留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

潜水器水动力系数计算与运动稳定性判断的数值研究

王玉红 游海洋 白金库 林渊 郭进

王玉红,游海洋,白金库,等. 潜水器水动力系数计算与运动稳定性判断的数值研究[J]. 海洋学报,2025,47(12):114–125 doi: 10.12284/hyxb20250131
引用本文: 王玉红,游海洋,白金库,等. 潜水器水动力系数计算与运动稳定性判断的数值研究[J]. 海洋学报,2025,47(12):114–125 doi: 10.12284/hyxb20250131
Wang Yuhong,You Haiyang,Bai Jinku, et al. Numerical study on the calculation of hydrodynamic coefficient and judgment of motion stability of submersibles[J]. Haiyang Xuebao,2025, 47(12):114–125 doi: 10.12284/hyxb20250131
Citation: Wang Yuhong,You Haiyang,Bai Jinku, et al. Numerical study on the calculation of hydrodynamic coefficient and judgment of motion stability of submersibles[J]. Haiyang Xuebao,2025, 47(12):114–125 doi: 10.12284/hyxb20250131

潜水器水动力系数计算与运动稳定性判断的数值研究

doi: 10.12284/hyxb20250131
基金项目: 国家重点研发计划项目(2023YFC2809300)。
详细信息
    作者简介:

    王玉红(1992—),男,河北省张家口市人,博士,主要从事水下潜水器设计与水动力分析技术等方面工作。E-mail:wyhong@zju.edu.cn

    通讯作者:

    郭进,男,副研究员,从事潜水器水动力研究、海底管道干式检修技术等方面工作。E-mail:gojin@zju.edu.cn

  • 中图分类号: P751

Numerical study on the calculation of hydrodynamic coefficient and judgment of motion stability of submersibles

  • 摘要: 圆碟形潜水器具备零转弯直径、精准着陆和良好的悬停能力,对提高海底观测系统效率意义重大。然而,关于圆碟形潜水器水动力性能的研究并不多。本研究提出将平面运动机构(PMM)数值模拟实验与Routh判据相结合的创新方法,用于判断圆碟形潜水器的运动稳定性。一方面,推导了潜水器运动控制方程和运动稳定性判断标准,另一方面,建立了数值模拟模型并设计了PMM数值模拟来计算水动力系数。研究首次以圆碟形潜水器为例,结合Routh准则,对比分析了HG1和HG3两种船体的水动力性能,得到HG1和HG3水平运动及垂直运动的稳定系数,结果表明HG3在运动稳定性方面表现更优。此结论在缩尺模型水池实验中也得到了验证。该数值研究方法可扩展用于各类作业型潜水器的运动稳定性研究,避免实际实验高昂的成本,进一步提升潜水器在海洋工程中的作业性能。
  • 图  1  海底移动观测网[5]

    Fig.  1  Seabed mobile observation network

    图  2  HG1和HG3的模型及其参数

    a. 潜水器在湖中进行实验,b. HG1示意图,c. HG3示意图,d. HG1和HG3的剖面和几何参数

    Fig.  2  Models and parameters of HG1 and HG3

    a. Submersible conducting experiments in the lake, b. original disk shape (HG1), c. modified anterior-posterior asymmetric shape of the tail (HG3), d. profiles and geometrical parameters of HG1 and HG3

    图  3  坐标系定义

    Fig.  3  Coordinate system definition

    图  4  仿真域和网格划分

    Fig.  4  Simulation domain and meshing

    图  5  潜水器纯横荡运动图

    Fig.  5  Plot of the pure sway motion of the submersible

    图  6  MATLAB拟合的简谐横荡仿真结果

    Fig.  6  Simulation results of MATLAB fitted simple harmonic transverse oscillation

    图  7  MATLAB拟合的简谐横摇仿真结果

    Fig.  7  Simulation results of MATLAB fitted simple harmonic transverse rocking

    图  8  流线图

    Fig.  8  Streamlines

    图  9  缩尺实验示意图

    Fig.  9  Schematic diagram of scale-down experiment

    图  10  缩尺实验结果

    Fig.  10  Results of scale-down experiment

    表  1  原始圆碟形潜水器(HG1)基本参数

    Tab.  1  Basic parameters of the current disk-shaped submersible (HG1)

