Role of the Coriolis force in the evolution of the Huanghe River estuarine sand spit
-
摘要: 黄河自从1996年人工改道取北汊入渤海以来,河口沙嘴整体呈北偏趋势。现有对河口演变规律的研究多聚焦河口水沙与海洋动力的相互作用,对科氏力这一持续驱动因素的作用机制尚缺乏系统认识。本文基于水动力数值模拟,从科氏力作用的角度,模拟研究了有无科氏力作用下黄河三角洲近岸潮流结构与河口泥沙入海输运扩散特征的差异。模拟显示科氏力驱动近岸潮流呈往复式运动,并在河口外侧形成一个封闭椭圆形高流速区(流速>0.8 m/s),同时在河口北侧的五号桩附近形成M2分潮无潮点,泥沙在沙嘴北侧扩散范围明显大于无科氏力情景。无科氏力作用时,近岸潮流主要表现为放射状往复运动,河口外侧未出现封闭高流速区,五号桩周边无潮点亦消失,河口泥沙向远海纵向扩散范围更大。结果表明,科氏力通过增强近岸涨落潮流横向运动强度促使泥沙向南北两侧输运,形成的M2无潮点“低位能区”增大了河口与M2无潮点之间的势能梯度,提高了落潮流时河口泥沙向北的输运强度,加之河口沙嘴北侧岬湾化程度增加进一步弱化局部潮流动力,使得更多泥沙在此区域淤积,这些因素的耦合效应共同促进了黄河口沙嘴北偏演进过程。Abstract: Since the artificial diversion of the Huanghe River into the Bohai Sea via the northern channel in 1996, the estuary sand spit has exhibited a distinct northward migration trend. Current research on estuarine evolution primarily focuses on the interplay between fluvial water-sediment inputs and marine hydrodynamic forces, while a systematic understanding of the role of the Coriolis force as a persistent driver remains lacking. Through hydrodynamic numerical modeling, this study investigates the influence of the Earth’s Coriolis force on tidal current structures and sediment transport patterns in the nearshore region of the Huanghe River Delta by comparing scenarios with and without Coriolis effects. The simulation shows that the Coriolis force drives the nearshore tidal current to move in a reciprocating manner, and forms a closed elliptical high velocity area (velocity > 0.8 m/s) outside the estuary. At the same time, the M2 tidal amphidromic point is formed near the No.5 pile on the north side of the estuary, and the sediment diffusion range on the north side of the mouth is significantly larger than that without Coriolis force. In the absence of Coriolis force, the nearshore tidal current is mainly radial reciprocating motion, and there is no closed high velocity area outside the estuary. The amphidromic tide point around the No.5 pile also disappears, and the longitudinal diffusion range of estuarine sediment to the open sea is larger. These findings indicate that the Coriolis force enhances lateral sediment transport by intensifying the transverse movement of flood and ebb currents. The formation of the M2 amphidromic point, acting as a “low potential energy zone”, increases the potential energy gradient between the estuary and the amphidromic point, thereby strengthening northward sediment transport during ebb tides. Furthermore, the increased indentation of the northern bayline weakens local tidal dynamics, promoting additional sediment deposition in this area. The synergistic effects of these mechanisms collectively drive the northward evolutionary process of the Huanghe River estuary sand spit.
