留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强波生流条件下破波带内涡演变特性

付楠楠 任春平

付楠楠,任春平. 强波生流条件下破波带内涡演变特性[J]. 海洋学报,2025,47(2):1–13 doi: 10.12284/hyxb2025017
引用本文: 付楠楠,任春平. 强波生流条件下破波带内涡演变特性[J]. 海洋学报,2025,47(2):1–13 doi: 10.12284/hyxb2025017
Fu Nannan,Ren Chunping. Evolution characteristics of surf zone eddies in a strong alongshore current[J]. Haiyang Xuebao,2025, 47(2):1–13 doi: 10.12284/hyxb2025017
Citation: Fu Nannan,Ren Chunping. Evolution characteristics of surf zone eddies in a strong alongshore current[J]. Haiyang Xuebao,2025, 47(2):1–13 doi: 10.12284/hyxb2025017

强波生流条件下破波带内涡演变特性

doi: 10.12284/hyxb2025017
基金项目: 水利工程安全与仿真国家重点实验室开放基金资助项目(HESS-2006);山西省自然科学基金(202103021224116);山西省回国留学人员科研教研资助项目(2023-67)。
详细信息
    作者简介:

    付楠楠(1999—),女,福建省宁德市人,主要从事海岸水动力学研究。E-mail:funannan0829@163.com

    通讯作者:

    任春平(1978—),博士,副教授,主要从事河口、海岸水动力学研究。E-mail:chunpingren@163.com

  • 中图分类号: P731.2

Evolution characteristics of surf zone eddies in a strong alongshore current

  • 摘要: 破波带涡对物质输运、岸滩演变、生态环境等具有重要影响,但其产生机制及演变特性尚不明晰,特别是强波生流条件下破波带涡的时空演变特性仍需深入研究。本文采用破波带内污染物示踪试验和基于Boussinesq方程的Funwave数值模型,分析了强波生流条件下破波带内涡时空演变。试验结果表明在强波生流条件下破波带向岸和离岸一侧都有大尺度涡团出现,具有瞬时性,涡团从污染团中脱离出来,向岸一侧的涡团尺度受岸线约束,离岸一侧的则逐渐发展演化,有向破波带外输移的趋势。数值模拟结果表明强涡主要集中在破波线附近;破波带内涡场可以分为前剪切区与后剪切区,二者在沿岸方向上具有相似的空间周期和涡分布,涡强度随着波高和周期的增大而增强,且强涡向海侧偏移;不规则波入射条件下,涡强度减弱,并使涡最大值向岸线偏移。
  • 图  1  实验布置图

    Fig.  1  Experimental layout

    图  2  污染团图像采集系统

    Fig.  2  The dye patch imaging system

    图  3  波况3在(4.5 m,8 m)位置处垂直岸线方向(a)和沿岸方向(b)的流速时间历程,蓝线表示滤波后的结果;3条红线分别表示墨水开始释放、释放15 s、释放75 s时对应的时间

    Fig.  3  Time series of cross-shore velocity (a) and alongshore velocity (b) at (4.5 m, 8 m) for case 3, the blue line represents the filtered results; the three red lines correspond to the time of dye release onset, 15 s, and 75 s after release

    图  4  波况3下采集的墨水运动图像,红色实线框和虚线框分别表示沿岸流和涡驱动的墨水

    Fig.  4  Dye patch images collected in case 3. The solid red and dashed boxes indicate the dye patches driven by alongshore currents and vorticity respectively.

    图  5  不同时刻采集的墨水运动图像

    a. 波况7;b. 波况8;c. 波况9

    Fig.  5  Dye patch images at different times

    a. case 7; b. case 8; c. case 9

    图  6  模型布置图

    Fig.  6  Model layout

    图  7  不同网格分辨率下模拟的沿岸流速及波高同实验数据的比较

    Fig.  7  Comparisons of the numerical simulation results for alongshore current profile and wave height with experimental data regarding different grid sizes.

