留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长江口南槽盐度层化对水体湍流的影响

王嘉诚 蒋陈娟 李为华 王雅君

王嘉诚,蒋陈娟,李为华,等. 长江口南槽盐度层化对水体湍流的影响[J]. 海洋学报,2025,47(12):25–34 doi: 10.12284/hyxb20250133
引用本文: 王嘉诚,蒋陈娟,李为华,等. 长江口南槽盐度层化对水体湍流的影响[J]. 海洋学报,2025,47(12):25–34 doi: 10.12284/hyxb20250133
Wang Jiacheng,Jiang Chenjuan,Li Weihua, et al. Effects of salinity stratification on turbulence in the South Passage of the Changjiang River Estuary[J]. Haiyang Xuebao,2025, 47(12):25–34 doi: 10.12284/hyxb20250133
Citation: Wang Jiacheng,Jiang Chenjuan,Li Weihua, et al. Effects of salinity stratification on turbulence in the South Passage of the Changjiang River Estuary[J]. Haiyang Xuebao,2025, 47(12):25–34 doi: 10.12284/hyxb20250133

长江口南槽盐度层化对水体湍流的影响

doi: 10.12284/hyxb20250133
基金项目: 国家自然科学基金青年科学基金项目“基于半解析模型的最大浑浊带泥沙捕集机制研究——以长江河口北槽为例”(41806104)。
详细信息
    作者简介:

    王嘉诚(2001—),男,江苏省镇江市人,主要从事河口海岸沉积动力过程研究。E-mail:1075288030@qq.com

    通讯作者:

    蒋陈娟,女,副教授,主要从事河口海岸沉积动力过程研究。E-mail:jiangchenjuan001@163.com

  • 中图分类号: P731.26

Effects of salinity stratification on turbulence in the South Passage of the Changjiang River Estuary

  • 摘要: 本文基于2020年秋季长江口南槽实测高频湍流和盐度剖面数据,通过定量分析水体盐度层化对湍流垂向黏滞系数、拖曳系数和垂向流速能谱的影响,探讨盐度层化对水体湍流的影响。研究结果表明:观测站点总体上呈现涨潮流期逐渐层化、落潮流期逐渐混合的周期性层化特征。盐度层化显著抑制底层湍流强度,导致底层拖曳系数和垂向黏滞系数降低,且随着距底床高度增加,层化引起的湍流参数的减小越明显。垂向流速的谱分析结果显示:盐度层化对低频大尺度涡旋具有明显抑制作用,且距离底床越远湍流受到的抑制作用越强。盐度层化使湍流垂向黏滞系数的垂向结构出现以下变化:峰值和均值减小,峰值出现位置降低,峰值以上位置快速衰减,整体湍流强度减弱。盐度层化对湍流的抑制程度与层化区的高度成负相关,与层化的强度成正相关。
  • 图  1  研究区域概况和观测点站位

    Fig.  1  Sketch of the study area and location of the observational station

    图  2  流速垂向剖面随时间变化过程

    图中E区域表示落潮流期,F区域表示涨潮流期

    Fig.  2  Vertical profiles of current velocity from spring tide to neap tide

    E marks ebb current and F marks flood current

    图  3  潮流速与潮差变化过程

    Fig.  3  Time series of tidal current velocity and tidal range

    图  4  盐度垂向剖面随时间变化过程

    Fig.  4  Vertical profiles of salinity from spring tide to neap tide

    图  5  潮周期平均盐度、盐度差值与分层系数随时间变化过程

    Fig.  5  Time series of tidal mean salinity, surface-bottom salinity difference, and stratification index

    图  6  表底层盐度差与拖曳系数(a)、垂向黏滞系数(b)随时间变化过程

    Fig.  6  Time series of surface–bottom salinity difference, drag coefficient (a), and vertical eddy viscosity (b)

    图  7  底层特定位置的拖曳系数(a)、垂向黏滞系数(b)与表底层盐度差的关系

    Fig.  7  Comparison of elevation-specific drag coefficient (a) and vertical eddy viscosity (b) to the surface–bottom salinity difference

    图  8  混合和层化时刻的流速、盐度剖面(a)和底层垂向流速功率谱(b)对比

    Fig.  8  Velocity and salinity profiles (a) as well as power spectra of near-bed vertical velocity (b) corresponding to mixed and stratified conditions

    图  9  弱水动力情况下典型时刻流速、盐度和Az剖面对比

    Fig.  9  Profiles of current velocity, salinity, and vertical eddy viscosity at representative times under weak hydrodynamic conditions

    图  10  强水动力情况下典型时刻流速、盐度和Az剖面对比

    Fig.  10  Profiles of current velocity, salinity, and eddy viscosity at representative times under strong hydrodynamic conditions

