Distribution pattern and influencing factors of seabed surface sediments in Qinzhou Bay
-
摘要: 钦州湾作为典型的河口−海湾复合系统,其海床表层沉积物空间分布模式及其变化极可能影响航槽地貌稳定与船只安全。本文基于2024年洪枯季采集的钦州湾高密度表层沉积物样品与水文数据,系统探讨了海床沉积物季相变化特征及驱动机制。结果表明:钦州湾表层沉积物以砂为主,平均粒径在洪季为3.67φ(约为0.079 mm),在枯季为3.39φ(约为0.095 mm),海床沉积物在枯季较洪季偏粗。洪季期间,海床沉积物主要包括中砂、细砂、极细砂、粗粉砂、中粉砂及细粉砂6种沉积类型,其中内湾以粉砂和细砂为主,龙门通道北段为细砂,南出口及外湾中段为中砂,东西航道两侧则再度细化。枯季沉积物包括中砂、细砂、极细砂、粗粉砂及中粉砂5种类型。内湾和龙门通道以及外湾西侧均以细砂为主,外湾中部分布中砂,外湾东部沉积物细化。钦州湾海床沉积物在洪枯季EOF分析的第一模态中都展现为“内湾细、通道粗、外湾中部粗两侧细”的沉积格局。然而,洪季EOF分析的第二模态为外湾中东部以细砂为主的沉积模式;枯季第二模态则为内湾以极细砂为主,外湾东西侧分别以细砂、粗粉砂为主的沉积格局。钦州湾海床沉积格局主要受径流与潮流耦合作用控制,局部展现的差异化沉积受控通道束流效应及航道疏浚、运河建设和水产养殖等人类活动的综合影响。
-
关键词:
- 钦州湾 /
- 海床 /
- 表层沉积物 /
- 经验正交函数(EOF)
Abstract: Qinzhou Bay is a typical estuary–bay coupled system. Seabed surface sediments distribution pattern in the bay and their variations can substantially influence navigation-channel geomorphological stability and vessel safety. Based on high-density seabed surface sediment samples and hydrological data collected in Qinzhou Bay during the flood and dry seasons of 2024, this study systematically investigates the seasonal variability of seabed surface sediments and the driving mechanisms. The results show that seabed surface sediments in Qinzhou Bay are dominated by sand. The mean grain size is 3.67φ (0.079 mm) in the flood season and 3.39φ (0.095 mm) in the dry season, indicating a coarser tendency in the dry season. During the flood season, six sediment types are identified, including medium sand, fine sand, very fine sand, coarse silt, medium silt and fine silt, with silts and fine sand dominating the inner bay, fine sand dominating the northern Longmen Channel, medium sand dominating the southern outlet and the central outer bay while sediments on both sides of the eastern and western navigation channels turning finer again. During the dry season, five sediment types are identified, including medium sand, fine sand, very fine sand, coarse silt and medium silt. Fine sand dominates the inner bay, the Longmen Channel and the western outer bay, medium sand dominates the central outer bay and sediments in the eastern outer bay become finer. The distribution of seabed surface sediment in Qinzhou Bay is characterized by "fine in the inner bay, coarse in the channel, coarse in the central outer bay and fine on the two sides", which is consistent in flood and dry seasons, as shown in the first mode of Empirical Orthogonal Function (EOF). However, the second mode of EOF suggest different characters in the flood and dry seasons. Specifically, the flood season is characterized by "fine sand dominating the central–eastern outer bay" while the dry season is characterized by "very fine sand dominating the inner bay, fine sand and coarse silt dominating the western and eastern sides of the outer bay, respectively". The seabed surface sediment distribution in Qinzhou Bay is primarily controlled by the coupled effects of runoff and tidal currents, while local sedimentation differences are jointly influenced by channel constrained flow effects and human activities such as channel dredging, canal construction and aquaculture industry.-