    图  8  波况3下不同参数条件下模拟的沿岸流速及波高同实验数据的比较

    Fig.  8  Comparison of the numerical simulation results for alongshore current profile and significant wave height with experimental data for case 3

    图  9  波况3下的模拟结果

    a. 时均流场,b. 时均有效波高,c. t = 400 s时的瞬时波面

    Fig.  9  Simulated results for Case 3

    a. time-averaged current field; b. time-averaged significant wave height; c. instantaneous surface elevations at t = 400 s

    图  10  波况1下不同时刻的涡场,白色虚线表示破波线

    Fig.  10  Vorticity fields at different time instants for case 1, with the white dashed line indicating the breaking line

    图  11  t = 400 s时各波况下的涡场,其中白色虚线为破波线

    Fig.  11  Vorticity fields at t = 400 s for different cases, with the white dashed line indicating the breaking line

    图  12  各波况下涡最大值及其位置分布,其中蓝色表示规则波况、红色表示不规则波况;圆的大小表示波高的尺度

    Fig.  12  Maximum vorticity and their locations under different cases, with blue indicating regular waves, red indicating irregular waves, and the size of the circle indicates the scale wave height

    图  13  不同波况下3个分区的沿岸涡度波数谱密度

    Fig.  13  Cross-shore average of the alongshore wavenumber spectra of vorticity for different cases

    表  1  实验波浪参数

    Tab.  1  Wave parameters under different experimental conditions

    波况 入射波 坡度 水深D/m 波高H/m 周期T/s
    1 规则波 1∶100 0.18 0.035 1.0
    2 规则波 1∶100 0.18 0.045 1.0
    3 规则波 1∶100 0.18 0.027 1.5
    4 规则波 1∶100 0.18 0.042 1.5
    5 规则波 1∶100 0.18 0.030 2.0
    6 规则波 1∶100 0.18 0.045 2.0
    7 不规则波 1∶100 0.18 0.024 1.0
    8 不规则波 1∶100 0.18 0.039 1.0
    9 不规则波 1∶100 0.18 0.050 1.5
    下载: 导出CSV
  • [1] 邹志利. 海岸动力学[M]. 4版. 北京: 人民交通出版社, 2009.