    直径/mm 高度/mm 重量/kg 巡航速度/(m·s−1)
    1557 801 ≤300 ≤2
    下载: 导出CSV

    表  2  不同网格数量下HG3潜水器在1 m/s速度下的水动力

    Tab.  2  The hydrodynamic performance of the HG3 submersible under different grid numbers, 1 m/s

    物理量 网格数量(百万)
    3.7 6 10 14
    阻力Fx/N 17.12 18.81 19.18 19.22
    变化率 / 9.87% 1.97% 0.2%
    下载: 导出CSV

    表  3  HG1的无量纲水动力系数

    Tab.  3  Dimensionless hydrodynamic coefficients for HG1

    无量纲系数无量纲公式无量纲系数无量纲公式
    $ X_{\dot{u}}^{'} $$ \dfrac{{X}_{\dot{u}}}{1/2\rho {L}^{3}} $−0.117$ X_{u}^{{'}} $$ \dfrac{{X}_{u}}{1/2\rho {L}^{2}U} $0
    $ X_{u|u|}^{'} $$ \dfrac{{X}_{u|u|}}{1/2\rho {L}^{2}} $−0.050$ X_{0}^{{'}} $$ \dfrac{{X}_{0}}{1/2\rho {L}^{2}{U}^{2}} $0.027
    $ Y_{\dot{v}}^{'} $$ \dfrac{{Y}_{\dot{v}}}{1/2\rho {L}^{3}} $−0.161$ Y_{v}^{\mathrm{'}} $$ \dfrac{{Y}_{v}}{1/2\rho {L}^{2}U} $−0.068
    $ Y_{v|v|}^{'} $$ \dfrac{{Y}_{v|v|}}{1/2\rho {L}^{2}} $0.017$ K_{\dot{v}}^{\mathrm{'}} $$ \dfrac{{K}_{\dot{v}}}{1/2\rho {L}^{4}} $−0.002
    $ K_{v}^{'} $$ \dfrac{{K}_{v}}{1/2\rho {L}^{3}U} $0.008$ K_{\dot{v}|v|}^{\mathrm{'}} $$ \dfrac{{K}_{v|v|}}{1/2\rho {L}^{3}} $−0.001
    $ Z_{\dot{w}}^{'} $$ \dfrac{{Z}_{\dot{w}}}{1/2\rho {L}^{3}} $−0.658$ Z_{w}^{\mathrm{'}} $$ \dfrac{{Z}_{w}}{1/2\rho {L}^{2}U} $−1.540
    $ Z_{w|w|}^{'} $$ Z_{w|w|}^{1/2\rho {L}^{2}} $0.288$ M_{\dot{w}}^{\mathrm{'}} $$ \dfrac{{M}_{\dot{w}}}{1/2\rho {L}^{4}} $0.034
    $ M_{w}^{'} $$ \dfrac{{M}_{w}}{1/2\rho {L}^{3}U} $−0.155$ M_{w|w|}^{\mathrm{'}} $$ \dfrac{{M}_{w|w|}}{1/2\rho {L}^{3}} $−0.056
    $ Z_{\dot{q}}^{'} $$ \dfrac{{Z}_{\dot{q}}}{1/2\rho {L}^{4}} $0.003$ Z_{q}^{\mathrm{'}} $$ \dfrac{{Z}_{q}}{1/2\rho {L}^{3}U} $0.855
    $ Z_{q|q|}^{'} $$ \dfrac{{Z}_{q|q|}}{1/2\rho {L}^{4}} $−0.141$ M_{\dot{q}}^{\mathrm{'}} $$ \dfrac{{M}_{\dot{q}}}{1/2\rho {L}^{5}} $−0.041
    $ M_{q}^{'} $$ \dfrac{{M}_{q}}{1/2\rho {L}^{4}U} $−0.094$ M_{q|q|}^{\mathrm{'}} $$ \dfrac{{M}_{q|q|}}{1/2\rho {L}^{5}} $0.027
    $ N_{\dot{r}}^{'} $$ \dfrac{{N}_{\dot{r}}}{1/2\rho {L}^{5}} $−0.001$ N_{r}^{\mathrm{'}} $$ \dfrac{{N}_{r}}{1/2\rho {L}^{4}U} $−0.003
    $ N_{r|r|}^{'} $$ \dfrac{{N}_{r\mid r}}{1/2\rho {L}^{5}} $0.001$ Y_{\dot{p}}^{\mathrm{'}} $$ \dfrac{{Y}_{\dot{p}}}{1/2\rho {L}^{4}} $0
    $ Y_{p}^{'} $$ \dfrac{{Y}_{p}}{1/2\rho {L}^{3}U} $0$ Y_{p|p|}^{\mathrm{'}} $$ \dfrac{{Y}_{p|p|}}{1/2\rho {L}^{4}} $0
    $ K_{\dot{p}}^{'} $$ \dfrac{{K}_{\dot{p}}}{1/2\rho {L}^{5}} $−0.022$ K_{p}^{\mathrm{'}} $$ \dfrac{{K}_{p}}{1/2\rho {L}^{4}U} $−0.019
    $ K_{p|p|}^{'} $$ \dfrac{{K}_{p|p|}}{1/2\rho {L}^{5}} $0
    下载: 导出CSV