-
Key words:
- Huanghe River Delta /
- Coriolis effect /
- sand spit evolution /
- sediment discharge diffusion /
- Delft 3D
-
图 8 黄河口口门外侧约5 km处(37.83°N, 119.32°E)潮位过程线对比
有科氏力情景(蓝色实线)与无科氏力情景(红色虚线)
Fig. 8 Comparison of tidal level processes at a location approximately 5 km outside the Huanghe River estuary (37.83°N, 119.32°E)
Scenario with Coriolis force (blue solid line) versus scenario without Coriolis force (red dashed line)
图 9 典型时刻的黄河三角洲近岸流速差值空间分布(有科氏力减去无科氏力)
a. 涨急;b. 落急;c. 涨憩;d. 落憩
Fig. 9 Spatial distribution of nearshore current velocity differences (with Coriolis force minus without Coriolis force) in the Huanghe River Delta at typical tidal phases
a. Flood peak; b. ebb peak; c. high water slack; d. low water slack
表 1 模型模拟工况设置
Tab. 1 Model simulation condition setting
工况 径流流量Q/(m3·s−1) 泥沙浓度S/(kg·m−3) 科氏力作用 1 500 2.0 有科氏力 2 500 2.0 无科氏力 -
[1] Nienhuis J H, Ashton A D, Edmonds D A, et al. Global-scale human impact on delta morphology has led to net land area gain[J]. Nature, 2020, 577(7791): 514−518. doi: 10.1038/s41586-019-1905-9 [2] Woodroffe C D, Nicholls R J, Saito Y, et al. Landscape variability and the response of Asian megadeltas to environmental change[M]//Harvey N. Global Change and Integrated Coastal Management: The Asia-Pacific Region. Dordrecht: Springer, 2006: 277−314. [3] Best J. Anthropogenic stresses on the world’s big rivers[J]. Nature Geoscience, 2019, 12(1): 7−21. doi: 10.1038/s41561-018-0262-x [4] Nicholls R J, Lincke D, Hinkel J, et al. A global analysis of subsidence, relative sea-level change and coastal flood exposure[J]. Nature Climate Change, 2021, 11(4): 338−342. doi: 10.1038/s41558-021-00993-z [5] Besset M, Anthony E J, Bouchette F. Multi-decadal variations in delta shorelines and their relationship to river sediment supply: an assessment and review[J]. Earth-Science Reviews, 2019, 193: 199−219. doi: 10.1016/j.earscirev.2019.04.018 [6] Fagherazzi S, Edmonds D A, Nardin W, et al. Dynamics of river mouth deposits[J]. Reviews of Geophysics, 2015, 53(3): 642−672. doi: 10.1002/2014RG000451 [7] Zhou Liangyong, Liu Jian, Saito Y, et al. Sediment budget of the Yellow River delta during 1959−2012, estimated from morphological changes and accumulation rates[J]. Marine Geology, 2020, 430: 106363. doi: 10.1016/j.margeo.2020.106363 [8] Geleynse N, Storms J E A, Walstra D J R, et al. Controls on river delta formation; insights from numerical modelling[J]. Earth and Planetary Science Letters, 2011, 302(1/2): 217−226. doi: 10.1016/j.jpgl.2010.12.013 [9] Olliver E A, Edmonds D A, Shaw J B. Influence of floods, tides, and vegetation on sediment retention in Wax Lake Delta, Louisiana, USA[J]. Journal of Geophysical Research: Earth Surface, 2020, 125(1): e2019JF005316. doi: 10.1029/2019JF005316 [10] Yang Zuosheng, Ji Youjun, Bi Naishuang, et al. Sediment transport off the Huanghe (Yellow River) delta and in the adjacent Bohai Sea in winter and seasonal comparison[J]. Estuarine, Coastal and Shelf Science, 2011, 93(3): 173−181. doi: 10.1016/j.ecss.2010.06.005 [11] Zăinescu F, Vespremeanu-Stroe A, Anthony E, et al. Flood deposition and storm removal of sediments in front of a deltaic wave-influenced river mouth[J]. Marine Geology, 2019, 417: 106015. doi: 10.1016/j.margeo.2019.106015 [12] Ruiz-Reina A, López-Ruiz A. Short-term river mouth bar development during extreme river discharge events: the role of the phase difference between the peak discharge and the tidal level[J]. Coastal Engineering, 2021, 170: 103982. doi: 10.1016/j.coastaleng.2021.103982 [13] Yao Hongyi, Leonardi N, Li Jiufa, et al. Sediment transport in a surface-advected estuarine plume[J]. Continental Shelf Research, 2016, 116: 122−135. doi: 10.1016/j.csr.2016.01.014 [14] Wu Xiao, Bi Naishuang, Xu Jingping, et al. Stepwise morphological evolution of the active Yellow River (Huanghe) delta lobe (1976−2013): dominant roles of riverine discharge and sediment grain size[J]. Geomorphology, 2017, 292: 115−127. doi: 10.1016/j.geomorph.2017.04.042 [15] 闾国年, 贾建军, 宋志尧, 等. 