    Zou Zhili. Coastal Hydrodynamics[M]. 4th ed. Beijing: China Communications Press, 2009.
    [2] Reniers A J H M, Battjes J A, Falqués A, et al. A laboratory study on the shear instability of longshore currents[J]. Journal of Geophysical Research: Oceans, 1997, 102(C4): 8597−8609. doi: 10.1029/96JC03863
    [3] Feddersen F, Clark D B, Guza R T. Modeling surf zone tracer plumes: 1. Waves, mean currents, and low-frequency eddies[J]. Journal of Geophysical Research: Oceans, 2011, 116(C11): C11027.
    [4] Li Shuo, Li Wenxin, Shi Huabin, et al. Hydrodynamics and sediment transport under solitary waves in the swash zone[J]. Journal of Marine Science Engineering, 2024, 12(9): 1686. doi: 10.3390/jmse12091686
    [5] Clark D B, Feddersen F, Guza R T. Cross-shore surfzone tracer dispersion in an alongshore current[J]. Journal of Geophysical Research: Oceans, 2010, 115(C10): C10035.
    [6] Clark D B, Feddersen F, Guza R T. Modeling surf zone tracer plumes: 2. Transport and dispersion[J]. Journal of Geophysical Research: Oceans, 2011, 116(C11): C11028.
    [7] Spydell M S, Feddersen F, Guza R T. Observations of drifter dispersion in the surfzone: the effect of sheared alongshore currents[J]. Journal of Geophysical Research: Oceans, 2009, 114(C7): C07028.
    [8] Suanda S H, Feddersen F. A self-similar scaling for cross-shelf exchange driven by transient rip currents[J]. Geophysical Research Letters, 2015, 42(13): 5427−5434. doi: 10.1002/2015GL063944
    [9] Rilov G, Dudas S E, Menge B A, et al. The surf zone: a semi-permeable barrier to onshore recruitment of invertebrate larvae?[J]. Journal of Experimental Marine Biology and Ecology, 2008, 361(2): 59−74. doi: 10.1016/j.jembe.2008.04.008
    [10] Shanks A L, Morgan S G, MacMahan J, et al. Surf zone physical and morphological regime as determinants of temporal and spatial variation in larval recruitment[J]. Journal of Experimental Marine Biology and Ecology, 2010, 392(1/2): 140−150.
    [11] Feddersen F. The generation of surfzone eddies in a strong alongshore current[J]. Journal of Physical Oceanography, 2014, 44(2): 600−617. doi: 10.1175/JPO-D-13-051.1
    [12] Brown J A, MacMahan J H, Reniers A J H M, et al. Observations of mixing and transport on a steep beach[J]. Continental Shelf Research, 2019, 178: 1−14. doi: 10.1016/j.csr.2019.03.009
    [13] Castelle B, Almar R, Dorel M, et al. Rip currents and circulation on a high-energy low-tide-terraced beach (Grand Popo, Benin, West Africa)[J]. Journal of Coastal Research, 2014, 70: 633−638. doi: 10.2112/SI70-107.1
    [14] Long J W, Özkan-Haller H T. Low-frequency characteristics of wave group–forced vortices[J]. Journal of Geophysical Research: Oceans, 2009, 114(C8): C08004.
    [15] Choi J, Kirby J T, Yoon S B. Boussinesq modeling of longshore currents in the SandyDuck experiment under directional random wave conditions[J]. Coastal Engineering, 2015, 101: 17−34. doi: 10.1016/j.coastaleng.2015.04.005
    [16] Bowen A J, Holman R A. Shear instabilities of the mean longshore current: 1. Theory[J]. Journal of Geophysical Research: Oceans, 1989, 94(C12): 18023−18030. doi: 10.1029/JC094iC12p18023
    [17] Oltman-Shay J, Howd P A, Birkemeier W A. Shear instabilities of the mean longshore current: 2. Field observations[J]. Journal of Geophysical Research: Oceans, 1989, 94(C12): 18031−18042. doi: 10.1029/JC094iC12p18031
    [18] Reniers A J H M, MacMahan J H, Thornton E B, et al. Surf zone surface retention on a rip-channeled beach[J]. Journal of Geophysical Research: Oceans, 2009, 114(C10): C10010.
    [19] Noyes T J, Guza R T, Elgar S, et al. Field observations of shear waves in the surf zone[J]. Journal of Geophysical Research: Oceans, 2004, 109(C1): C01031.
    [20] Zhang Xuan, Simons R, Zheng Jinhai, et al. A review of the state of research on wave-current interaction in nearshore areas[J]. Ocean Engineering, 2022, 243: 110202. doi: 10.1016/j.oceaneng.2021.110202
    [21] Noyes T J, Guza R T, Feddersen F, et al. Model-data comparisons of shear waves in the nearshore[J]. Journal of Geophysical Research: Oceans, 2005, 110(C5): C05019.
    [22] Zhang Yu, Shi Fengyan, Kirby J T, et al. Phase-resolved modeling of wave interference and its effects on nearshore circulation in a large ebb shoal-beach system[J]. Journal of Geophysical Research: Oceans, 2022, 127(10): e2022JC018623. doi: 10.1029/2022JC018623
    [23] Boffetta G, Ecke R E. Two-dimensional turbulence[J]. Annual Review of Fluid Mechanics, 2012, 44: 427−451. doi: 10.1146/annurev-fluid-120710-101240
    [24] Clark D B, Elgar S, Raubenheimer B. Vorticity generation by short-crested wave breaking[J]. Geophysical Research Letters, 2012, 39(24): L24604.
    [25] Baker C M, Moulton M, Chickadel C C, et al. Two-dimensional inverse energy cascade in a laboratory surf zone for varying wave directional spread[J]. Physics of Fluids, 2023, 35(12): 125140. doi: 10.1063/5.0169895
    [26] Baker C M. Surfzone vorticity dynamics in a directional wave basin[D]. Washington: University of Washington, 2023.
    [27] Elgar S, Raubenheimer B. Field evidence of inverse energy cascades in the surfzone[J]. Journal of Physical Oceanography, 2020, 50(8): 2315−2321. doi: 10.1175/JPO-D-19-0327.1
    [28] Elgar S, Dooley C, Gorrell L, et al. Observations of two-dimensional turbulence in the surfzone[J]. Physics of Fluids, 2023, 35(8): 085142. doi: 10.1063/5.0159170
    [29] Xia H, Francois N. Two-dimensional turbulence in three-dimensional flows[J]. Physics of Fluids, 2017, 29(11): 111107. doi: 10.1063/1.5000863
    [30] Colombi R, Schlüter M, von Kameke A. Three dimensional flows beneath a thin layer of 2D turbulence induced by Faraday waves[J]. Experiments in Fluids, 2021, 62(1): 8. doi: 10.1007/s00348-020-03099-y
    [31] Baker C M, Moulton M, Chickadel C C, et al. Wave breaking eddies and transient rip current dynamics in large-scale wave basin experiments[C]// 9th International Conference on Physical Modelling in Coastal Engineering. Delft: Delft University of Technology, 2024.
    [32] Spydell M S. The suppression of surfzone cross-shore mixing by alongshore currents[J]. Geophysical Research Letters, 2016, 43(18): 9781−9790. doi: 10.1002/2016GL070626
    [33] Bondehagen A, Roeber V, Kalisch H, et al. Wave-driven current and vortex patterns at an open beach: insights from phase-resolving numerical computations and Lagrangian measurements[J]. Coastal Engineering, 2024, 193: 104591. doi: 10.1016/j.coastaleng.2024.104591
    [34] Baker C M, Moulton M, Raubenheimer B, et al. Modeled three-dimensional currents and eddies on an alongshore-variable barred beach[J]. Journal of Geophysical Research: Oceans, 2021, 126(7): e2020JC016899. doi: 10.1029/2020JC016899
    [35] Zheng Jinhai, Yao Yu, Chen Songhui, et al. Laboratory study on wave-induced setup and wave-driven current in a 2DH reef-lagoon-channel system[J]. Coastal Engineering, 2020, 162: 103772. doi: 10.1016/j.coastaleng.2020.103772
    [36] 任春平. 沿岸流不稳定运动的实验研究及理论分析[D]. 大连: 大连理工大学, 2009.