    表  4  HG3的无量纲水动力系数

    Tab.  4  Dimensionless hydrodynamic coefficients for HG3

    无量纲系数无量纲公式无量纲系数无量纲公式
    $ X_{\dot{u}}^{'} $$ \dfrac{{X}_{\dot{u}}}{1/2\rho {L}^{3}} $−0.135$ X_{u}^{\mathrm{'}} $$ \dfrac{{X}_{u}}{1/2\rho {L}^{2}U} $−0.019
    $ X_{u|u|}^{'} $$ \dfrac{{X}_{u|u|}}{1/2\rho {L}^{2}} $−0.033$ X_{0}^{\mathrm{'}} $$ \dfrac{{X}_{0}}{1/2\rho {L}^{2}{U}^{2}} $0.043
    $ Y_{\dot{v}}^{'} $$ \dfrac{{Y}_{\dot{v}}}{1/2\rho {L}^{3}} $−0.173$ Y_{v}^{\mathrm{'}} $$ \dfrac{{Y}_{v}}{1/2\rho {L}^{2}U} $−0.096
    $ Y_{v|v|}^{'} $$ \dfrac{{Y}_{v|v|}}{1/2\rho {L}^{2}} $0.117$ K_{\dot{v}}^{\mathrm{'}} $$ \dfrac{{K}_{\dot{v}}}{1/2\rho {L}^{4}} $0.056
    $ K_{v}^{'} $$ \dfrac{{K}_{v}}{1/2\rho {L}^{3}U} $0.031$ K_{\dot{v}|v|}^{\mathrm{'}} $$ \dfrac{{K}_{v|v|}}{1/2\rho {L}^{3}} $−0.070
    $ Z_{\dot{w}}^{'} $$ \dfrac{{Z}_{\dot{w}}}{1/2\rho {L}^{3}} $0.555$ Z_{w}^{\mathrm{'}} $$ \dfrac{{Z}_{w}}{1/2\rho {L}^{2}U} $−0.499
    $ Z_{w|w|}^{'} $$ Z_{w|w|}^{1/2\rho {L}^{2}} $0.096$ M_{\dot{w}}^{\mathrm{'}} $$ \dfrac{{M}_{\dot{w}}}{1/2\rho {L}^{4}} $−0.045
    $ M_{w}^{'} $$ \dfrac{{M}_{w}}{1/2\rho {L}^{3}U} $−0.778$ M_{w|w|}^{\mathrm{'}} $$ \dfrac{{M}_{w|w|}}{1/2\rho {L}^{3}} $0.103
    $ Z_{\dot{q}}^{'} $$ \dfrac{{Z}_{\dot{q}}}{1/2\rho {L}^{4}} $−0.021$ Z_{q}^{\mathrm{'}} $$ \dfrac{{Z}_{q}}{1/2\rho {L}^{3}U} $0.572
    $ Z_{q|q|}^{'} $$ \dfrac{{Z}_{q|q|}}{1/2\rho {L}^{4}} $−0.154$ M_{\dot{q}}^{\mathrm{'}} $$ \dfrac{{M}_{\dot{q}}}{1/2\rho {L}^{5}} $−0.068
    $ M_{q}^{'} $$ \dfrac{{M}_{q}}{1/2\rho {L}^{4}U} $−0.024$ M_{q|q|}^{\mathrm{'}} $$ \dfrac{{M}_{q|q|}}{1/2\rho {L}^{5}} $0.046
    $ N_{\dot{r}}^{'} $$ \dfrac{{N}_{\dot{r}}}{1/2\rho {L}^{5}} $0$ N_{r}^{\mathrm{'}} $$ \dfrac{{N}_{r}}{1/2\rho {L}^{4}U} $−0.004
    $ N_{r|r|}^{'} $$ \dfrac{{N}_{r\mid r}}{1/2\rho {L}^{5}} $0$ Y_{\dot{p}}^{\mathrm{'}} $$ \dfrac{{Y}_{\dot{p}}}{1/2\rho {L}^{4}} $0.034
    $ Y_{p}^{'} $$ \dfrac{{Y}_{p}}{1/2\rho {L}^{3}U} $0.016$ Y_{p|p|}^{\mathrm{'}} $$ \dfrac{{Y}_{p|p|}}{1/2\rho {L}^{4}} $0.0068
    $ K_{\dot{p}}^{'} $$ \dfrac{{K}_{\dot{p}}}{1/2\rho {L}^{5}} $−0.046$ K_{p}^{\mathrm{'}} $$ \dfrac{{K}_{p}}{1/2\rho {L}^{4}U} $−0.021
    $ K_{p|p|}^{'} $$ \dfrac{{K}_{p|p|}}{1/2\rho {L}^{5}} $0.005$ {m}^{\mathrm{'}} $$ \dfrac{m}{1/2\rho {L}^{3}} $0.178
    下载: 导出CSV