从潮能通量变化看 6000 a以来长江口的迁移[J]. 海洋地质与第四纪地质, 1999, 19(4): 1−10. doi: 10.16562/j.cnki.0256-1492.1999.04.001Lü Guonian, Jia Jianjun, Song Zhiyao, et al. Changes of the Yangtze River estuary since6000 a B. P. estimated from tidal energy flux change[J]. Marine Geology & Quaternary Geology, 1999, 19(4): 1−10. doi: 10.16562/j.cnki.0256-1492.1999.04.001[16] 邓声贵, 李广雪, 杨荣民. 黄河三角洲清水沟流路叶瓣体演化[J]. 海洋科学, 2006, 30(12): 32−36,42. doi: 10.3969/j.issn.1000-3096.2006.12.007Deng Shenggui, Li Guangxue, Yang Rongmin. Evolution of Qingshuigou lobe of Yellow River delta[J]. Marine Sciences, 2006, 30(12): 32−36, 42. doi: 10.3969/j.issn.1000-3096.2006.12.007 [17] Leonardi N, Canestrelli A, Sun Tao, et al. Effect of tides on mouth bar morphology and hydrodynamics[J]. Journal of Geophysical Research: Oceans, 2013, 118(9): 4169−4183. doi: 10.1002/jgrc.20302 [18] Leonardi N, Kolker A S, Fagherazzi S. Interplay between river discharge and tides in a delta distributary[J]. Advances in Water Resources, 2015, 80: 69−78. doi: 10.1016/j.advwatres.2015.03.005 [19] Hoitink A J F, Wang Zhengbing, Vermeulen B, et al. Tidal controls on river delta morphology[J]. Nature Geoscience, 2017, 10(9): 637−645. doi: 10.1038/ngeo3000 [20] Li Maotian, Chen Zhongyuan, Yin Daowei, et al. Morphodynamic characteristics of the dextral diversion of the Yangtze River mouth, China: tidal and the Coriolis Force controls[J]. Earth Surface Processes and Landforms, 2011, 36(5): 641−650. doi: 10.1002/esp.2082 [21] Neill S P. The role of Coriolis in sandbank formation due to a headland/island system[J]. Estuarine, Coastal and Shelf Science, 2008, 79(3): 419−428. doi: 10.1016/j.ecss.2008.04.015 [22] Gong Wenping, Zhang Guang, Yuan Lirong, et al. Effect of the Coriolis force on salt dynamics in convergent partially mixed estuaries[J]. Journal of Geophysical Research: Oceans, 2021, 126(12): e2021JC017391. doi: 10.1029/2021JC017391 [23] Winant C D. Three-dimensional tidal flow in an elongated, rotating basin[J]. Journal of Physical Oceanography, 2007, 37(9): 2345−2362. doi: 10.1175/JPO3122.1 [24] Lerczak J A, Geyer W R. Modeling the lateral circulation in straight, stratified estuaries[J]. Journal of Physical Oceanography, 2004, 34(6): 1410−1428. [25] Wei Xiaoyan, Schramkowski G P, Schuttelaars H M. Salt dynamics in well-mixed estuaries: importance of advection by tides[J]. Journal of Physical Oceanography, 2016, 46(5): 1457−1475. doi: 10.1175/JPO-D-15-0045.1 [26] Schramkowski G P, de Swart H E. Morphodynamic equilibrium in straight tidal channels: combined effects of the Coriolis force and external overtides[J]. Journal of Geophysical Research: Oceans, 2002, 107(C12): 3227. doi: 10.1029/2000jc000693 [27] Goodbred S L Jr, Kuehl S A. Enormous Ganges-Brahmaputra sediment discharge during strengthened early Holocene monsoon[J]. Geology, 2000, 28(12): 1083−1086. doi: 10.1130/0091-7613(2000)28<1083:EGSDDS>2.0.CO;2 [28] Bravard J P, Goichot M, Tronchère H. An assessment of sediment-transport processes in the Lower Mekong River based on deposit grain sizes, the CM technique and flow-energy data[J]. Geomorphology, 2014, 207: 174−189. doi: 10.1016/j.geomorph.2013.11.004 [29] Nowacki D J, Ogston A S, Nittrouer C A, et al. Sediment dynamics in the lower Mekong River: transition from tidal river to estuary[J]. Journal of Geophysical Research: Oceans, 2015, 120(9): 6363−6383. [30] Chen Zhongyuan, Song Baoping, Wang Zhanghua, et al. Late Quaternary evolution of the sub-aqueous Yangtze Delta, China: sedimentation, stratigraphy, palynology, and deformation[J]. Marine Geology, 2000, 162(2/4): 423−441. doi: 10.1016/s0025-3227(99)00064-x [31] 李国英. 