Key words:
- Qinzhou Bay /
- Seabed /
- surface sediments /
- Empirical Orthogonal Function (EOF)
-
表 1 矩值法MMFr粒度参数定性描述
Tab. 1 Qualitative description of particle size parameters using the moment method MMFr
偏态 峰度 描述术语 范围 描述术语 范围 极负偏 <−0.53 很平坦 <1.46 负偏 −0.53~−0.13 平坦 1.46~2.35 近对称 −0.13~0.13 中等 2.35~3.15 正偏 0.13~0.53 尖锐 3.15~4.88 极正偏 >0.53 很尖锐 4.88~10.42 非常尖锐 >10.42 -
[1] 地质矿产部《地质辞典》办公室. 地质大辞典(四): 矿床地质、应用地质分册[M]. 北京: 地质出版社, 2005.Editorial Office of Geological Dictionary, Ministry of Geology and Mineral Resources. Geological Dictionary (Volume 4): Mineral Deposit Geology and Applied Geology[M]. Beijing: Geological Publishing House, 2005. [2] Deal E, Venditti J G, Benavides S J, et al. Grain shape effects in bed load sediment transport[J]. Nature, 2023, 613(7943): 298−302. doi: 10.1038/s41586-022-05564-6 [3] Prentice J E, Reg I R, Colleypriest C, et al. Sediment transport in estuarine areas[J]. Nature, 1968, 218(5148): 1207−1210. doi: 10.1038/2181207a0 [4] 吴梦喜, 楼志刚. 波浪作用下海床的稳定性与液化分析[J]. 工程力学, 2002, 19(5): 97−102.Wu Mengxi, Lou Zhigang. Stability and liqueafaction analysis of seabed to wave loading[J]. Engineering Mechanics, 2002, 19(5): 97−102. [5] Whigham D F. Ecological issues related to wetland preservation, restoration, creation and assessment[J]. Science of the Total Environment, 1999, 240(1/3): 31−40. doi: 10.1016/s0048-9697(99)00321-6 [6] Halpern B S, Walbridge S, Selkoe K A, et al. A global map of human impact on marine ecosystems[J]. Science, 2008, 319(5865): 948−952. doi: 10.1126/science.1149345 [7] 董德信, 李谊纯, 陈宪云, 等. 海洋工程对钦州湾岸线地形及泥沙冲淤的影响[J]. 广西科学, 2015, 22(3): 266−273. doi: 10.3969/j.issn.1005-9164.2015.03.006Dong Dexin, Li Yichun, Chen Xianyun, et al. Impacts of ocean engineering on shoreline, topography and deposition-erosion environment in Qinzhou gulf[J]. Guangxi Sciences, 2015, 22(3): 266−273. doi: 10.3969/j.issn.1005-9164.2015.03.006 [8] 陈友媛, 刘道彬, 贾永刚, 等. 生物活动对黄河口潮滩表层沉积物扰动作用的研究[J]. 中国海洋大学学报, 2007, 37(5): 829−833. doi: 10.3969/j.issn.1672-5174.2007.05.020Chen Youyuan, Liu Daobin, Jia Yonggang, et al. A study of the effects of Bioturbation on the surface sediments in the Yellow River estuarine intertidal zone[J]. Periodical of Ocean University of China, 2007, 37(5): 829−833. doi: 10.3969/j.issn.1672-5174.2007.05.020 [9] Sun Xin, Filgueira R, Sun Yihua, et al. Intensive oyster farming enhances carbon storage in sediments over decades[J]. Communications Earth & Environment, 2025, 6: 383. doi: 10.1038/s43247-025-02358-2 [10] 杨斌, 方怀义, 许丽莉, 等. 钦州湾水质污染时空变化特征及驱动因素[J]. 海洋环境科学, 2017, 36(6): 877−883. doi: 10.13634/j.cnki.mes.2017.06.013Yang Bin, Fang Huaiyi, Xu Lili, et al. Spatio-temporal variation characteristics and driving factors of water pollution in Qinzhou bay[J]. Marine Environmental Science, 2017, 36(6): 877−883. doi: 10.13634/j.cnki.mes.2017.06.013 [11] Lak R, Vaezi A. Assessment of pollution severity and ecological risks of potentially toxic elements in marine sediments of the northeastern Persian gulf[J]. Quarterly Journal of Iran, 2023, 9(1/2): 184−212. [12] 杨留柱, 杨莉玲, 潘洪州, 等. 