    表  A1  符号定义

    Tab.  A1  Parameter Definitions

    参数 定义
    AUV 自主水下潜水器
    AUG 自主水下滑翔机
    AUH 自主圆碟形潜水器
    ROV 遥控潜水器
    HOV 载人潜水器
    HG1 原始圆碟形潜水器
    HG3 改进外形后的圆碟形潜水器
    PMM 平面运动机构
    VG 潜水器重心的速度矢量
    LG 潜水器重心的角动量矢量
    MG 作用于潜水器重心的合力矩
    W, B AUH的重力与浮力
    V AUH初始速度
    L AUH长度
    u, v, w 纵荡速度,横荡速度,垂荡速度
    ub 水池实验背景流速
    $ {\dot{u}} $ 纵荡速度的导数
    p, q, r 横摇速度,纵摇速度,艏摇速度
    My 倾覆力矩
    ω 正弦运动频率
    η 横荡运动振幅
    o0x0y0z0 空间固定坐标系
    oxyz 运动坐标系
    xG, yG, zG 潜水器重心在动系中的矢量位置
    ϕ, θ, ψ 横摇角,俯仰角,偏航角
    Ixx, Iyy, Izz 潜水器对oxoyoz 3轴的转动惯量
    ${ I_{xy}^{G},\, I_{yz}^{G},\, I_{zx}^{G}} $ 潜水器对oxoyoz 3轴的惯性积
    X, Y, Z xyz方向的所有外力
    K, M, N xyz方向的所有外力矩
    τRB 外力和外力矩
    g(η) 静力和静力矩
    τH 流体动力和力矩
    τE 环境力量和力矩
    τ 推进控制力和力矩
    ρ 液体密度
    m AUH质量
    GH, GV 水平和垂直平面动态稳定指数
    ε 耗散率
    Δy 边界层第一层厚度
    δ 边界层厚度
    $ {{X}_{\dot{u}}} $ X对$ {\dot{u}} $的偏导数,其他同理
    ${ {X}_{u\left| u\right| }} $ Xu|u|的偏导数,其他同理
    Xu Xu的偏导数,其他同理
    FP 螺旋桨的推力
    R 螺旋桨的安装半径
    Fx, Fy, Fz xyz方向的水动力
    下载: 导出CSV
  • [1] 朱俊江, 孙宗勋, 练树民, 等. 全球有缆海底观测网概述[J]. 热带海洋学报, 2017, 36(3): 20−33.