黄河河势演变中科氏力的作用[J]. 水利学报, 2007, 38(12): 1409−1413, 1420. doi: 10.13243/j.cnki.slxb.2007.12.010Li Guoying. Effect of Corliolis force on morphology evolution of Yellow River[J]. Journal of Hydraulic Engineering, 2007, 38(12): 1409−1413, 1420. doi: 10.13243/j.cnki.slxb.2007.12.010 [32] Xie Dongfeng, Gao Shu, Wang Zhengbing, et al. Morphodynamic modeling of a large inside sandbar and its dextral morphology in a convergent estuary: Qiantang estuary, China[J]. Journal of Geophysical Research: Earth Surface, 2017, 122(8): 1553−1572. doi: 10.1002/2017JF004293 [33] Ji Hongyu, Pan Shunqi, Chen Shenliang. Impact of river discharge on hydrodynamics and sedimentary processes at Yellow River Delta[J]. Marine Geology, 2020, 425: 106210. doi: 10.1016/j.margeo.2020.106210 [34] 胡春宏, 曹文洪. 黄河口水沙变异与调控I——黄河口水沙运动与演变基本规律[J]. 泥沙研究, 2003, 28(5): 1−8. doi: 10.3321/j.issn:0468-155X.2003.05.001Hu Chunhong, Cao Wenhong. Variation, regulation and control of flow and sediment in the Yellow River Estuary I: mechanism of Flow−Sediment transport and evolution[J]. Journal of Sediment Research, 2003, 28(5): 1−8. doi: 10.3321/j.issn:0468-155X.2003.05.001 [35] Zheng Shan, Han Shasha, Tan Guangming, et al. Morphological adjustment of the Qingshuigou channel on the Yellow River Delta and factors controlling its avulsion[J]. CATENA, 2018, 166: 44−55. doi: 10.1016/j.catena.2018.03.009 [36] 徐丛亮, 李金萍, 谷硕, 等. 黄河调水调沙入海切变锋分析[J]. 人民黄河, 2014, 36(1): 18−21.Xu Congliang, Li Jinping, Gu Shuo, et al. Preliminary study on shear front off the Yellow River mouth during the water and sediment regulation[J]. Yellow River, 2014, 36(1): 18−21. [37] Wu Xiao, Bi Naishuang, Yuan Ping, et al. Sediment dispersal and accumulation off the present Huanghe (Yellow River) delta as impacted by the Water-Sediment Regulation Scheme[J]. Continental Shelf Research, 2015, 111: 126−138. doi: 10.1016/j.csr.2015.11.003 [38] Ma Pengcheng, Shi Hongyuan, Xue Huaiyuan, et al. Analysis of tidal current energy potential in the major channels of the Bohai Strait based on Delft3D[J]. Journal of Ocean University of China, 2024, 23(4): 859−870. doi: 10.1007/s11802-024-5721-y [39] 王金栋. 基于数值模型和统计模型的黄河三角洲的冲淤时空变化分析及形态发育趋势探讨[D]. 青岛: 中国海洋大学, 2005.Wang Jindong. Temporal and spatial variation of erosion-deposition and morphological evolution of the Huanghe Delta based on numerical model and statistical model[D]. Qingdao: Ocean University of China, 2005. [40] 缪红兵, 乔璐璐, 仲毅, 等. 人类活动和自然演变共同驱动下黄河三角洲海域潮波及物质输运变化[J]. 海洋学报, 2022, 44(9): 73−86.Miao Hongbing, Qiao Lulu, Zhong Yi, et al. Evolution of tidal system and material transport off the Huanghe River Delta induced by human activities and natural evolution[J]. Haiyang Xuebao, 2022, 44(9): 73−86. [41] Chen Changsheng, Beardsley R C, Cowles G. An unstructured grid, finite-volume coastal ocean model (FVCOM) system[J]. Oceanography, 2006, 19(1): 78−89. doi: 10.5670/oceanog.2006.92 [42] 龚雪雷, 姬泓宇, 李鹏, 等. 黄河三角洲近岸潮汐动力对地貌演变的响应及其沉积效应[J]. 海洋学报, 2024, 46(2): 64−78. doi: 10.12284/hyxb2024021Gong Xuelei, Ji Hongyu, Li Peng, et al. Response of tidal dynamics to geomorphic evolution and depositional effects in the Huanghe River Delta[J]. Haiyang Xuebao, 2024, 46(2): 64−78. doi: 10.12284/hyxb2024021 [43] 凡姚申, 窦身堂, 于守兵, 等. 黄河三角洲水文−地貌−生态系统演变与多维调控研究进展[J]. 水科学进展, 2023, 34(6): 984−998. doi: 10.14042/j.cnki.32.1309.2023.06.015Fan Yaoshen, Dou Shentang, Yu Shoubing, et al. Research progress on hydrology-geomorphology-ecology system evolution and multidimensional regulation in Yellow River Delta[J]. Advances in Water Science, 2023, 34(6): 984−998. doi: 10.14042/j.cnki.32.1309.2023.06.015 [44] 刘锋. 黄河口及其邻近海域泥沙输运及其动力地貌过程[D]. 上海: 华东师范大学, 2012.Liu Feng. Sediment transport and dynamic geomorphology process in the Yellow River Estuary and its adjacent sea[D]. Shanghai: East China Normal University, 2012. -
下载: