-6392.2021.06.008

    Meng Wenjun, Li Jie, Zhang Kai, et al. De-noising and accuracy evaluation of ICESAT-2 sea surface data based on DBSCAN algorithm[J]. Marine Science Bulletin, 2021, 40(6): 675−682.(第34条文献在正文中引用顺序错误,请确认) doi: 10.11840/j.issn.1001-6392.2021.06.008
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  26
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-21
  • 修回日期:  2025-02-21
  • 网络出版日期:  2025-04-14

目录

    /

    返回文章
    返回