    Zhu Junjiang, Sun Zongxun, Lian Shumin, et al. Review on cabled seafloor observatories in the world[J]. Journal of Tropical Oceanography, 2017, 36(3): 20−33.
    [2] 李风华, 路艳国, 王海斌, 等. 海底观测网的研究进展与发展趋势[J]. 中国科学院院刊, 2019, 34(3): 321−330. doi: 10.16418/j.issn.1000-3045.2019.03.010

    Li Fenghua, Lu Yanguo, Wang Haibin, et al. Research progress and development trend of seafloor observation network[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(3): 321−330. doi: 10.16418/j.issn.1000-3045.2019.03.010
    [3] 漆随平, 厉运周. 海洋环境监测技术及仪器装备的发展现状与趋势[J]. 山东科学, 2019, 32(5): 21−30. doi: 10.3976/j.issn.1002-4026.2019.05.002

    Qi Suiping, Li Yunzhou. A review of the development and current situation of marine environment observation technology and instruments[J]. Shandong Science, 2019, 32(5): 21−30. doi: 10.3976/j.issn.1002-4026.2019.05.002
    [4] An Xinyu, Chen Ying, Huang Haocai. Parametric design and optimization of the profile of autonomous underwater helicopter based on NURBS[J]. Journal of Marine Science and Engineering, 2021, 9(6): 668. doi: 10.3390/jmse9060668
    [5] 周晶, 司玉林, 林渊, 等. 海底AUV关键技术综述[J]. 海洋学报, 2023, 45(10): 1−12. doi: 10.12284/hyxb2023153

    Zhou Jing, Si Yulin, Lin Yuan, et al. A review of subsea AUV technology[J]. Haiyang Xuebao, 2023, 45(10): 1−12. doi: 10.12284/hyxb2023153
    [6] Wang Shuxin, Sun Xiujun, Wang Yanhui, et al. Dynamic modeling and motion simulation for a winged hybrid-driven underwater glider[J]. China Ocean Engineering, 2011, 25(1): 97−112. doi: 10.1007/s13344-011-0008-7
    [7] Wang Gongbo, Wang Yanhui, Yang Ming, et al. Design and motion performance of a novel variable-area tail for underwater gliders[J]. IEEE/ASME Transactions on Mechatronics, 2025, 30(3): 2132−2143. doi: 10.1109/TMECH.2024.3424308
    [8] Jagadeesh P, Murali K, Idichandy V G. Experimental investigation of hydrodynamic force coefficients over AUV hull form[J]. Ocean Engineering, 2009, 36(1): 113−118. doi: 10.1016/j.oceaneng.2008.11.008
    [9] Mitra A, Panda J P, Warrior H V. Experimental and numerical investigation of the hydrodynamic characteristics of Autonomous Underwater Vehicles over sea-beds with complex topography[J]. Ocean Engineering, 2020, 198: 106978. doi: 10.1016/j.oceaneng.2020.106978
    [10] Mitra A, Panda J P, Warrior H V. The effects of free stream turbulence on the hydrodynamic characteristics of an AUV hull form[J]. Ocean Engineering, 2019, 174: 148−158. doi: 10.1016/j.oceaneng.2019.01.039
    [11] Chen Chenwei, Jiang Yong, Huang Haocai, et al. Computational fluid dynamics study of the motion stability of an autonomous underwater helicopter[J]. Ocean Engineering, 2017, 143: 227−239. doi: 10.1016/j.oceaneng.2017.07.020
    [12] Chen Chenwei, Chen Ying, Cai Qianwen. Hydrodynamic-interaction analysis of an autonomous underwater hovering vehicle and ship with wave effects[J]. Symmetry, 2019, 11(10): 1213. doi: 10.3390/sym11101213
    [13] Chen Chenwei, Lu Yifan. Computational fluid dynamics study of water entry impact forces of an airborne-launched, axisymmetric, disk-type autonomous underwater hovering vehicle[J]. Symmetry, 2019, 11(9): 1100. doi: 10.3390/sym11091100
    [14] Lin Yuan, Huang Yue, Zhu Hai, et al. Simulation study on the hydrodynamic resistance and stability of a disk-shaped autonomous underwater helicopter[J]. Ocean Engineering, 2021, 219: 108385. doi: 10.1016/j.oceaneng.2020.108385
    [15] Ayyangar V B S, Krishnankutty P, Korulla M, et al. Stability analysis of a positively buoyant underwater vehicle in vertical plane for a level flight at varying buoyancy, BG and speeds[J]. Ocean Engineering, 2018, 148: 331−348. doi: 10.1016/j.oceaneng.2017.11.030
    [16] Wei Tongjin, Lu Di, Zeng Zheng, et al. Trans-media kinematic stability analysis for hybrid unmanned aerial underwater vehicle[J]. Journal of Marine Science and Engineering, 2022, 10(2): 275. doi: 10.3390/jmse10020275
    [17] Minnick L M. A parametric model for predicting submarine dynamic stability in early stage design[D]. Blacksburg: Virginia Tech, 2006.
    [18] Woolsey C A. Review of marine control systems: guidance, navigation, and control of ships, rigs and underwater vehicles[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(3): 574−575. doi: 10.2514/1.17190
    [19] 李殿璞. 船舶运动与建模[M]. 2版. 北京: 国防工业出版社, 2008.