    Ren Chunping. A laboratory study and theoretical analysis on the instabilities of alongshore currents[D]. Dalian: Dalian University of Technology, 2009.
    [37] Chen Qin, Kirby J T, Dalrymple R A, et al. Boussinesq modeling of longshore currents[J]. Journal of Geophysical Research: Oceans, 2003, 108(C11): 26.
    [38] Hally-Rosendahl K, Feddersen F. Modeling surfzone to inner-shelf tracer exchange[J]. Journal of Geophysical Research: Oceans, 2016, 121(6): 4007−4025. doi: 10.1002/2015JC011530
    [39] Kennedy A B, Chen Qin, Kirby J T, et al. Boussinesq modeling of wave transformation, breaking, and runup. I: 1D[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2000, 126(1): 39−47. doi: 10.1061/(ASCE)0733-950X(2000)126:1(39)
    [40] Wei Ge, Kirby J T, Sinha A. Generation of waves in Boussinesq models using a source function method[J]. Coastal Engineering, 1999, 36(4): 271−299. doi: 10.1016/S0378-3839(99)00009-5
    [41] 李绍武, 黄筱云. 用Boussinesq方程计算沿岸流的数值方法[J]. 天津大学学报, 2004, 37(12): 1059−1062. doi: 10.3969/j.issn.0493-2137.2004.12.005

    Li Shaowu, Huang Xiaoyun. Numerical method for calculation of longshore current by using Boussinesq equations[J]. Journal of Tianjin University, 2004, 37(12): 1059−1062. doi: 10.3969/j.issn.0493-2137.2004.12.005
    [42] 王国玉, 张琪, 赵银林. 不规则波作用下沿岸流流速分布规律分析[J]. 海洋工程, 2021, 39(3): 11−20.

    Wang Guoyu, Zhang Qi, Zhao Yinlin. Analysis of alongshore current velocity generated by irregular waves[J]. The Ocean Engineering, 2021, 39(3): 11−20.
    [43] O’Dea A, Kumar N, Haller M C. Simulations of the surf zone eddy field and cross-shore exchange on a nonidealized bathymetry[J]. Journal of Geophysical Research: Oceans, 2021, 126(5): e2020JC016619. doi: 10.1029/2020JC016619
    [44] Spydell M S, Feddersen F, Suanda S. Inhomogeneous turbulent dispersion across the nearshore induced by surfzone eddies[J]. Journal of Physical Oceanography, 2019, 49(4): 1015−1034. doi: 10.1175/JPO-D-18-0102.1
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  6
  • HTML全文浏览量:  3
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-03
  • 修回日期:  2025-01-06
  • 网络出版日期:  2025-04-18

目录

    /

    返回文章
    返回