人类活动影响下的钦州湾近期滩槽冲淤演变特征[J]. 热带海洋学报, 2019, 38(6): 41−50. doi: 10.11978/2019013Yang Liuzhu, Yang Liling, Pan Hongzhou, et al. Characteristics of recent evolution in Qinzhou Bay influenced by human activities[J]. Journal of Tropical Oceanography, 2019, 38(6): 41−50. doi: 10.11978/2019013 [13] 张云峰, 张振克, 刘玉卿, 等. 长江口北支沉积动力变化及对人类活动的响应[J]. 人民长江, 2019, 50(9): 24−29. doi: 10.16232/j.cnki.1001-4179.2019.09.005Zhang Yunfeng, Zhang Zhenke, Liu Yuqing, et al. Sediment dynamic processes in North Branch of Yangtze River Estuary and response to human activities[J]. Yangtze River, 2019, 50(9): 24−29. doi: 10.16232/j.cnki.1001-4179.2019.09.005 [14] Emery K O. Sediments and water of Persian gulf[J]. AAPG Bulletin, 1956, 40(10): 2354−2383. doi: 10.1306/5ceae595-16bb-11d7-8645000102c1865d [15] 赵建春, 戴志军, 李九发, 等. 强潮海湾近岸表层沉积物时空分布特征及水动力响应——以杭州湾北岸为例[J]. 沉积学报, 2008, 26(6): 1043−1051. doi: 10.14027/j.cnki.cjxb.2008.06.004Zhao Jianchun, Dai Zhijun, Li Jiufa, et al. Study on the characteristics of temporal and spatial changes in properties of surface sediment on near-shore seabed of strong-tide bay: a case from the north bank of Hangzhou Bay in Shanghai[J]. Acta Sedimentologica Sinica, 2008, 26(6): 1043−1051. doi: 10.14027/j.cnki.cjxb.2008.06.004 [16] Khaleghi A, Soltanpour M, Haghshenas S A. A study on the sand-mud mixture at north-west of the Persian Gulf[C]//Proceedings of the 34th Coastal Engineering Conference (ICCE 2014). Seoul: ASCE, 2014. [17] Cheng Zhixin, Wang Xiaohua, Jalón-Rojas I, et al. Reconstruction of sedimentation changes under anthropogenic influence in a medium-scale estuary based on a decadal chronological framework[J]. Estuarine, Coastal and Shelf Science, 2019, 227: 106295. doi: 10.1016/j.ecss.2019.106295 [18] Nihei Y, Shigeta K, Ito M, et al. Sediment transports and qualities of sediment in rivers flowing into Tokyo Bay[J]. Journal of Japan Society of Civil Engineers, Series B2 (Coastal Engineering), 2009, 65(1): 1171−1175. doi: 10.2208/kaigan.65.1171 [19] Bamdadinejad M, Ketabdari M J, Shojaei F. Numerical modeling of sediment transport rate and shoreline changes of Jazireh-e Shomali-Jonoubi Port in the Persian Gulf[J]. Journal of Ocean, Mechanical and Aerospace-Science and Engineering, 2020, 64(2): 39−45. doi: 10.36842/jomase.v64i2.192 [20] Shaika N A, Khan S, Awal S, et al. Aquatic pollution in the Bay of Bengal: impacts on fisheries and ecosystems[J]. Hydrology, 2025, 12(7): 191. doi: 10.3390/hydrology12070191 [21] 中国海湾志编纂委员会. 中国海湾志(第八分册): 福建省南部海湾[M]. 北京: 海洋出版社, 1993: 165−201.China Gulfs Records Editorial Committee. China Gulfs Records (Volume 8): Southern Fujian Gulfs[M]. Beijing: China Ocean Press, 1993: 165−201. [22] 方建勇. 厦门湾海底沉积物分布特征及其物源和沉积环境意义[D]. 厦门: 国家海洋局第三海洋研究所, 2008.Fang Jianyong. Distribution characteristics, Sources, and sedimentary environment indications of the sediment in Xiamen Bay[D]. Xiamen: Third Institute of Oceanography, State Oceanic Administration, 2008. [23] 刘治帅, 杨旸, 陈坚, 等. 厦门湾及邻近海域沉积物分布特征和沉积速率[J]. 