    Li Dianpu. Ship Motion and Modeling[M]. 2nd ed. Beijing: National Defense Industry Press, 2008.
    [20] Chen C W, Kouh J S, Tsai J F. Maneuvering modeling and simulation of AUV dynamic systems with Euler-Rodriguez quaternion method[J]. China Ocean Engineering, 2013, 27(3): 403−416. doi: 10.1007/s13344-013-0035-7
    [21] Chen Chenwei, Kouh J S, Tsai J F. Modeling and simulation of an AUV simulator with guidance system[J]. IEEE Journal of Oceanic Engineering, 2013, 38(2): 211−225. doi: 10.1109/JOE.2012.2220236
    [22] Fossen T I. Marine Control Systems Guidance, Navigation, and Control of Ships, Rigs and Underwater Vehicles[M]. Trondheim: Marine Cybernetics, 2002.
    [23] Phillips A B, Turnock S R, Furlong M. The use of computational fluid dynamics to aid cost-effective hydrodynamic design of autonomous underwater vehicles[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2010, 224(4): 239−254. doi: 10.1243/14750902JEME199
    [24] Hu Junming, Zhang Yanru, Xu Gang, et al. Numerical analysis of hydrodynamic performance of biomimetic flapping foils based on the RANS method[J]. Journal of Intelligent & Fuzzy Systems, 2020, 38(6): 7553−7562.
    [25] Rattanasiri P, Wilson P A, Phillips A B. Numerical investigation of a pair of self-propelled AUVs operating in tandem[J]. Ocean Engineering, 2015, 100: 126−137. doi: 10.1016/j.oceaneng.2015.04.031
    [26] Shojaeefard M H, Khorampanahi A, Mirzaei M. RANS study of Strouhal number effects on the stability derivatives of an autonomous underwater vehicle[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(3): 124. doi: 10.1007/s40430-018-0976-0
    [27] Sitaraman J, Floros M, Wissink A M, et al. Parallel unsteady overset mesh methodology for a multi-solver paradigm with adaptive Cartesian grids[C]//Proceedings of the 26th AIAA Applied Aerodynamics Conference. Honolulu: AIAA, 2008.
    [28] Phillips A, Furlong M, Turnock S R. The use of computational fluid dynamics to assess the hull resistance of concept autonomous underwater vehicles[C]//Proceedings of the OCEANS 2007-Europe. Aberdeen: IEEE, 2007: 1−6.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  84
  • HTML全文浏览量:  48
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-19
  • 修回日期:  2025-12-16
  • 网络出版日期:  2025-12-26
  • 刊出日期:  2025-12-31

目录

    /

    返回文章
    返回