  • [1] Tennekes H, Lumley J L. A First Course in Turbulence[M]. Cambridge: The MIT Press, 1972.
    [2] Townsend A A. The Structure of Turbulent Shear Flow[M]. Cambridge: Cambridge University Press, 1976.
    [3] Kolmogorov A N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers[J]. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 1991, 434(1890): 9−13. doi: 10.1007/978-94-011-3030-1_45
    [4] Simpson J H, Hunter J R. Fronts in the irish sea[J]. Nature, 1974, 250(5465): 404−406. doi: 10.1038/250404a0
    [5] Simpson J H, Allen C M, Morris N C G. Fronts on the continental shelf[J]. Journal of Geophysical Research: Oceans, 1978, 83(C9): 4607−4614. doi: 10.1029/JC083iC09p04607
    [6] Simpson J H. The shelf-sea fronts: implications of their existence and behaviour[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1981, 302(1472): 531−546. doi: 10.1098/rsta.1981.0181
    [7] Geyer W R. The importance of suppression of turbulence by stratification on the estuarine turbidity maximum[J]. Estuaries, 1993, 16(1): 113−125. doi: 10.2307/1352769
    [8] Green M O, Mccave I N. Seabed drag coefficient under tidal currents in the eastern Irish Sea[J]. Journal of Geophysical Research: Oceans, 1995, 100(C8): 16057−16069. doi: 10.1029/95JC01381
    [9] Scully M E, Friedrichs C T. The influence of asymmetries in overlying stratification on near-bed turbulence and sediment suspension in a partially mixed estuary[J]. Ocean Dynamics, 2003, 53(3): 208−219. doi: 10.1007/s10236-003-0034-y
    [10] Soulsby R L, Dyer K R. The form of the near-bed velocity profile in a tidally accelerating flow[J]. Journal of Geophysical Research: Oceans, 1981, 86(C9): 8067−8074.
    [11] Scully M E, Geyer W R. The role of advection, straining, and mixing on the tidal variability of estuarine stratification[J]. Journal of Physical Oceanography, 2012, 42(5): 855−868. doi: 10.1175/JPO-D-10-05010.1
    [12] Terray E A, Donelan M A, Agrawal Y C, et al. Estimates of kinetic energy dissipation under breaking waves[J]. Journal of Physical Oceanography, 1996, 26(5): 792−807.
    [13] Guerra M, Thomson J. Turbulence measurements from five-beam acoustic Doppler current profilers[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34(6): 1267−1284. doi: 10.1175/JTECH-D-16-0148.1
    [14] 王寇, 李博, 李爱国, 等. 夏季长江口及其邻近海域湍流特征分析[J]. 海洋学报, 2021, 43(11): 22−31.

    Wang Kou, Li Bo, Li Aiguo, et al. Characteristics of turbulence in the Changjiang River Estuary and its adjacent waters in summer[J]. Haiyang Xuebao, 2021, 43(11): 22−31.
    [15] 田静, 张凡, 李任之, 等. 长江口湍流剖面的观测与分析[J]. 海洋与湖沼, 2023, 54(5): 1295−1307. doi: 10.11693/hyhz20230200023

    Tian Jing, Zhang Fan, Li Renzhi, et al. Observation and analysis of turbulence vertical profile in the Changjiang River Estuary[J]. Oceanologia et Limnologia Sinica, 2023, 54(5): 1295−1307. doi: 10.11693/hyhz20230200023
    [16] Li Renzhi, Voulgaris G, Wang Yaping. Turbulence structure and burst events observed in a tidally induced bottom boundary layer[J]. Journal of Geophysical Research: Oceans, 2022, 127(6): e2021JC018036. doi: 10.1029/2021JC018036
    [17] 鲁远征, 吴加学, 刘欢. 河口底边界层湍流观测后处理技术方法分析[J]. 海洋学报, 2012, 34(5): 39−49.

    Lu Yuanzheng, Wu Jiaxue, Liu Huan. An integrated post-processing technique for turbulent flows in estuarine bottom boundary layer[J]. Haiyang Xuebao, 2012, 34(5): 39−49.
    [18] Kim S C, Friedrichs C T, Maa J P Y, et al. Estimating bottom stress in tidal boundary layer from acoustic Doppler velocimeter data[J]. Journal of Hydraulic Engineering, 2000, 126(6): 399−406. doi: 10.1061/(ASCE)0733-9429(2000)126:6(399)
    [19] Cleveland W S. Robust locally weighted regression and smoothing scatterplots[J]. Journal of the American Statistical Association, 1979, 74(368): 829−836. doi: 10.1080/01621459.1979.10481038
    [20] Perry A E, Chong M S. On the mechanism of wall turbulence[J]. Journal of Fluid Mechanics, 1982, 119: 173−217. doi: 10.1017/S0022112082001311
    [21] Dewey K R. Coastal and Estuarine Sediment Dynamics[M]. New York: John Wiley & Sons Ltd, 1986.
  • 加载中
图(10)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  38
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-11-11
  • 修回日期:  2025-12-17
  • 网络出版日期:  2026-01-06
  • 刊出日期:  2025-12-31

目录

    /

    返回文章
    返回