海洋科学, 2012, 36(6): 1−8.Liu Zhishuai, Yang Yang, Chen Jian, et al. Sediment distribution and deposition rate in the Xiamen Bay and adjoining waters[J]. Marine Sciences, 2012, 36(6): 1−8. [24] 左书华, 韩志远, 赵洪波, 等. 九龙江口−厦门湾海域表层沉积物粒度分布特征及其动力响应[J]. 水利水运工程学报, 2011(4): 74−79. doi: 10.16198/j.cnki.1009-640x.2011.04.004Zuo Shuhua, Han Zhiyuan, Zhao Hongbo, et al. Grain size characteristics of surface sediments and dynamic response in sea area of Jiulongjiang estuary and Xiamen bay[J]. Hydro-Science and Engineering, 2011(4): 74−79. doi: 10.16198/j.cnki.1009-640x.2011.04.004 [25] 中国海湾志编纂委员会. 中国海湾志(第九分册): 广东省东部海湾[M]. 北京: 海洋出版社, 1998.China Gulfs Records Editorial Committee. China Bay Records (Volume 9): Eastern Guangdong Bays[M]. Beijing: China Ocean Press, 1998. [26] 谢华亮, 赵张益, 王恒. 粤东大亚湾水沙环境及岸滩演变分析[J]. 水运工程, 2024(5): 1−7. doi: 10.3969/j.issn.1002-4972.2024.05.001Xie Hualiang, Zhao Zhangyi, Wang Heng. Current and sediment environment and coastal evolution in Daya Bay, eastern Guangdong[J]. Port & Waterway Engineering, 2024(5): 1−7. doi: 10.3969/j.issn.1002-4972.2024.05.001 [27] 曲宝晓, 宋金明, 袁华茂. 近百年来大亚湾沉积物有机质的沉积记录及对人为活动的响应[J]. 海洋学报, 2018, 40(10): 119−130. doi: 10.3969/j.issn.0253-4193.2018.10.012Qu Baoxiao, Song Jinming, Yuan Huamao. Sediment records and responses for anthropogenic activities of organic matter in the Daya Bay during recent one hundred years[J]. Haiyang Xuebao, 2018, 40(10): 119−130. doi: 10.3969/j.issn.0253-4193.2018.10.012 [28] Amunugama A A W R R M K, Sasaki J, Nakamura Y, et al. Spatial distribution of sediment quality in Tokyo Bay through benthic-pelagic coupled modeling approach[J]. Journal of Japan Society of Civil Engineers Ser. B2 (Coastal Engineering), 2015, 71(2): I_1399−I_1404. doi: 10.2208/kaigan.71.I_1399 [29] Kubo A, Kanda J. Coastal urbanization alters carbon cycling in Tokyo Bay[J]. Scientific Reports, 2020, 10(1): 20413. doi: 10.1038/s41598-020-77385-4 [30] Jiang Qiaoli, Ando Y, Ueno Y, et al. Spatiotemporal changes in chlorophyll a concentration in the inner area of Tokyo Bay from 2016 to 2020[J]. Journal of Oceanography, 2024, 80(5): 353−363. doi: 10.1007/s10872-024-00730-y [31] Hisamatsu R, Tabeta S, Kim S, et al. Storm surge risk assessment for the insurance system: a case study in Tokyo Bay, Japan[J]. Ocean & Coastal Management, 2020, 189: 105147. doi: 10.1016/j.ocecoaman.2020.105147 [32] Fudeyasu H, Ito K, Mori N, et al. Demonstration of artificial bay windbreak experiments for reduction of typhoon winds and resultant storm surges in Tokyo Bay[J]. SOLA, 2025, 21: 85−93. doi: 10.2151/sola.2025-011 [33] 庞国涛, 李伟, 曾蛟, 等. 广西钦州湾外湾海域表层沉积物粒度特征及沉积环境[J]. 中国地质调查, 2024, 11(1): 65−74. doi: 10.19388/j.zgdzdc.2024.01.08Pang Guotao, Li Wei, Zeng Jiao, et al. Grain size characteristics and sedimentary environment of surface sediments in outer bay waters of Qinzhou Bay in Guangxi[J]. Geological Survey of China, 2024, 11(1): 65−74. doi: 10.19388/j.zgdzdc.2024.01.08 [34] 黎广钊, 梁文, 刘敬合. 从沉积物中重矿物动力分区论钦州湾泥沙来源及运移趋势[J]. 海洋通报, 2002, 21(5): 61−68. doi: 10.3969/j.issn.1001-6392.2002.05.009Li Guangzhao, Liang Wen, Liu Jinghe. Disscution on the source and transport tendency of silt in the Qinzhou Bay in terms of the dynamic partition zones of Havey minerals in the sediments[J]. Marine Science Bulletin, 2002, 21(5): 61−68. doi: 10.3969/j.issn.1001-6392.2002.05.009 [35] 林益帆, 戴志军, 谢华亮, 等. 长江河口近底层悬沙和沉积物的交换过程研究[J]. 海洋学报, 2014, 36(7): 99−110. doi: 10.3969/j.issn.0253-4193.2014.07.011Lin Yifan, Dai Zhijun, Xie Hualiang, et al. The research of exchange processes between the suspended sediment near the bottom and the depositions in the Changjiang (Yangtze) Estuary[J]. Haiyang Xuebao, 2014, 36(7): 99−110. doi: 10.3969/j.issn.0253-4193.2014.07.011 [36] 杨莉玲, 徐峰俊, 余顺超. 钦州湾近期河床演变特点及成因[J]. 泥沙研究, 2020, 45(4): 39−44. doi: 10.16239/j.cnki.0468-155x.2020.04.007Yang Liling, Xu Fengjun, Yu Shunchao. Study on recent evolution in the Qinzhou Bay[J]. Journal of Sediment Research, 2020, 45(4): 39−44. doi: 10.16239/j.cnki.0468-155x.2020.04.007 [37] 梁喜幸, 王日明, 戴志军, 等. 茅尾海钦江河口光滩时空变化过程研究[J]. 海洋地质与第四纪地质, 2023, 43(3): 107−118. doi: 10.16562/j.cnki.0256-1492.2022091201Liang Xixing, Wang Riming, Dai Zhijun, et al. Spatial-temporal variations of bare flats in the Qinjiang River estuary, Maowei Sea[J]. Marine Geology & Quaternary Geology, 2023, 43(3): 107−118. doi: 10.16562/j.cnki.0256-1492.2022091201 [38] 中国海湾志编纂委员会. 中国海湾志(第十二分册): 广西海湾[M]. 北京: 海洋出版社, 1993.China Gulfs Records Editorial Committee. China Gurfs Records (Volume 12): Guangxi Bays[M]. Beijing: China Ocean Press, 1993. [39] 许珊珊, 杨夏玲, 黎树式, 等. 北部湾钦江响应极端天气的水沙变化过程[J]. 热带地理, 2023, 43(11): 2135−2145. doi: 10.13284/j.cnki.rddl.003730Xu Shanshan, Yang Xialing, Li Shushi, et al. Variations in the characteristics of water and sediment in response to extreme weather conditions in the Qinjiang River of the Beibu Gulf[J]. Tropical Geography, 2023, 43(11): 2135−2145. doi: 10.13284/j.cnki.rddl.003730 [40] 朱峰, 陈良志, 覃杰. 钦州湾波流耦合作用泥沙输运特性研究[J]. 港口航道与近海工程, 2024, 61(1): 8−12, 19. doi: 10.16403/j.cnki.ggjs20240102Zhu Feng, Chen Liangzhi, Qin Jie. Study on sediment transport characteristics under wave-current coupling in Qinzhou Bay[J]. Port, Waterway and Offshore Engineering, 2024, 61(1): 8−12, 19. doi: 10.16403/j.cnki.ggjs20240102 [41] 王宇龙, 宁春平, 钟广达. 钦州湾潮流特性数值模拟研究[J]. 西部交通科技, 2023(12): 11−14, 35.Wang Yulong, Ning Chunping, Zhong Guangda. Study on numerical simulation of tidal current characteristics in Qinzhou Bay[J]. Western China Communications Science & Technology, 2023(12): 11−14, 35. [42] Lane E W. Report of the subcommittee on sediment terminology[J]. Eos, Transactions American Geophysical Union, 1947, 28(6): 936−938. doi: 10.1029/tr028i006p00936 [43] 马菲, 汪亚平, 李炎, 等. 地统计法支持的北部湾东部海域沉积物粒径趋势分析[J]. 地理学报, 2008, 63(11): 1207−1217. doi: 10.3321/j.issn:0375-5444.2008.11.010Ma Fei, Wang Yaping, Li Yan, et al. The application of geostatistics to analysis of grain size trend in the eastern Beibu Gulf[J]. Acta Geographica Sinica, 2008, 63(11): 1207−1217. doi: 10.3321/j.issn:0375-5444.2008.11.010 [44] 徐兴永, 易亮, 于洪军, 等. 图解法和矩值法估计海岸带沉积物粒度参数的差异[J]. 海洋学报, 2010, 32(2): 80−86.Xu Xingyong, Yi Liang, Yu Hongjun, et al. The differences of grain-size parameters estimated with graphic and moment methods in coastal sediments[J]. Haiyang Xuebao, 2010, 32(2): 80−86. [45] 蔡国富, 范代读, 尚帅, 等. 图解法与矩值法计算的潮汐沉积粒度参数之差异及其原因解析[J]. 海洋地质与第四纪地质, 2014, 34(1): 195−204.Cai Guofu, Fan Daidu, Shang Shuai, et al. Difference in grain-size parameters of tidal deposits derived form the graphic and its potential causes[J]. Marine Geology & Quaternary Geology, 2014, 34(1): 195−204. [46] Blott S J, Pye K. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments[J]. Earth Surface Processes and Landforms, 2001, 26(11): 1237−1248. doi: 10.1002/esp.261 [47] Shepard F P. Nomenclature based on sand-silt-clay ratios[J]. Journal of Sedimentary Research, 1954, 24(3): 151−158. doi: 10.1306/d4269774-2b26-11d7-8648000102c1865d [48] 夏非, 张永战, 吴蔚. EOF分析在海岸地貌与沉积学研究中的应用进展[J]. 地理科学进展, 2009, 28(2): 174−186.Xia Fei, Zhang Yongzhan, Wu Wei. Progress in applications of the EOF analysis in the research of coastal geomorphology and sedimentology[J]. Progress in Geography, 2009, 28(2): 174−186. [49] 陈云, 戴志军, 胡高建, 等. 长江口新桥水道表层沉积物分布格局及其影响因素[J]. 海洋地质与第四纪地质, 2022, 42(2): 59−69. doi: 10.16562/j.cnki.0256-1492.2021061503Chen Yun, Dai Zhijun, Hu Gaojian, et al. Surface sediment distribution pattern of the Xinqiao Channel of Changjiang Estuary and its controlling factors[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 59−69. doi: 10.16562/j.cnki.0256-1492.2021061503 [50] Setiyowati D A, Ariska M. Analisis pola curah hujan di pulau jawa dengan menggunakan empirical orthogonal function (EOF)[J]. Journal of Physics and Science Education (JPFS), 2024, 7(2): 120−128. [51] 陈沈良, 严肃庄, 李玉中. 长江口及其邻近海域表层沉积物分布特征[J]. 长江流域资源与环境, 2009, 18(2): 152−156. doi: 10.3969/j.issn.1004-8227.2009.02.010Chen Shenliang, Yan Suzhuang, Li Yuzhong. Characteristics of surface sediment distribution in the Yangtze estuary and its adjacent waters[J]. Resources and Environment in the Yangtze Basin, 2009, 18(2): 152−156. doi: 10.3969/j.issn.1004-8227.2009.02.010 [52] 谢华亮, 戴志军, 吴莹, 等. 海南岛南渡江河口动力沉积模式[J]. 沉积学报, 2014, 32(5): 884−892. doi: 10.14027/j.cnki.cjxb.2014.05.032Xie Hualiang, Dai Zhijun, Wu Ying, et al. Sedimentation dynamic modes of the Nandujiang Estuary, Hainan Island[J]. Acta Sedimentologica Sinica, 2014, 32(5): 884−892. doi: 10.14027/j.cnki.cjxb.2014.05.032 [53] 郑淇鸿. 平陆运河钦江河段迎来最大施工船[J]. 中国海事, 2024(6): 80.Zheng Qihong. Largest construction vessel arrives at Qinjiang River section of Pinglu canal[J]. China Maritime Safety, 2024(6): 80. [54] 柴小平, 魏娜, 任世军, 等. 杭州湾及其邻近海域表层沉积物的沉积环境分区及重金属污染特征分析[J]. 海洋科学, 2019, 43(8): 29−35. doi: 10.11759/hykx20190212004Chai Xiaoping, Wei Na, Ren Shijun, et al. Analysis of surface sediment environment division and heavy metal pollution character in Hangzhou Bay and its adjacent areas[J]. Marine Sciences, 2019, 43(8): 29−35. doi: 10.11759/hykx20190212004 [55] Tufford D L, McKellar Jr H N, Hussey J R. In-stream nonpoint source nutrient prediction with land-use proximity and seasonality[J]. Journal of Environmental Quality, 1998, 27(1): 100−111. [56] Comeau L A, Mallet A L, Carver C E, et al. Impact of high-density suspended oyster culture on benthic sediment characteristics[J]. Aquacultural Engineering, 2014, 58: 95−102. doi: 10.1016/j.aquaeng.2013.12.004 -
下载: